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The electroencephalographic activity of particular brain areas during the decision making

process is still little known. This paper presents results of experiments on the group

of 30 patients with a wide range of psychiatric disorders and 41 members of the

control group. All subjects were performing the Iowa Gambling Task that is often

used for decision process investigations. The electroencephalographical activity of

participants was recorded using the dense array amplifier. The most frequently active

Brodmann Areas were estimated by means of the photogrammetry techniques and

source localization algorithms. The analysis was conducted in the full frequency as well

as in alpha, beta, gamma, delta, and theta bands. Next the mean electric charge flowing

through each of the most frequently active areas and for each frequency band was

calculated. The comparison of the results obtained for the subjects and the control

groups is presented. The difference in activity of the selected Brodmann Areas can

be observed in all variants of the task. The hyperactivity of amygdala is found in both

the patients and the control group. It is noted that the somatosensory association

cortex, dorsolateral prefrontal cortex, and primary visual cortex play an important role

in the decision-making process as well. Some of our results confirm the previous

findings in the fMRI experiments. In addition, the results of the electroencephalographic

analysis in the broadband as well as in specific frequency bands were used as inputs

to several machine learning classifiers built in Azure Machine Learning environment.

Comparison of classifiers’ efficiency is presented to some extent and finding the most

effective classifier may be important for planning research strategy toward finding

decision-making biomarkers in cortical activity for both healthy people and those suffering

from psychiatric disorders.

Keywords: electroencephalography, sLORETA, psychiatric disorders, frequency band analysis, machine learning,
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INTRODUCTION

Decision-making is an essential skill in everyday life but currently
there is little systematic knowledge about how decision-making
is affected in people with a diagnosis of psychiatric disorders.
Decision-making is a process in which many cognitive functions
are engaged. Probably that is why the IGT was often chosen as a
task for investigating the behavior of the people with psychiatric
disorders, however, there is relatively not much known about the

cortical activity of individuals while making decisions in both
healthy people and those with psychiatric disorders diagnosis.

Some research has been done on the patients with major

depressive disorder (Cella et al., 2010; Brevers et al., 2013).
Similarly, the cohort of subjects with borderline personality
disorder was investigated using IGT (Haaland and Landrø, 2007)
as well as bipolar disorder (Paulus, 2007). IGT applications for
a variety of research and different disorders are presented to
some extent in a review by Brevers et al. (2013) and originally
in Bechara (2007). With many applications in psychiatry, we
decided to choose the IGT out of many other tasks for this stage
of our research.

Quantitative electroencephalography is at its Renaissance
stage in last decades (Sand et al., 2013) and has developed toward
some forms of research in modern psychiatry (Kamarajan and
Porjesz, 2015; Martínez-Rodrigo et al., 2017).

The rapid increase in the number of publications concerning
Brain-Computer Interfaces (BCI) is observed (Mikołajewska
and Mikołajewski, 2012, 2013, 2014; Teruel et al., 2017; Ozga
et al., 2018; Wierzgała et al., 2018) and the EEG activity can
be recognized as one of possible solutions in BCI engineering
(Kotyra and Wojcik, 2017a,b). In addition, any ideas for finding
biomarkers of psychiatric disorders (Chapman and Bragdon,
1964; Sutton et al., 1965; Campanella, 2013; Golonka et al., 2017)
are in demand as the interview is still the most often used tool in
psychiatry to make the diagnosis.

The expansion of computational modeling techniques applied
to neuroscience makes it possible to simulate selected parts of
the brain tissues which we are familiar with (Wojcik et al., 2007;
Wojcik and Kaminski, 2008; Wojcik and Garcia-Lazaro, 2010) or
even investigate the influence of electrophysiological parameters
of single cells on the dynamics of the whole simulated system
(Wojcik and Kaminski, 2007; Wojcik, 2012). However, we are
still very far from explaining complex phenomena like psychiatric
disorders or syndromes e.g., burn-out (Chow et al., 2018). Higher
cognitive functions are sometimes a source of inspiration in
biomedical engineering (Kaminski andWojcik, 2004;Ważny and
Wojcik, 2014; Wojcik andWażny, 2015; Kufel andWojcik, 2018)
and artificial intelligence (Ogiela et al., 2008; Szaleniec et al., 2008,
2013) mixed with cognitive science methodology provides some
explanation or leads to the construction of classification tools.
Nevertheless, we are still in demand for verification theory in
the experiment.

There are different electroencephalographic methods
that allow visualization of recorded activity on the brain
model. One of them is the standardized low-resolution brain
electromagnetic tomography algorithm (sLORETA) (Pascual-
Marqui et al., 1994, 1999; Pascual-Marqui, 2002). This method

advantages come from the high temporal resolution of modern
electroencephalographs (Tohka and Ruotsalainen, 2012) and
makes possible to compute the subjects brain activity distributed
in time and put it on brain topography with the tomography-like
quality of detail. Applications of sLORETA were reported e.g.,
for the attention-deficit-hyperactivity disorder (ADHD) (Mann
et al., 1992) and neurodegenerative diseases (Wu et al., 2014).
The sLORETA can be also applied in the frequency band analysis
(Moretti et al., 2004; Saletu et al., 2010).

Using EEG based source localization techniques for the
measurement of subcortical activity can be controversial. We
are aware of the fact that for example in Krishnaswamy et al.
(2017) authors state that subcortical structures produce smaller
scalp EEG signals. This happens because they are farther from
the head surface than cortical structures. To make matters worse,
subcortical neurons can have a closed-field geometry that further
weakens the observed distant fields and subcortical structures
are surrounded by the cortical mantle. So measurements of
activity in deep brain structures can potentially be explained
by a surrogate distribution of currents on the cortex. That is
why it can be very difficult to measure subcortical activity when
cortical activity is occurring at the same time (Krishnaswamy
et al., 2017). However, there are various mathematical models
(Grech et al., 2008) that allow us to make some estimation
of such kind of activity. Our lab is equipped with the very
sophisticated and developed for 25 years GeoSource software1,
where such models are implemented and based on the results
given by it, having access to the photogrammetry station which
generates the head model with high accuracy, we are able to
draw some conclusions that are some extrapolated indicators
for subcortical areas increased activity. The GeoSource is not
the only software with subcortical areas activity algorithmic
detectors. We have done some comparative analysis with BESA
and its: ERP analysis and averaging2 and source analysis and
imaging3 packages getting the same quality of results.

The investigations of Event-Related Potentials are often
chosen by experimental psychologists as well as clinicians
and biomedical engineers. One of the best-recognized ERP
experiments in which decision-making is investigated was
proposed by Bechara et al. (1994). It is known as the Iowa
Gambling Task (IGT) and is described in detail in the Materials
and Methods section of this contribution.

IGT was used in many clinical experiments (Cui et al., 2013;
Mapelli et al., 2014; Tamburin et al., 2014). In Tamburin et al.
(2014) the patients with chronic low back pain were investigated
and the authors tried to find correlations between the ERP
responses and the cognitive measures taken on them. On the
other hand, in Cui et al. (2013) the students were investigated
during IGT and the amplitudes of P3 potential were observed
and discussed. Similar research is reported (Mapelli et al., 2014)

1GeoSource 3 electrical source imaging packages: https://www.egi.com/research-

division/electrical-source-imaging/geosource
2BESA: ERP analysis and averaging, http://www.besa.de/products/besa-research/

features/erp-analysis-and-averaging/
3BESA: Source analysis and imaging, http://www.besa.de/products/besa-research/

features/source-analysis-and-imaging/
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but in this case it was focused on the people with Parkinson’s
disease making decisions and after that their ERP potentials were
analyzed. The research mentioned above is concentrated on the
analysis of the shape of statistically averaged potential and there
are no source localization procedures applied to the analysis.

The aim of the research presented herein was to apply the
methodology proposed in Wojcik et al. (2018a) and Wojcik et al.
(2018b) to the quantitative electroencephalographic analysis of
cortical activity from the patients in different frequency bands
as well as in the full spectrum of the EEG signal. We used
source localization techniques and having measured the average
amperage in time for particular Brodmann Areas (BA) the mean
electric charge flowing through them during the experiment was
conducted for each patient andmember of the control group. For
this contribution, the brain activity of a group of patients with
selected psychiatric disorders was measured using dense array
EEG. These results were compared with those obtained from the
participants of the control group. Both groups performed IGT.

Additionally, the results gathered for both healthy and
disordered people in the broad and particular frequency EEG
bands were taken as inputs to seven different machine learning
classifiers in order to distinguish two types of responses in IGT,
basing only on BA activity. The efficiency of these classifiers was
compared and is presented to some extent.

MATERIALS AND METHODS

The Department of Neuroinformatics is equipped with the
dense array amplifier recording the cortical activity with up to
500 Hz frequency through 256 channels HydroCel GSN 130
Geodesic Sensor Nets provided by EGI4. In addition, in the EEG
Laboratory the Geodesic Photogrammetry System (GPS) was
used. Eleven cameras placed in the corners of GPS take a set of
subject’s photos and then it is possible to make a model of the
particular subject brain based on its calculated size, proportion
and shape. Next the software imposes all computed activity
results on this model with a very good accuracy. The amplifier
operates on the Net Station 4.5.4 software, GPS is under control
of the Net Local 1.00.00 and GeoSource 2.0. The eye blinks and
saccades elimination as well as gaze calibration are obtained
owing to the application of dedicated eye-tracker operated by
SmartEye 5.9.7. The Event-Related Potentials (ERP) experiments
are conducted in the PST e-Prime 2.0.8.90 environment5.

We investigated 30 patients, 9 females and 21 males (avg. age
28.1, s.d. 12.4). They have been diagnosed with a wide range
of psychiatric disorders. The disorders are classified in ICD-
10 as: 12 × F41 (Panic disorder), 5 × F32.1 (Major depressive
episode), 5 × F84.5 (Asperger syndrome), 3 × F40 (Social
anxiety disorders), 2 × F31 (Bipolar affective disorder), 2 × F42
(Obsessive-compulsive disorder co-occurrent with the patients
with F84.5), 2 × F51.1 (Non-organic hypersomnia), and 1× F20
(Schizophrenia). The control group of 30 healthy volunteers were

4Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene, OR, 97401,

USA.
5Psychology Software Tools, Inc. PST, Sharpsburg Business Park, 311 23rd Street

Ext., Suite 200, Sharpsburg, PA, 15215-2821, USA.

also examined. The control group were only males (avg. age
22.4, s.d. 1.7). It is worth noting that about 30% more subjects
were investigated from both control and patients’ groups as the
signal of all those for whom the recordings were too noisy or
incomplete had to be eliminated. All participants were right-
handed and measured by a handedness questionnaire (Chapman
and Chapman, 1987).

The IGT was introduced by Bechara et al. (1994) and since
then it has become one of the favorite tasks given to the
subjects participating in a wide range of experimental psychology
experiments. Originating from the research first carried out
at the University of Iowa the IGT was intended to get hold
of mechanisms of decision-making process during the reward-
punishment oriented card game. The aim of the task is to choose
one card deck symbol out of four in each of 100 trials. The
participants are told to earn as much of virtual money as possible
starting with 0 dollars. In each set of four cards (or symbols)
there is a couple of so-called good cards for which there is
a reward and a couple of so-called bad cards for which there
is a punishment. The participants do not know which card
is good and which is bad but they can conclude it from the
game behavior. However, at the beginning all cards seem to be
good, but for two of them they make impression to be better
as the reward for choosing them is remarkably higher than for
choosing the others. After several choices of the better cards, the
punishments for choosing the next are extremely high. On the
other hand the punishment for choosing cards after the initial
selection of those worse at the beginning is very low which finally
gives the better financial results when compared to the other
case. The typical screens shown on the computer on which our
participants make decisions is shown in Figure 1.

The electroencephalographic signal was recorded. After the
test the photo of each participant was taken using the GPS.
Such a technique allows obtaining spatial resolutions comparable
to 1.5 T MRI without the necessity of MRI brain scanning for
each participant. Thus, the anatomical models of participants’
brains are generated using the GeoSource software and GPS
photogrammetry which allows us to estimate the activity of
particular BAs with satisfactory precision. Note, that in our
approach we do not use the default model of the head, which is
also possible. We make use of GPS to achieve the best possible
accuracy of source localization.

Such methodology allowed us to apply the source localization
algorithm with a satisfactory accuracy and estimate the most
active Brodmann Areas in each participant during the decision-
making process. The Net Station software along with the
GeoSource tool has implemented the most popular version of
the sLORETA algorithm which is described in the chapter titled
Brain Source Localization Using EEG Signals in Nidal and Malik
(2014). It is based on standardization of the current density
assumption. That means that both the variance of the noise in
the signal and the biological variance in the actual signal are
taken into account (Goldenholz et al., 2009; Nidal and Malik,
2014). Independent and uniform distribution of the biological
signal variance across the brain cortex is taken into consideration
and this results in a linear imaging localization technique having
exact, zero-localization error (Goldenholz et al., 2009; Nidal and
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FIGURE 1 | Typical screens shown to participants during the IGT experiment. Card decks—in the left and reward/punishment with account state in the right. The

screens are generated by the PST e-Prime 2.0.8.90 which is synchronized with Net Station 4.5.4 recordings.

FIGURE 2 | Typical results of GeoSource BA activity visualization on the brain cortex so-called Flat Map. The increase of activity in BA36 (Uncus Lobe, Limbic Lobe)

for good choice and BA37 (Fusiform Gyrus, Temporal Lobe) for bad choice are indicated.

Malik, 2014). For more details see the comparison of different
types of LORETA in Nidal and Malik (2014).

The literature reports a few bands that cover typical
rhythmical activity of the brain (Niedermeyer and da Silva, 2005)

described as follows: δ—delta band (<4 Hz), θ—theta (4–7 Hz),
α—alpha (8–15 Hz), β—beta (16–31 Hz), γ—gamma (more than
31 Hz), and sometimes µ—mu (8–12 Hz) bands. Sometimes the
frequency ranges that define each band are slightly different. In
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FIGURE 3 | Diagram of the IGT research protocol used in this paper. All scripts used for the preprocessing data in Net Station and post-processing in GeoSource are

listed. Participation of the subject in the experiment begins when the Sensor Net is put on and ends when it is taken off. All data is collected by the Mac Pro

workstation which is the central computational unit of the lab. Statistical analysis, finding the most active BAs in full or each of α, β, γ , δ, and θ frequency bands as

well as ι estimations can be conducted on other machines.

our lab by default the frequency bands are set as follow: δ—
delta band (0.1–3 Hz), θ—theta (4–7 Hz), α—alpha (7–12 Hz),
β—beta (12–30 Hz), γ—gamma (more than 32 Hz).

One of the most useful functions of the GeoSource software is
the possibility of estimation of the amperage of the most active
areas (Figure 2) varying in time using source localization. The

most active BA is indicated by the GeoSource as the BA with the
highest electric current flowing through it in time. The activity
of a particular BA could last at its maximum value for a longer
or shorter period and it could appear more than once during
each epoch. The signal was divided into epochs, as usual in ERP,
in this case, IGT experiments, then averaged giving amperage in
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TABLE 1 | Most active BA in particular subjects of the patients’ group while

receiving a reward during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Diag. Full band α β γ δ θ

1 F20 BA05 BA29 BA29 BA05 BA34 BA29

2 F31 BA09 Amygd. Amygd. BA09 Amygd. BA09

3 F31 BA05 Hipp. Amygd. BA17 Amygd. Amygd.

4 F32.1 BA36 BA17 Amygd. BA17 Amygd. Amygd.

5 F32.1 BA17 BA05 Amygd. BA17 Amygd. BA05

6 F32.1 BA05 Amygd. BA36 BA05 BA36 BA17

7 F32.1 BA17 Amygd. Amygd. BA17 BA36 Amygd.

8 F32.1 BA17 Amygd. BA09 BA09 BA34 BA09

9 F40 Amygd. Amygd. Amygd. Amygd. BA05 BA04

10 F40 BA09 BA29 BA29 BA09 BA08 BA34

11 F40 BA46 BA24 BA36 Amygd. BA05 BA46

12 F41 BA09 BA09 BA05 BA09 Amygd. BA09

13 F41 Amygd. Amygd. BA29 Amygd. BA29 Amygd.

14 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA17

15 F41 BA09 Amygd. Amygd. BA09 Amygd. BA04

16 F41 BA05 BA05 BA05 BA05 Amygd. BA09

17 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA17

18 F41 Amygd. BA45 BA45 BA17 BA45 BA45

19 F41 BA09 Amygd. Amygd. BA04 Amygd. BA09

20 F41 BA27 Amygd. Amygd. BA34 Amygd. Amygd.

21 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA04

22 F41 BA04 Amygd. Amygd. BA09 Amygd. BA09

23 F41 BA05 BA36 BA27 BA05 BA27 BA05

24 F51.1 Amygd. Amygd. Amygd. BA05 BA05 Amygd.

25 F51.1 BA17 BA05 BA36 BA17 BA36 BA17

26 F84.5 Amygd. Amygd. Amygd. BA04 Amygd. Amygd.

27 F84.5 BA09 BA17 BA17 BA09 BA17 BA09

28 F84.5 BA45 Hipp. Hipp. BA45 BA45 BA45

29 F84.5, F42 BA04 BA05 BA05 Amygd. Amygd. Amygd.

30 F84.5, F42 BA45 BA45 BA05 BA09 BA05 BA45

“Amygd.” indicates Amygdala, “Hipp.” for Hippocampus areas. For detail see Discussion

section in text.

the function of time. Based on the electrical current measured
by the EEG amplifier, most active BAs precisely indicated by
the photogrammetry station and having precisely estimated time
intervals owing to the perfect EEG time resolution, one of many
numerical methods for integration can be applied to calculate the
mean electric charge ι with good precision (Wojcik et al., 2018a)
by integrating the electrical current in time. The details of mean
electric charge estimation are described in detail in Wojcik et al.
(2018a).

The sLORETA can be run for the full EEG frequency band
above 0.1 Hz including the γ spectrum and for the selected
frequency band analysis. Besides the full band there were taken
into consideration each of the following: alpha, beta, gamma,
delta, and theta. For each band including the full band, the
varying in time value of amperage of particular BAs was obtained
from the GeoSource. Having the amperage in the function of
time one can calculate the mean electric charge ι flowing through

TABLE 2 | Most active BA in particular subjects of the patients’ group while

receiving a punishment during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Diag. Full band α β γ δ θ

1 F20 BA05 BA34 BA29 BA05 BA34 BA29

2 F31 BA09 Amygd. Amygd. BA09 Amygd. Amygd.

3 F31 Amygd. Amygd. Amygd. BA17 Amygd. Amygd.

4 F32.1 BA17 BA05 Amygd. Amygd. Amygd. BA17

5 F32.1 BA05 Amygd. BA05 BA17 BA05 Amygd.

6 F32.1 BA36 Amygd. Amygd. BA17 BA36 BA17

7 F32.1 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

8 F32.1 BA17 BA09 BA09 BA09 BA34 BA09

9 F40 Amygd. BA05 BA04 Amygd. BA05 BA17

10 F40 BA09 BA29 BA29 BA09 BA29 BA17

11 F40 BA05 Amygd. BA36 Amygd. Amygd. BA17

12 F41 Amygd. Amygd. BA05 BA09 Amygd. BA05

13 F41 BA04 Amygd. BA29 BA05 BA29 Amygd.

14 F41 BA43 BA17 BA05 Amygd. BA36 BA17

15 F41 Amygd. BA05 Amygd. Amygd. Amygd. Amygd.

16 F41 Amygd. BA05 BA05 BA05 Amygd. BA09

17 F41 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

18 F41 Amygd. BA45 BA45 Amygd. BA45 BA45

19 F41 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

20 F41 BA27 Amygd. Amygd. BA23 Amygd. BA17

21 F41 BA04 Amygd. Amygd. BA09 Amygd. BA04

22 F41 BA04 Amygd. Amygd. Amygd. Amygd. Amygd.

23 F41 BA05 BA05 BA27 Amygd. BA41 BA05

24 F51.1 BA05 Amygd. Amygd. Amygd. Amygd. Amygd.

25 F51.1 BA05 BA05 BA34 BA17 Amygd. BA17

26 F84.5 Amygd. Amygd. Amygd. BA05 Amygd. BA05

27 F84.5 BA09 Amygd. BA17 BA09 BA17 BA09

28 F84.5 BA41 Hipp. Hipp. BA45 BA31 BA45

29 F84.5, F42 Amygd. BA05 Amygd. Amygd. Amygd. BA05

30 F84.5, F42 BA05 BA05 BA05 BA05 BA05 BA05

“Amygd.” indicates Amygdala, “Hipp.” for Hippocampus areas. For detail see Discussion

section in text.

the given BA as described in Wojcik et al. (2018a). The typical
visualization of the GeoSource application to the signal is shown
in the flat maps in Figure 2.

The time interval in which the BA activity was calculated was
set to 5 ms and there was chosen the 800 ms segmentation (each
segment starting with the stimuli) for signal averaging.

The BA1, BA2, and BA3 were eliminated from our analysis
as they are part of Primary Somatosensory Cortex (S1) which
was hyperactive owing to the subject’s fingertips contact with the
response pad during the experiment.

The scheme of the methodology and research protocol are
presented in Figure 3. The full band analysis protocol in the
case of P300 experiments was presented in Wojcik et al. (2018a)
and the frequency band analysis protocol was described in detail
in DIGITS related paper in Wojcik et al. (2018b). For this
contribution the mixture of both methods proposed in Wojcik
et al. (2018a,b) is applied.
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TABLE 3 | The ι for the most active BA in particular patients receiving a reward

during the IGT experiment obtained from the sLORETA quantitative analysis.

No. Diag. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 F20 25.45 8.60 7.49 30.96 9.47 7.12

2 F31 45.10 3.99 5.59 43.32 6.03 17.82

3 F31 11.77 2.82 3.54 14.82 5.55 5.60

4 F32.1 37.92 3.40 33.19 38.90 11.31 6.01

5 F32.1 77.11 20.28 7.56 38.91 9.94 15.80

6 F32.1 200.70 15.17 19.93 56.61 17.39 20.45

7 F32.1 55.50 11.87 12.61 30.02 13.26 6.03

8 F32.1 24.65 4.58 9.10 69.61 8.19 8.05

9 F40 19.24 18.92 14.47 23.05 9.04 6.61

10 F40 46.20 5.35 5.60 20.27 2.67 7.69

11 F40 20.49 2.88 3.81 16.15 3.55 6.82

12 F41 67.16 6.03 10.13 20.88 14.89 6.40

13 F41 48.25 6.29 25.76 45.79 22.14 6.50

14 F41 118.70 5.40 6.24 50.14 9.89 20.32

15 F41 55.71 4.41 3.95 32.42 4.74 6.36

16 F41 68.59 11.27 11.07 44.56 8.43 16.58

17 F41 81.21 14.93 20.20 53.17 19.26 14.13

18 F41 45.66 8.50 15.83 39.21 14.15 15.55

19 F41 40.30 3.68 3.75 44.72 4.55 11.12

20 F41 91.03 9.34 11.66 93.58 16.13 7.46

21 F41 67.74 5.46 8.14 45.63 8.99 10.91

22 F41 26.20 6.75 10.53 61.26 14.79 9.62

23 F41 29.25 4.96 8.02 20.15 11.23 6.23

24 F51.1 34.89 2.46 3.56 17.63 3.06 5.62

25 F51.1 28.82 2.14 3.22 20.67 3.49 4.06

26 F84.5 27.53 4.15 5.82 8.55 7.11 6.88

27 F84.5 44.27 2.05 6.32 28.75 7.86 5.04

28 F84.5 20.34 6.18 5.89 37.28 2.03 14.97

29 F84.5, F42 15.99 5.19 6.85 16.47 4.32 5.52

30 F84.5, F42 27.07 5.95 33.39 34.75 26.89 10.16

For detail see the Discussion section in the text.

The so-called Waveform Tools package from the Net
Station ecosystem was used and all scripts shown in Figure 3

originate from it. The description of algorithms used in the
preprocessing and post-processing stages of the research is
given in Electrical Geodesics (2003) and the procedures used
in the photogrammetry Net Local are described in the EGI Lab
documentation (Electrical Geodesics, 2009, 2011). There were
100 trials for each participant, duration of the experiment was
around 12 min. For the preprocessing we used the following
and suggested by EGI engineers rules: As an average reference
the average of all electrodes was taken. The artifact correction
parameters were set as follow: bad channels filtering—Max-Min
> 200 µV; eye-blinks—Max-Min > 140 µV, eye movements—
Max-Min > 140 µV—all performed in moving average of 80 ms.
Filtration settings were set to passband gain 99%, stopband gain
1% and rollof 2 Hz, The segmentation was performed from 100
ms before stimulus to 700 after stimulus with offset 13 ms. The

TABLE 4 | The ι for the most active BA in particular patients receiving a

punishment during the IGT experiment obtained from the sLORETA quantitative

analysis.

No. Diag. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 F20 58.78 8.41 11.80 19.74 14.19 13.74

2 F31 36.15 5.56 9.09 62.91 9.05 11.46

3 F31 19.13 3.33 10.09 16.76 10.48 5.27

4 F32.1 70.61 9.02 29.37 35.87 28.28 19.50

5 F32.1 44.21 39.90 13.93 44.60 20.02 25.72

6 F32.1 86.34 29.29 40.46 62.67 31.10 33.35

7 F32.1 70.96 14.87 17.38 39.71 19.95 25.57

8 F32.1 88.81 13.66 15.96 54.23 21.21 22.31

9 F40 33.17 26.94 25.38 22.23 20.06 6.64

10 F40 117.98 9.74 8.07 68.39 6.65 11.47

11 F40 30.50 5.26 7.00 22.34 8.58 8.03

12 F41 99.30 9.41 17.07 49.72 28.45 9.55

13 F41 49.64 6.88 43.05 37.35 46.80 12.43

14 F41 231.56 11.06 11.79 87.43 18.20 15.64

15 F41 103.02 8.47 8.90 91.82 12.95 15.18

16 F41 100.32 15.01 19.75 54.24 15.90 22.40

17 F41 84.65 20.36 26.41 64.05 37.07 47.20

18 F41 148.46 19.03 32.64 74.02 28.62 28.91

19 F41 57.55 6.54 5.95 39.59 9.03 18.25

20 F41 134.75 13.39 16.48 77.11 24.33 16.96

21 F41 117.67 9.80 12.43 87.12 18.07 10.34

22 F41 69.91 12.87 17.81 83.47 25.76 23.91

23 F41 77.93 10.15 12.17 48.43 18.50 15.37

24 F51.1 28.63 6.77 5.90 25.05 5.29 10.72

25 F51.1 22.51 4.22 6.80 25.58 8.54 7.28

26 F84.5 21.58 6.90 8.32 9.72 9.31 5.00

27 F84.5 76.76 5.10 12.97 92.33 16.31 21.26

28 F84.5 35.00 9.39 8.56 49.69 3.91 22.36

29 F84.5, F42 56.93 6.52 11.55 1.37 8.46 9.62

30 F84.5, F42 121.72 11.22 55.63 39.35 51.99 12.92

For detail see the Discussion section in the text.

baseline correction was set to 100 ms from portion of segment.
The rejection of trials took place when there were more than 10
bad channels.

The Holy Grail for the quantitative EEG based psychiatry
is finding the biomarkers of particular psychiatric disorders
based on the measured electrical activity of the brain. We
proposed some idea to find such biomarkers in Wojcik et al.
(2018b) by using the frequency band analysis and estimating
the most active BAs in an above-mentioned way. Some research
was also reported in Zolubak et al. (2019) where authors were
investigating low frequency markers in neurofeedback therapy.
But indicating the most active BAs can be not enough. In the
last decades, we can, however, observe the rapid growth of
data science methods applied to big datasets. One of the most
important of them are machine learning tools and our idea was
to check whether applying different classifiers to our results, both
in broadband and specific frequency band analysis, could shed
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TABLE 5 | The most active BA in particular subjects of the control group while

receiving a reward during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Full band α β γ δ θ

1 Amygd. BA05 BA05 Amygd. BA05 BA05

2 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

3 BA17 BA05 BA17 BA09 Hipp. BA09

4 BA17 Amygd. BA36 BA17 BA36 BA17

5 BA09 BA05 BA05 BA09 BA27 BA09

6 BA17 Amygd. Amygd. BA17 Amygd. BA17

7 BA17 Amygd. Amygd. BA09 Amygd. BA09

8 BA05 Amygd. BA05 BA05 BA05 BA09

9 BA09 BA18 BA24 BA17 BA18 BA17

10 BA28 BA34 BA34 BA09 BA34 Amygd.

11 BA05 Amygd. BA05 BA05 BA05 BA05

12 BA09 BA46 BA05 BA09 Amygd. BA09

13 BA17 BA17 BA17 BA17 BA17 BA17

14 BA09 Amygd. Amygd. BA09 Amygd. BA17

15 BA09 Amygd. BA27 BA09 BA27 BA17

16 BA09 BA05 Amygd. BA09 Amygd. BA05

17 BA09 BA29 BA29 BA17 BA28 BA17

18 BA05 Amygd. BA34 BA09 Amygd. BA09

19 Amygd. BA04 BA04 Amygd. BA04 Amygd.

20 BA09 Amygd. Amygd. BA09 Amygd. Amygd.

21 BA17 Amygd. BA36 BA17 BA36 BA17

22 Amygd. Amygd. Amygd. Amygd. BA28 Amygd.

23 Hipp. BA17 BA27 BA17 BA27 BA17

24 BA41 Amygd. Amygd. BA17 BA05 Amygd.

25 BA17 BA42 BA42 BA17 BA27 BA17

26 BA09 BA09 Amygd. BA09 Amygd. BA17

27 BA05 BA09 Amygd. Amygd. Amygd. BA09

28 BA46 Amygd. Amygd. Amygd. BA05 BA46

29 Amygd. BA45 BA27 BA17 BA27 BA45

30 BA17 BA05 BA05 BA17 BA36 Amygd.

“Amygd.” indicates Amygdala, “Hipp.” the Hippocampus areas.

some light on solving diagnoses problems. If there is a secret
code of particular disorders to be found in EEG activity—the
application of machine learning tools, like classifiers, seems to be
the best way to decode this. As the input to classifiers, the activity
of BAs in the spectrum of the mean electric charge flowing
through them should be considered. Because our patients’ group
consisted of only 30 subjects and with a wide range of disorders
it was impossible to design classifiers that could distinguish the
particular disorder from the another. However, the possibility of
distinguishing the reward cortical states from the punishment
activity was investigated and the efficiency of selected classifiers
will be discussed in the following sections to some extent.

RESULTS

For each participant from both the patient and control groups,
we estimated the most active BAs in each EEG frequency

TABLE 6 | The most active BA in particular subjects of the control group while

receiving a punishment during the IGT experiment in the full and alpha, beta,

gamma, delta, and theta EEG bands.

No. Full band α β γ δ θ

1 Amygd. BA05 BA05 Amygd. BA05 BA05

2 BA05 Amygd. Amygd. Amygd. Amygd. Amygd.

3 BA45 BA09 BA41 BA17 BA17 BA09

4 BA05 BA45 Amygd. BA17 BA36 BA17

5 BA05 BA05 BA05 Amygd. BA27 BA09

6 BA09 BA17 Amygd. BA09 Amygd. BA17

7 BA09 Amygd. Amygd. Amygd. Amygd. BA09

8 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

9 BA17 BA07 BA18 BA17 BA18 BA17

10 BA29 BA17 BA34 Amygd. BA34 BA17

11 BA05 Amygd. BA05 BA05 BA05 Amygd.

12 BA04 Amygd. BA05 BA09 Amygd. BA09

13 BA17 BA17 BA17 BA17 BA41 BA17

14 BA05 Amygd. BA27 BA05 BA41 Amygd.

15 BA09 Amygd. Amygd. BA17 BA28 BA09

16 Amygd. BA05 Amygd. BA09 Amygd. BA05

17 BA09 BA29 BA29 BA09 BA28 BA05

18 BA09 BA04 Amygd. BA09 BA34 BA09

19 BA05 BA04 BA29 Amygd. BA04 Amygd.

20 Amygd. Amygd. Amygd. BA17 Amygd. Amygd.

21 BA17 BA17 BA36 BA17 BA36 BA17

22 BA17 Amygd. BA28 BA17 BA28 BA17

23 BA17 BA17 BA05 BA17 BA27 BA17

24 BA41 Amygd. Amygd. BA17 Amygd. Amygd.

25 BA17 BA42 BA42 BA17 BA27 BA05

26 BA09 Amygd. BA09 BA09 Amygd. Amygd.

27 BA05 Amygd. BA05 Amygd. BA05 Amygd.

28 BA05 Amygd. Amygd. BA05 Amygd. BA05

29 BA09 BA05 BA27 BA09 Amygd. BA17

30 Amygd. BA05 BA05 BA17 BA36 Amygd.

“Amygd.” indicates Amygdala, “Hipp.” the Hippocampus areas.

band during the reward and punishment phases of the
IGT experiment.

Thus the most active BAs for the reward variant in the patient
group are presented inTable 1 and for the punishment inTable 2.
The mean electric charge ι flowing through particular BA when
receiving a reward by a patient is shown in Table 3 and for
punishment in Table 4.

In analogy for the control group the reward associated
most active BAs are presented in Table 5 and the
punishment responses in Table 6. Tables 7, 8 present
the values of ι calculated for each member of the
control group in the reward and punishment variants of
response, respectively.

As follows from Tables 1–8 in all cases the Amygdala is
hyperactive and the order of the value of ι tends to be similar for
reward and punishment in both the subject and control groups in
each frequency band.
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TABLE 7 | The ι for the most active BA in particular subjects of the control group

receiving a reward during the IGT experiment obtained from the sLORETA

quantitative analysis.

No. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 35.13 4.97 6.25 21.43 8.76 5.09

2 123.05 20.57 11.64 157.64 5.93 42.89

3 18.50 2.29 3.12 30.77 3.75 6.08

4 28.76 3.10 2.37 49.85 3.44 6.78

5 34.17 4.95 6.11 45.50 3.89 13.49

6 35.07 2.95 4.85 56.67 3.46 11.16

7 44.39 4.44 4.68 41.99 4.94 9.71

8 44.52 2.57 2.82 27.37 3.55 5.54

9 22.01 2.59 3.50 44.04 5.46 4.52

10 29.10 3.58 5.32 36.85 6.92 4.49

11 74.89 2.90 8.60 43.62 7.82 3.83

12 16.20 2.82 2.76 42.64 2.88 6.58

13 91.48 4.22 4.35 93.37 1.06 7.83

14 26.73 6.71 7.43 17.22 1.06 6.80

15 31.23 3.03 5.06 69.70 6.23 11.95

16 40.49 2.96 2.81 25.40 2.68 5.86

17 19.58 5.02 9.06 9.08 4.37 5.10

18 29.44 5.69 7.51 20.83 3.24 6.22

19 20.94 12.05 10.69 27.52 4.98 17.75

20 36.71 2.56 4.77 26.71 2.23 5.51

21 36.85 4.48 3.62 40.97 6.17 9.02

22 22.35 2.60 4.17 11.91 4.64 4.07

23 25.54 9.62 6.41 60.50 6.38 16.57

24 93.76 4.25 5.60 13.82 5.45 6.00

25 28.75 9.77 18.81 27.34 6.59 6.99

26 41.20 6.59 8.00 89.68 8.19 14.10

27 77.02 5.40 10.27 95.49 6.93 13.58

28 16.18 2.64 3.44 18.24 3.72 4.03

29 19.45 2.88 2.76 26.82 2.98 4.51

30 22.57 16.39 20.27 30.82 7.50 7.19

For detail see the Discussion section in the text.

However, the comparison shown in Figure 4 for the rewards
and in Figure 5 for the punishment can shed some light on the
main differences in cortical responses of people with psychiatric
disorders and members of the control group.

As far as the frequency of BA appearances in the IGT reward
cortical responses are concerned (Figure 4) one can note that:

• The one of the amygdala is significantly higher in the patients
compared to the control group when observed in the full, beta
and delta frequency bands.

• The one of BA17 is significantly higher in the control group
than in the patients when observed in the gamma and
theta bands.

• The one of BA09 is higher in the control compared to the
patients’ group in the full and gamma frequency bands.

When considering the frequency of BA appearance in the IGT
punishment responses one can observe that:

TABLE 8 | The ι for the most active BA in particular subjects of the control group

receiving a punishment during the IGT experiment obtained from the sLORETA

quantitative analysis.

No. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 47.89 8.94 11.78 63.56 15.64 8.99

2 203.19 27.55 22.29 277.38 10.28 75.45

3 34.32 4.23 19.78 21.88 5.85 5.68

4 34.02 3.95 4.14 24.11 4.80 12.66

5 41.10 8.24 12.84 54.96 6.38 15.80

6 80.51 7.69 8.61 47.67 9.31 18.62

7 55.34 7.10 8.21 29.96 9.99 15.50

8 125.22 4.56 5.83 63.70 7.58 8.83

9 29.85 5.90 6.48 37.00 9.27 11.87

10 89.41 8.66 10.62 82.42 12.51 7.70

11 132.74 6.12 11.68 109.95 13.24 6.27

12 34.78 5.58 4.91 40.29 4.90 6.63

13 203.37 6.69 6.21 89.38 0.99 31.37

14 37.34 14.02 11.15 34.81 1.80 14.62

15 51.69 10.40 13.26 35.51 17.34 11.14

16 31.28 4.35 4.32 17.42 6.62 8.93

17 46.04 6.65 13.57 14.03 6.91 5.08

18 50.01 7.94 11.22 78.38 6.83 12.96

19 39.11 11.51 14.88 40.65 8.03 16.86

20 45.93 2.76 3.95 34.68 4.67 6.29

21 68.19 10.09 7.55 73.64 10.18 15.74

22 34.54 4.33 7.62 29.19 10.21 6.92

23 58.34 18.68 12.75 75.45 9.00 18.49

24 118.22 9.63 11.49 64.50 11.44 14.56

25 70.20 17.48 19.10 55.03 10.83 9.88

26 54.22 9.57 13.28 103.73 13.20 23.43

27 158.88 8.50 11.97 71.10 10.81 16.73

28 26.53 4.51 5.84 15.03 5.85 5.23

29 32.70 3.66 4.68 34.81 5.66 7.71

30 45.49 24.36 30.51 34.31 13.03 14.36

For detail see the Discussion section in the text.

• The one of the amygdala is significantly higher in the patients
than in the control groupmembers in the full, alpha, beta, delta
and gamma frequency bands.

• The one of BA17 is significantly higher in the control than in
the patients’ group in the full and gamma bands.

• The BA09 is significantly higher in the control group

members than in patients when looking at the full and theta

frequency bands.
• The BA05 in the control group is higher than in the patients

in the full and beta frequency bands while in the alpha band it

is lower.

The role of the amygdala during the decision-making process

was discussed before even by the authors of IGT (Bechara et al.,

2003). It is known that both the amygdala and orbitofrontal

cortex are parts of a neural circuit critical for judgement and

decision-making being under influence of “primary inducers”
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FIGURE 4 | The comparison of the most frequently active BAs in the patients and the control groups in the “reward” variant of IGT response for (A)—full, (B)—alpha,

(C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity noted.

defined as stimuli that unconditionally, or through learning
(e.g., conditioning and semantic knowledge), can (perceptually
or subliminally) produce states that are pleasurable or aversive
(Bechara et al., 2003).

In order to verify the somatic marker hypothesis which
proposes that decision-making is a process depending on
emotion, some research of the destroyed amygdala was carried
out (Bechara et al., 1999; Gupta et al., 2011). During some fMRI
studies it was shown that amygdala influences the decision-
making process in the risk-taking experiments involving
information ambiguity (Hsu et al., 2005).

Our experiments show that the people with psychiatric
disorders have the amygdala more frequently hyperactive when
compared to healthy participants from the control group.

The Azure Machine Learning Studio was used to construct
seven different classifiers and next to compare their efficiency
in the reward/punishment characteristic cortical activity
detection and classification tasks. Our classifiers were designed
in order to separate two classes (reward/punishment) and
were as follow: logistic regression, decision jungle, support
vector machine, boosted decision tree, averaged perceptron,
Bayes point machine, classic neural network and locally-
deep support vector algorithms. Each classifier had its
own characteristics which are shown in Table 10. The
registered activity of particular BAs manifesting itself by
the mean electric charge ι in all discussed EEG frequency
bands, including the broadband was taken as inputs to
the classifier.
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FIGURE 5 | The comparison of the most frequently active BAs in the patients and the control groups in the “punishment” variant of IGT response for (A)—full,

(B)—alpha, (C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity

noted.

Under ideal conditions, it would be expected to construct
effective classifiers for particular psychiatric disorders, but having
only 30 diagnosed subjects in our cohort with so many different
diagnoses is far from being enough to perform any statistics. For
the machine learning tasks, the control group was extended by
an additional 11 healthy males finally reaching 41 subjects. Thus,
the joined cohort consisted of 41 healthy males and 30males with
some disorders, in a total of 71 participants. Note that in typical
ERP experiments there are standard (STD) and target (TGT)
stimuli. In the case of IGT, the punishment is treated as STD and
the reward is TGT as practically everyone dares to win. For each
participant registered the reward and punishment states, finally
giving 2× 71 = 142 averaged responses to the investigated set.

The 5-fold Cross-Validation method was used to validate the
efficiency of all classifiers.

Then the values of classification accuracy, recall and precision
were calculated and results are presented in Table 9.

As one can see in Table 9 there is no ideal classifier that
could be applied to all of the EEG frequency bands, including
the broadband.

For the broadband, the best results were
achieved by the Locally-Deep Support Vector
(acc. 0.698) and the Average Perceptron Classifier
(acc. 0.684) methods.

In the α band the Logistic Regression (acc. 0.690) and Neural
Network (acc. 0.669) turned out to be the best classifiers
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TABLE 9 | Comparison of the discussed classifiers efficiency for all frequency bands, including the broadband in the STD (punishment) and TGT (reward) classification

tasks.

Broad-band Corr. TGT Inc. TGT Corr. STD Inc.STD Acc. Recall Prec.

Logistic regression 55 32 39 16 0.662 0.549 0.709

Decision jungle 42 31 40 29 0.577 0.563 0.580

Support vector machine 35 25 46 36 0.561 0.521 0.698

Avg. perceptron classifier 53 32 39 18 0.684 0.549 0.684

Bayes point machine 33 15 56 38 0.627 0.789 0.596

Neural network 55 41 30 16 0.652 0.423 0.652

Locally-deep support vector 55 34 37 16 0.698 0.648 0.561

α

Logistic regression 54 27 44 17 0.690 0.620 0.721

Decision jungle 48 27 44 23 0.648 0.620 0.657

Support vector machine 41 29 42 30 0.585 0.577 0.683

Avg. perceptron classifier 51 28 43 20 0.662 0.606 0.683

Bayes point machine 46 28 43 25 0.627 0.606 0.632

Neural network 61 37 34 10 0.669 0.479 0.773

Locally-deep support vector 41 29 42 30 0.585 0.592 0.583

β

Logistic regression 51 23 48 20 0.697 0.676 0.706

Decision jungle 51 24 47 20 0.690 0.662 0.701

Support vector machine 53 26 45 18 0.690 0.634 0.714

Avg. perceptron classifier 49 24 47 22 0.676 0.662 0.681

Bayes point machine 35 13 58 36 0.655 0.817 0.617

Neural network 58 36 35 13 0.655 0.493 0.729

Locally-deep support vector 46 29 42 25 0.620 0.592 0.627

γ

Logistic regression 52 33 38 19 0.634 0.535 0.667

Decision jungle 42 30 41 29 0.585 0.577 0.586

Support vector machine 52 29 42 19 0.662 0.592 0.689

Avg. perceptron classifier 49 32 39 22 0.620 0.549 0.639

Bayes point machine 34 17 54 37 0.620 0.761 0.593

Neural network 50 33 38 21 0.620 0.535 0.644

Locally-deep support vector 41 31 40 30 0.570 0.563 0.571

δ

Logistic regression 56 28 43 15 0.697 0.606 0.741

Decision jungle 49 23 48 22 0.683 0.775 0.743

Support vector machine 56 27 44 15 0.704 0.620 0.746

Avg. perceptron classifier 56 27 44 15 0.704 0.620 0.746

Bayes point machine 39 14 57 32 0.676 0.803 0.640

Neural network 62 37 34 9 0.676 0.479 0.791

Locally-deep support vector 50 28 43 21 0.655 0.606 0.672

θ

Logistic regression 53 24 47 18 0.704 0.662 0.723

Decision jungle 51 31 40 20 0.641 0.563 0.667

Support vector machine 50 26 45 21 0.669 0.521 0.569

Avg. perceptron classifier 45 27 44 26 0.627 0.620 0.629

Bayes point machine 29 14 57 42 0.606 0.803 0.576

Neural network 61 41 30 10 0.641 0.423 0.750

Locally-deep support vector 50 26 45 21 0.669 0.521 0.569

Note, that numbers in rows sum to 142—for detail see text.

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2019 | Volume 13 | Article 73

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Analysis of Decision Making

TABLE 10 | Characteristics of the Two-Class classifiers used in IGT analysis.

Two-class logistic regression

Optimization tolerance 0.0001

L1 weight 0.1

L2 weight 0.1

Memory size 11

Quiet True

Use threads True

Allow unknown levels True

Two-class decision jungle

Ensemble element count 8

Max. depth 32

Max. width 128

Optimization step count 2

Resampling method Bagging

Random number seed 5

Allow unknown levels True

Two-class support vector machine

Number of iterations 101

Lambda 1.0

Normalize features True

Perform projection False

Allow unknown levels True

Two-class average perceptron classifier

Batch size 256

Initial learning rate 0.1

Learning rate decay exponent 0.5

Averaging weight 0.5

Tolerance 1E-05

Maximum number of iterations 101

Allow unknown levels True

Two-class bayes point machine

Allow unknown levels True

Random number seed 2,342

Training iteration count 30

Add bias True

Two-class neural network

Loss function CrossEntropy

Is initialized from string False

Is classification False

Initial weights diameter 0.1

Learning rate 0.1

Momentum 0

Data normalizer type MinMax

Number of input features 88

Number of hidden nodes 100

Number of iterations 51

Shuffle True

Allow unknown levels True

Two-class locally-deep support vector

Tree depth 2

Lambda W 0.1

Lambda theta 0.1

Lambda theta prime 0.1

Sigma 1

Number of iterations 14,500

Normalizer type MinMax

Allow unknown levels True

When one looks at classifiers’ results in the β band he notes the
Logistic Regression (acc. 0.697), Decision Jungle (acc. 0.690) and
Support Vector Machine (0.690) as the best, however the Logistic
Regression has the highest recall value of 0.676, while the highest
precision of 0.714 is achieved by Support Vector Machine.

If one studies the activity in the γ band he finds the highest
efficiency for the Support Vector Machine (acc. 0.662) and again
Logistic Regression (acc. 0.634).

For the δ band the highest accuracy 0.704 was achieved by the
Support Vector Machine and Average Perceptron Classifier.

In case of the θ band, the best three ones were Logistic
Regression (acc. 0.704), Support Vector Machine (0.669), and
Locally Deep Support Vector (0.669), the Logistic Regression
with the highest precision 0.723.

Note that the Bayes PointMachine did not performwell in any
of EEG frequency bands.

DISCUSSION

In our experiment the relations between the decision-making
process and the emotional responses given by the soma under
such experimental conditions are also visible. Somatosensory
association cortex (SAC) is mentioned in some papers on
decisions making where it is even stated that somatosensory
pattern marks the scenario as good or bad (Bechara et al., 2000;
Donner et al., 2009). Our results also show that BA05 is one of
the fewmost frequently active BAs in the patients and the control
groups members., Moreover, the activity is qualitatively different
in different frequency bands.

As well the dorsolateral prefrontal cortex (BA09) is often
reported as engaged in decision-making processes. It was
even found that damage of this structure results in poor
performance in IGT (Fellows and Farah, 2004) and the
fMRI studies have shown that the dorsolateral prefrontal
cortex plays a role of negotiator establishing the link
among sensory evidence, decision, and action during the
decision making (Heekeren et al., 2006). Hyperactive BA09
is also reported to be found in other cognitive processes
(Elliott, 2003), like working memory (Barbey et al., 2013),
cognitive flexibility (Monsell, 2003), and planning (Chan
et al., 2008). In our experiments the BA09 seems to be
much more active in the control group when compared to
the patients.

The visual processing areas provide the sensory
evidence for a decision (Heekeren et al., 2004) and our
results confirmed that the primary visual cortex is one
of the most engaged areas in such processes, much more
active in the control than in the patients’ group. Some
experiments involve the visual motion detection in the
decision-making process among macaques (Huk and
Shadlen, 2005) and this can be an inspiration for our
future research.

The research protocol has been proposed to record the
electroencephalographical cortical activity of the human
brain during the decision making process. We chose
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the IGT as one of the tasks that are most often used
to investigate people making decisions. The sLORETA
was then applied to find the most frequently active
BA in the brain cortex both in the patients and the
control group.

Some attempts to find biomarkers in the quantitative
EEG signals were made for example by John et al. (1988).
The frequency band analysis is often used in real-time
computing of the engagement index (Lubar et al., 1995;
Pope et al., 1995; Chaouachi et al., 2010). Moreover, some
cognitive functions in patients with psychiatric disorders
are different from those in healthy members of control
groups (Trivedi, 2006).

Even though the cohorts were not large we could prove
some findings reported after performing such experiments
by means of much more sophisticated techniques including
fMRI. We had 30 subjects with several different diagnoses.
That is why it is hard to apply any more sophisticated
statistical analysis. Collecting neurophysiological data is a
real challenge for neuroinformatics (Bigdely-Shamlo et al.,
2016; Cavanagh et al., 2017). In future it would require
building separate cohorts for each particular disorder, for
all genders and age ranges. Then it would be possible
to make quantitative comparisons of cortical activity
which hopefully could even lead to building psychiatric
disorders classifiers.

The additional aim of this paper was to check whether it is
possible to assess without looking into logs the subject’s response
in the IGT experiments using only the brain cortical electric
activity as the input to the algorithm. The effectiveness of seven
different tools from the Azure Machine Learning environment
was investigated. The summary of the results is presented
in Table 9.

It was shown that there is no universal classifier for
each frequency band. However, for the future analysis
the Logistic Regression in the α, β , and θ bands should
be considered as well as the Support Vector Machine
in the β , γ , and δ. Very interesting behavior can be
observed for the Averaged Perceptron Classifier in the δ

band which together with the Support Vector Machine
has one the best recall and precision characteristics in the
discussed research.

It is expected that for the larger dataset the efficiency would
be much higher. This is the initial stage of our research but
one can take it for granted that tuning-up the parameters
would also improve the method performance. Now it is hard to
predict which methods would be best for additional improving
such classifiers. Probably the applications of sophisticated
tools offered by applied mathematics (Kakiashvili et al.,
2012; Koczkodaj and Szybowski, 2015) or even solutions
found for engineering applications in computer science
(Bolanowski and Paszkiewicz, 2015; Grabowski et al.,
2015) along with big data analysis in such case could add
some value.

At this stage, we had access to a limited number of patients.
In our methodology, we decided to choose only those who

had not taken any psychotropic medicines before. The aim
of the research presented in this paper was to show the
way in which the biomarkers can be searched. Putting the
representatives of several disorders into one group by some
readers can be recognized as controversial. On the other hand,
we did not intend to give the final answer and to satisfy the
definition of a biomarker in the full range of its properties.
This would require at least 30 cases for each disorder and
if one takes into consideration males and females, different
age ranges, handedness—we get the number of about 400
patients for one problem, not saying about the control group.
Consideration only the one disorder based on several patients
does not make much sense as it would be hard to do the
serious statistical analysis. But our results show that there
can be quantitative methods to start the hunt for psychiatric
disorders biomarkers.

Remembering that the interview is still the most important
tool used in current psychiatry we are aware of the fact
that developing tools and methods able to support the
psychiatrist in the process of diagnosing are in a great
demand and would improve the comfort of patients’ life in
the future.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Guidelines for Good Clinical Practice
(GCP). The protocol was approved by the Medical University
of Lublin Bioethical Commission. All subjects gave written
informed consent in accordance with the GCP. Permission No.
KE-0254/138/2015 and No. KE-0254/140/2015 given by the
Medical University of Lublin Bioethical Commission on May
28th, 2015.

AUTHOR CONTRIBUTIONS

GW: project idea and coordination, experiment design,
subjects’ recruitment, interpretation of results. JM: project idea,
experiment design, subjects’ recruitment, psychiatric diagnosis,
interpretation of results. AK: work in laboratory, cleaning signal,
computations, statistical analysis. PS, FP, and LK: statistical
analysis, writing scripts, work in laboratory, cleaning signal.
AG-B: work in laboratory.

ACKNOWLEDGMENTS

Special thanks to Mr. Slawomir Kotyra, M.Sc. from the Institute
of Computer Science, Maria Curie-Sklodowska University in
Lublin for solving the problem of electromagnetic noise in
our laboratory.

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2019 | Volume 13 | Article 73

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Analysis of Decision Making

REFERENCES

Barbey, A. K., Koenigs, M., and Grafman, J. (2013). Dorsolateral prefrontal

contributions to human working memory. Cortex 49, 1195–1205.

doi: 10.1016/j.cortex.2012.05.022

Bechara, A. (2007). Iowa Gambling Task. Lutz, FL: Psychological Assessment

Resources.

Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994).

Insensitivity to future consequences following damage to human prefrontal

cortex. Cognition 50, 7–15.

Bechara, A., Damasio, H., and Damasio, A. R. (2000). Emotion, decision

making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307.

doi: 10.1093/cercor/10.3.295

Bechara, A., Damasio, H., and Damasio, A. R. (2003). Role of the

amygdala in decision-making. Ann. N. Y. Acad. Sci. 985, 356–369.

doi: 10.1111/j.1749-6632.2003.tb07094.x

Bechara, A., Damasio, H., Damasio, A. R., and Lee, G. P. (1999). Different

contributions of the human amygdala and ventromedial prefrontal cortex to

decision-making. J. Neurosci. 19, 5473–5481.

Bigdely-Shamlo, N., Makeig, S., and Robbins, K. A. (2016). Preparing laboratory

and real-world EEG data for large-scale analysis: a containerized approach.

Front. Neuroinform. 10:7. doi: 10.3389/fninf.2016.00007

Bolanowski, M., and Paszkiewicz, A. (2015). “The use of statistical signatures

to detect anomalies in computer network,” in L. Gołȩbiowski and M. Mazur
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