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Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions

for people suffering from neurological disabilities. This recording technique combines

adequate temporal and spatial resolution with the lower risks of medical complications

compared to the other invasive methods. ECoG is routinely used in clinical practice for

preoperative cortical mapping in epileptic patients. During the last two decades, research

utilizing ECoG has considerably grown, including the paradigms where behaviorally

relevant information is extracted from ECoG activity with decoding algorithms of different

complexity. Several research groups have advanced toward the development of assistive

devices driven by brain-computer interfaces (BCIs) that decode motor commands from

multichannel ECoG recordings. Here we review the evolution of this field and its recent

tendencies, and discuss the potential areas for future development.
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1. INTRODUCTION

The brain is a unique organ of the human body. Containing myriads of neurons, the brain
circuits continuously process multiple sensory, motor and cognitive signals, generate thoughts and
decisions, and produce a subjective feeling of being conscious and free-willed. The brain enables
us with the capacity to effortlessly control such complex behaviors as voluntary movements of
body parts, maintenance of posture and balance, speech production, and perception of the external
world. Unfortunately, neurological disease or trauma may cause dramatic disruptions of these
neuronal mechanisms, making an individual unable to move, feel and communicate. Many of such
devastating neurological conditions currently have no cure, including amyotrophic lateral sclerosis
(ALS), stroke, and spinal cord injury (SCI).

BCIs, also called brain-machine interfaces (BMIs) and neural prostheses, hold promise to
provide revolutionary solutions to the treatment of brain disorders. BCIs connect neural circuits
to external devices, such as prosthetic limbs, means of communication, computers, appliances for
functional electrical stimulation, and even the other parts of the brain (Lebedev and Nicolelis,
2006). Medical applications of BCIs strive to restore functions lost to neurological disorders and aid
in rehabilitation. For example, BCI approach to SCI consists of directly connecting the unaffected
brain regions, such as the sensorimotor cortex, to a limb prosthesis (Hochberg et al., 2006, 2012;
Collinger et al., 2013; Bouton et al., 2016). Many neuroprosthetic components have been proposed
and developed over the last two decades. These are biocompatible implants for neural recordings,
devices for stimulating neural circuits, and wireless recording systems. BCIs can connect the brain
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to computer cursors (Carmena et al., 2003; Lebedev et al., 2005),
text generators (Pan et al., 2013; Akram et al., 2014), arm
prostheses (Carmena et al., 2003; Velliste et al., 2008; Collinger
et al., 2013), exoskeletons for assisted walking (Gancet et al., 2011;
Contreras-Vidal and Grossman, 2013; Kwak et al., 2015), virtual-
reality objects (Badia et al., 2013), powered wheelchairs (Galán
et al., 2008; Chai et al., 2014), drones (LaFleur et al., 2013), and
automobiles (Göhring et al., 2013). Recently, futuristic BCIs have
emerged that merge several individual brains into a brain-net
(Pais-Vieira et al., 2013; Rao et al., 2014).

Among different classes of BCIs, BCIs that operate in
the motor domain have underwent a particularly extensive
development because of the expectation that they could treat
paralysis by enabling voluntary control of prosthetic limbs.
Motor BCIs have been developed that enable movements of
the arms (Wessberg et al., 2000; Carmena et al., 2003; Velliste
et al., 2008; Collinger et al., 2013) and legs (Fitzsimmons et al.,
2009). In addition to BCIs that enact movements, BCIs have
emerged that handle cognitive functions, like executive control,
attention, and decision making (Andersen et al., 2004, 2010;
Mirabella and Lebedev, 2016). In the sensory domain, BCIs
have been developed that apply stimulation to peripheral and
central structures of the nervous system to evoke percepts
mimicking natural senses, including hearing (House, 1976),
vision (Dobelle, 2000; Normann et al., 2009), and touch
(Bensmaia and Miller, 2014).

In this review, we focus on BCIs that are based on an
invasive recording method called ECoG. We argue that ECoG
could provide efficient solutions for many clinical cases because,
first, ECoG grids sample neural signals with better spatial
and temporal resolution compared to non-invasive recording
methods, such as electroencephalography (EEG), and second,
ECoG electrodes do not penetrate into the brain and thus
offer a safer solution compared to the techniques that require
insertion of recording sensors into the nervous tissue (Leuthardt
et al., 2004; Hill et al., 2012; Petroff et al., 2016). The studies
conducted up to date have demonstrated that ECoG-based BCIs
are applicable to motor tasks. Yet, we suggest that accuracy of
such motor BCIs could be improved by the implementation of
more advanced neural decoding algorithms, particularly the ones
based on deep neural networks.

We start with an overview of ECoG recording methods.
Next, we review the motor tasks that have been utilized in
ECoG decoding studies. Finally, we discuss the relevant decoding
algorithms and software.

2. ECOG METHODOLOGY AND ITS
ADVANTAGES COMPARED TO THE OTHER
RECORDING METHODS

A multitude of methods for recording of brain activity have
been developed during the last several decades. Depending on
the biological and physical principles employed, these methods
have different spatial and temporal resolution. The recording
methods range from classical single-unit techniques, where
microelectrodes are inserted into the brain tissue, to non-invasive

approaches, such as EEG, magnetoencephalography (MEG),
near-infrared spectroscopy and functional magnetic resonance
imaging. The choice of method in each concrete case is based
on a number of requirements, including an assessment of risk to
human subjects.

With the advancement of BCIs, we have seen a development
of multichannel recording methods that allow sampling signals
from many brain regions simultaneously (Nicolelis and Lebedev,
2009). To build clinically relevant neural prostheses, such
recording methods should be viable for long periods of time.
Chronically implanted multielectrode arrays (MEAs) measure
brain activity at high spatial (at the level of single neurons) and
temporal (at the level of neuronal spikes) resolution. MEAs-
based BCIs have been implemented in rats (Chapin et al., 1999;
Song et al., 2009), non-human primates (Taylor et al., 2002;
Carmena et al., 2003; Gilja et al., 2012; Schaffelhofer et al.,
2015) and humans (Hochberg et al., 2006; Collinger et al., 2013;
Gilja et al., 2015; Brandman et al., 2017). The number of motor
degrees of freedom that such BCIs could handle has been steadily
growing (Hochberg et al., 2012; Collinger et al., 2013; Wodlinger
et al., 2014; Vaskov et al., 2018). Recordings with MEAs are,
however, not without problems, particularly when utilized in
humans, since intracortical electrodes may provoke infection,
tissue damage and scarring – the factors that contribute to
deterioration of recording quality over time (Perge et al., 2013;
Nuyujukian et al., 2014; Murphy et al., 2016; Kim et al., 2018).

While non-invasive BCIs do not have appreciable health
risks, they have limitations of their own. Thus, EEG-based
BCIs, which are currently prevalent because of their ease
of use (Nicolas-Alonso and Gomez-Gil, 2012), have a lower
information transfer rate compared to invasive BCIs (Lebedev
and Nicolelis, 2006). Signal to noise ratio and spatial resolution
are low for EEG recordings because with this method electrical
potentials are sampled at a distance from their source, get
smeared due to propagation through brain meninges and
skull, and are susceptible to contamination with mechanical,
electrooculographic (EOG), and electromyographic (EMG)
artifacts (Cooper et al., 1965). Classification of several discrete
motor states can be achieved with EEG recordings (for example,
detecting the presence or absence of an actual or imagined
limb movement). However, accurate decoding of fine movement
characteristics is difficult with this method.

ECoG alleviates several problems related to using the other
recordingmethods.With ECoG, electrical signal is recorded from
the surface of the brain either epidurally (i.e., the electrodes are
placed on the surface of the dura mater), or subdurally (i.e.,
the electrodes are placed underneath the dura mater.) While
ECoG signals resemble EEG data (Kellis et al., 2016), they
have greater amplitude, higher spatial resolution and broader
frequency range (Schalk and Leuthardt, 2011). ECoG is superior
to EEG for recordings of both cortical low-frequency oscillations
(Hughes and Crunelli, 2005) and high-frequency activity in
the gamma-range (Manning et al., 2009; Schalk and Leuthardt,
2011). The superior spatial and frequency resolution of ECoG
enables obtaining detailed cortical maps, for example motor and
sensory maps of individual fingers, while sampling electrical
activity from many cortical areas simultaneously. Additionally,
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ECoG recordings are stable long-term (Blakely et al., 2009). By
contrast, recordings of multiple single units with MEAs are not
so stable, even though they could be considered a BCI control
signal of superior quality. Although in the majority of studies
ECoG grids have been implanted for a few days to minimize
the infection risks associated to the use of tethered cables, it
has been also shown that chronic ECoG implants are viable
(Wyler et al., 1991; Weinand et al., 1994) and progress has
beenmade toward the development of wireless, fully-implantable
technologies (Vansteensel et al., 2016; Benabid et al., 2019). Based
on these trends, it is reasonable to expect that clinically relevant,
chronically implanted ECoG-based neural prostheses will emerge
in the future for assisting patients suffering from neurological
disorders. In summary, ECoG approach has multiple advantages
for BCI applications, including an adequately high information
transfer rate, stability of recordings, and a lower risk of medical
complications. These features make ECoG method attractive for
the developers of practical neuroprosthetic devices.

In clinical applications, ECoG electrodes are typically
arranged into rectangular grids (for example, 6 × 8 or 8
× 8) or strips containing several electrodes in a single row.
Platinum-iridium electrodes are often used, with the diameter
of 4 mm most common for clinical applications. The commonly
used 1-cm interelectrode distance yields an appropriate spatial
resolution in many cases. Yet, the physical limit for resolution
that could be achieved by decreasing the interelectrode distance
is ∼1.25 mm for subdural recordings (Freeman et al., 2000) and
∼1.4 mm for epidural recordings (Slutzky et al., 2010). As a
step toward reaching these limits of spatial resolution, ECoG
grids with the spacing of 3–5 mm have been introduced and
tested in a handful of studies conducted during the last decade
(Wang et al., 2016). In such grids, neighboring electrodes carry
sufficiently different information in the high gamma frequency
range, as evident from the low coherence (∼ 0.3) between their
signals (Wang et al., 2009). These grids have a superior spatial
resolution compared to the 1-cm spaced grids not only because
of the narrower inter-electrode spacing but also because of the
smaller electrode size, which aids sampling local activity. With
the 3–5 mm electrode spacing, accurate classification of finger
movements and multiple hand gestures has been achieved, as
well as real-time control of a hand prosthesis (Wang et al.,
2013; Bleichner et al., 2016; Hotson et al., 2016). More recently,
even denser micro-ECoG grids have emerged with 40–80-micron
wires and 1–3 mm spacing; these grid can occasionally sample
activity of single cortical neurons (Khodagholy et al., 2015).

ECoG grids implanted for clinical reasons have been used
as a testbed for different types of BCIs. With epidural
ECoG recordings (a safer option for clinical assessment),
BCIs have been implemented for reliably detecting movements
(Chavarriaga et al., 2016), recognizing different movement
types (Spüler et al., 2014b) and decoding movement time-
course (Flint et al., 2016). For widely spaced ECoG electrodes,
decoding accuracy with epidural grids is similar to that achieved
with subdural electrodes (Spüler et al., 2014a). Yet, if high-
density ECoG grids are used, they work better when implanted
subdurally (Bundy et al., 2014). In theory, it is desirable to
place ECoG implants over as many cortical sites as possible

because motor planning and execution engage multiple cortical
areas. However, using many implants increases the health risk.
Several studies have attempted to optimize the number and
placement of ECoG electrodes (Bleichner et al., 2016; Li et al.,
2017). Intraoperative assessment of electrical activity at different
cortical sites, before an ECoG grid is implanted (Xie et al.,
2015), is one way to decrease the implant size and reduce the
health risk.

3. MOTOR PARADIGMS

Movements can be decoded from the brain electrical activity
owing to the existence of correlation between neural modulations
and motor parameters, for a range of motor tasks (Lebedev,
2014). Thus, ECoG modulations are correlated with the
movements of both the upper and lower limbs (Toro et al., 1994b;
McCrimmon et al., 2017). BCI decoding algorithms convert
neural modulations into the output signals of interest, such as
limb position in space. While decoding algorithms are often
evaluated offline using previously collected neuronal data, their
ultimate testing should be conducted in real-time settings, where
subjects control actions performed by an external device directly
with their brain activity.

The development of new decoding algorithms not only
advances BCIs by improving their accuracy of performance and
versatility, but also leads to new fundamental insights regarding
the brain motor, sensory and cognitive mechanisms, the insights
that emerge during BCI experiments and their trouble shooting
(Nicolelis and Lebedev, 2009). Specifically, research on ECoG-
based BCIs provides insights on the encoding of movements
and sensations by the collective activity of cortical neuronal
populations, functional significance of different cortical rhythms,
somatotopic representation of body parts, as evident from ECoG
activity at different cortical sites and frequency bands, and the
capacity of the brain to plastically adapt to novel BCI tasks.

A variety of movement types can be decoded from ECoG
signals. These are wrist flexion and extension (Satow et al., 2003;
Gharabaghi et al., 2014; Spüler et al., 2014a; Jiang et al., 2015,
2017), various grasp types (Graimann et al., 2003; Miller et al.,
2007; Pistohl et al., 2012; Chestek et al., 2013; Xie et al., 2015)
hand gestures and postures (Graimann et al., 2003; Chestek et al.,
2013; Bleichner et al., 2016; Li et al., 2017), individual finger
movement (Graimann et al., 2003; Kubanek et al., 2009; Miller
et al., 2009; Samiee et al., 2010; Wang et al., 2011; Elghrabawy
and Wahed, 2012; Flamary and Rakotomamonjy, 2012; Liang
and Bougrain, 2012; Chestek et al., 2013; Chen et al., 2014; Xie
et al., 2018), tongue and lip protrusion (Graimann et al., 2003;
Satow et al., 2003; Miller et al., 2007; Paul et al., 2017), and
foot movements (Toro et al., 1994b; Satow et al., 2003). While
cortical areas contralateral to the moving body part are usually
used for decoding, the option of using ipsilateral cortex has been
considered as well (Hotson et al., 2014).

In real-time BCIs, signals representing movements or their
imagery are decoded from ECoG activity and sent as control
signals to external devices, such as screen cursor. Cursor control
has been implemented in one (Leuthardt et al., 2004, 2006), two
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FIGURE 1 | Experimental paradigms for decoding of movements from ECoG. (A) An arbitrary mapping paradigm, where the task performed by the subject and BCI

output are dissimilar. In the illustrated example, clenching of the fist produces an upward movement of the pointer. (B) A discrete classification paradigm, where a BCI

recognizes a posture or movement performed by the subject and reproduces it with an external device. The case is illustrated, where a subjects shapes his/her hand

in one of three gestures, and the BCI generates a gesture of a virtual hand shown on the screen. (C) Continuous decoding paradigm, where movement parameters

are decoded continuously (as a function of time or some other parameter) and reproduced by an external device. In the illustrated example, a virtual finger reproduces

the trajectory of the subject’s finger.

(Schalk et al., 2008), and three (Wang et al., 2013) dimensions.
Additionally, ECoG-based BCIs have been demonstrated for the
tasks of controlling a prosthetic hand (Yanagisawa et al., 2011;
Chestek et al., 2013;Wang et al., 2013; Hotson et al., 2016; Li et al.,
2017), enabling exoskeleton-assisted walking (Benabid et al.,
2019), and selecting font characters with a speller application
(Vansteensel et al., 2016).

Here we focus on ECoG-based motor BCIs, which are
BCIs where users modulate their cortical activity to generate
movements of external devices. Such BCIs can be grouped
into three main categories by the relationship between the task
performed by the subject and BCI output (Figure 1) (while
this classification can be applied to other types of BCIs, for
example the ones based on EEG recordings, our review is
restricted to ECoG-based systems). In the first category, there
is an arbitrary relationship between the subject’s action and
the resulting movement of an external effector. For example,
a subject imagines moving the hand to generate an upward
movement of the pointer and imagines moving the tongue to
move the pointer downward (Leuthardt et al., 2006). In the
second category, a discrete classifier recognizes a motor action
performed or imagined by the subject, for example moving one
of the fingers. Next, an external device executes the same action.
The third category of BCIs decode different motor parameters,
such as movement direction, speed, acceleration, and force.
The parameters are treated by the mathematical algorithm as
continuous variables. An external device then reconstructs the
movement from the decoded motor parameters.

3.1. Arbitrary-Mapping Paradigms
The arbitrary-mapping paradigm was the earliest to be
implemented with ECoG recordings. The early studies employed
event-related potentials for extracting motor commands (Toro
et al., 1994b; Huggins et al., 1999; Levine et al., 1999). Later, ECoG
spectral changes during real or imagined movements were used
for BCI control (Leuthardt et al., 2004). In both groups of studies,

actions performed by the subjects were mapped in an arbitrary
way to actions executed by external devices.

To identify the most efficient control strategy for such an
arbitrary-mapping BCI, Leuthardt et al. (2004) introduced a
pre-screening procedure, which has become a common practice
(Leuthardt et al., 2006; Miller et al., 2007; Schalk et al., 2008).
During pre-screening, subjects perform a range of tasks so that
ECoG features with the most prominent modulations could be
identified and used for BCI control. The tasks are performed
with the body parts represented by the cortical areas covered
by the implanted ECoG electrodes (Schalk et al., 2008). Subjects
perform or imaginemotor acts like opening and closing the hand,
protruding and retracting the tongue, flexing, and extending
individual fingers, pursing and unpursing the lips, moving
the arm, leg or foot (Miller et al., 2007), moving the jaw,
shrugging the shoulders (Schalk et al., 2008), and pronouncing
words (Leuthardt et al., 2004, 2006). Based on ECoG activity
patterns exhibited during these tasks, subsets of ECoG features
(e.g., frequency bands and electrodes with the most prominent
modulations) are selected for implementing a BCI.

With the pre-screening approach, actions causing the largest
ECoGmodulations could be quickly selected to improve accuracy
of BCI control. In a pioneering study (Leuthardt et al., 2004),
subjects reached the success rates of 74–100% after 3–24 min
of training in closed-loop experiments where they performed or
imagined a preselected action (like opening and closing the hand,
protruding the tongue or saying the word “move”) to move a
screen cursor in the vertical dimension. In these experiments,
ECoG grids were placed over frontal, parietal and temporal
cortical areas. In the next study (Leuthardt et al., 2006), the
same group added to the experimental design an adjustment
procedure, where the decoder settings were updated using the
data from the initial online session. This adjustment accounted
for the differences between ECoG modulations exhibited during
the pre-screening procedure and the online control.

Schalk et al. (2008) designed an arbitrary-mapping approach
for the case of two-dimensional cursor movements. ECoG
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recordings were conducted from the frontal, temporal, and/or
parietal cortex. During the pre-screening procedure, two
tasks were selected that yielded the least correlated signal
features (frequency bands and electrode locations) that were
then used to independently control two coordinates of the
cursor. After a training period of 12–26 min, five subjects
achieved accuracy of 53–73% (with a 25% chance level) in a
four-target task.

Wang et al. (2013) expanded the degrees of freedom of

cursor movements to three dimensions. A tetraplegic subject
with C4 level spinal cord injury underwent training for several

weeks. ECoG activity was recorded using a high-density 32-
electrode grid with 4-mm spacing; electrode diameter was 2

or 3 mm. The grid was implanted over the hand and arm
representing areas of the left sensorimotor cortex. The subject

learned to activate his sensorimotor cortex by attempting
voluntary movements. Distinct cortical modulations occurred

for attempted movements of different segments of the patient’s
upper limb. The BCI control consisted of assigning of each
type of attempted movement to a particular direction of cursor
movement. The decoder processed ECoG modulations in the
gamma band. An adapting decoding scheme was used, where
the decoder alternated between the periods when the decoder
weights were fixed and when they underwent adjustments. The
subject first learned a two-dimensional control of the cursor in
a virtual environment, then the third dimension was added by
gradually merging the weights calculated for the attempted three-
dimensional task with the weights previously calculated for the
two-dimensional control. The subject reached the success rate of
80% in the cursor control task, and also learned to control three-
dimensional reachingmovements performed by a prosthetic arm.
In the next study conducted by the same group (Degenhart
et al., 2018), two additional subjects with arm paralysis were
tested, one with ALS and the other with brachial plexus injury.
The subjects used a somatotopic control strategy to operate a
virtual cursor in two or three dimensions. In this strategy, spatio-
temporal patterns of gamma-band cortical activity evoked by
different attempted upper-limb movements were converted into
the direction of cursor movement. Cursor velocity was generated
from ECoG gamma activity with an optimal linear estimator
algorithm (Salinas and Abbott, 1994). Both subjects achieved
control with up to three degrees of freedom.

Overall, the arbitrary-mapping approach has been shown
suitable for building practical BCIs for the paralyzed patients
capable of voluntarily modulating activity in the brain areas
representing their paralyzed body parts (Spüler et al., 2014b;
Chaudhary et al., 2016). Thus, Vansteensel et al. (2016) recently
demonstrated a practical, a fully implanted ECoG-based BCI,
where a patient with ALS learned to control a computer typing
program by attempting voluntary hand movements. The ECoG
grid was implanted subdurally over the motor cortex. This BCI
enabled communication with a rate of two letters per minute.
Notwithstanding the slow operation, BCIs of this kind offer a
practical solution for functional restoration, communication and
rehabilitation of neurologically impaired patients. As such, this
approach needs to be further developed.

3.2. Classification and Reproduction of
Movements
The second class of ECoG-based BCIs reproduces the same
movements that subjects perform or imagine, which are
recognized using a discrete classifier. High spatial and temporal
resolution of ECoG allows recognizing a sufficiently large
repertoire of movement types and executing them with an
external device. Thus, areas corresponding to individual fingers
can be discerned with ECoG recordings (Miller et al., 2009),
which allows implementing a BCI that recognizes the finger being
moved or imagined beingmoved with a classifier like Naïve Bayes
(Chestek et al., 2013), linear discriminant analysis (LDA) (Wang
et al., 2009; Hotson et al., 2016), or support vector machine
(SVM) (Liu et al., 2010). Several studies have demonstrated that
such classification can be performed with high accuracy based
on ECoG recordings from the hemisphere contralateral to the
working hand. Wang et al. (2009) decoded the finger being
moved from the signals recorded with a micro-ECoG grid that
was placed over the contralateral motor cortex. In this study,
one subject performed self-paced finger flexions and extensions
for ∼10 s. The active finger was identified with an accuracy
of 73% with both LDA that processed the ECoG data reduced
to the first eight principal components and an SVM classifier
without dimensionality reduction. In the study by Kubanek et al.
(2009) subjects responded to a cue by flexing an individual
finger 3–5 times over a time period of 1.5–3 s. ECoG activity
was recorded from the frontal or temporal cortical areas. The
relationship between the poser in different ECoG spectral bands
and finger trajectories was modeled using a linear decoder called
PaceRegression. The active finger was then determined as the
finger with the highest decoded flexion amplitude. The across-
subject average classification accuracy was 77.1% when ECoG
activity recorded at movement onset was analyzed. The accuracy
increased to 80.3% when the analysis interval was optimized
for each subject. Hotson et al. (2016) applied a hierarchical
LDA classification scheme to detect the finger being moved,
reaching an accuracy of 76%. Furthermore, Liu et al. (2010)
showed that ECoG activity in the sensorimotor cortex ipsilateral
to the working hand could be used to determine the finger being
moved. Their decoder incorporated logistic regression (LR) and
a binary SVM.

Several studies have classified hand configuration from ECoG
recordings. Yanagisawa et al. (2011) recorded ECoG activity
in the sensorimotor cortex of a subject performing three
types of hand movements: grasping, hand-opening, and scissor-
mimicking movements. With these tasks, they implemented
online control of a prosthetic hand based on a two-step
classification scheme, where the first step consisted of detecting
movement intention and the second step was the decoding of
movement type. Linear SVM was used as classification algorithm
for both steps. The intention to move was detected on average
37 ms earlier than the actual movement onset. Movement type
was classified with the accuracy of 69.2%, which significantly
exceeded the 33.3% chance level. Pistohl et al. (2008) employed
regularized LDA to decode two types of grasping movements
from the ECoG recorded over the motor cortex. They decoded
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the intention to move from ECoG 125-250 ms earlier than
the actual movement onset. The subjects performed self-paced
relocation of an object between several positions using either
precision grip or whole-hand grasping. The grasp type was
decoded with 93% accuracy based on the analysis of the time
interval starting 1s before grasp till 0.5s after. Recording sites
located anterior to the central sulcus were used for decoding
whereas the sites posterior to the central sulcus were excluded
as representing sensory responses.

Chestek et al. (2013) further increased the number of hand
configurations decoded from the ECoG recorded over the
sensorimotor-cortex. Their subjects configured the hands into
one of four isometric postures: fist, pinch, point or five-finger
spray. Additionally, the subjects flexed one or several fingers.
The interval −0.5–1.5s relative to movement onset was used in
this analysis. Classification was performed with a Naïve Bayes
decoder applied to the gamma band of the ECoG. Four hand
postures were classified with an accuracy of 68–81%, and 66–
98% accuracy was achieved in a five-class classification, where
classes represented four finger movements and a resting state.
The same decoding methods were then utilized in the online
sessions where subjects controlled a hand prosthesis with a
BCI. Kapeller et al. (2014) classified three hand gestures: “open,”
“peace,” and “fist.” In their decoding method, the presence of
handmovement was classified first with a two-class LDA classifier
(with an accuracy of 86.6 and 97.7% in their first and second
subjects, respectively), and then a multi-class LDA detected the
gesture (with an accuracy of 93.8 and 98.8%).

Furthermore, hand-gesture tasks have been used to investigate
the ways the number of implanted electrodes could be reduced
and confined to a smaller cortical area. Bleichner et al. examined
two subjects with high-density ECoG grids implanted over
a small area (2.5–5.2 cm2) in the hand-representing area.
Four hand gestures corresponded to letters D, F, V, and Y
of the American sign language (ASL) (Bleichner et al., 2016).
Gesture classification was performed using a pattern-matching
classification algorithm that was applied to ECoG spectral bands
and local motor potentials (LMPs). An accuracy of 97 and 74%
was reached for their first and second subjects, respectively. It
was found that a selected electrode subset (two thirds of the
total) was sufficient to reach the same classification accuracy
as the accuracy achieved with all electrodes. In the study of Li
et al. (2017), participants produced three hand gestures (“scissor,”
“rock,” and “paper”). Classification accuracy with SVM classifier
applied to spectral features was in the range 69.7–85.7% when
performed offline and 80–82% during the online control of a
prosthetic hand. The number of channels was reduced with
a greedy algorithm. It was found that a subset of electrodes
confined to a small cortical area was sufficient to maintain good
decoding performance.

Xie et al. (2015) decoded different finger and handmovements
from ECoG signals recorded intraoperatively in the motor
cortex of awake subjects. They used an LDA classifier applied
to the features extracted with an autoregressive model, and
a waveform length feature that represented signal complexity.
The intraoperative decoding accuracy (91.8 and 93.0% in two
subjects) was comparable to the accuracy reached with the ECoG

grids implanted for seizure monitoring (90.2 and 96.0% in the
other two subjects). These results suggest that implementing BCI
tasks during the implantation surgery could be useful for the
adjustment of ECoG grid placement.

For proper reproduction of movements, movement onset
needs to be decoded from neural activity in addition to the
decoding of movement type. Early detection of the intention
to move is important for BCI applications because it allows
decreasing the delay between the brain activity and the response
of the prosthetic device (Lebedev et al., 2008; Yanagisawa et al.,
2011). Classification algorithms, such as LDA (Kapeller et al.,
2014; Hotson et al., 2016) and SVM (Yanagisawa et al., 2011) have
been used to detect movement onset based on ECoG recordings.

In conclusion, the classification and reproduction approach
is suitable for neuroprosthetic applications where a finite set
of motor outputs is sufficient, such as BCIs that enable sign
language-like communications (Bleichner et al., 2016; Branco
et al., 2017). Studies have shown that restoration of a finite set of
movements is a practical BCI solution for amputees (Bruurmijn
et al., 2017), and patients with hand paralysis (Shoham et al.,
2001; Yanagisawa et al., 2012). Such BCIs could implement
a shared control principle, where a general motor command
is extracted from brain activity whereas the fine details of
movements are handled by the controller of a prosthetic limb
(Li et al., 2014).

3.3. Decoding of Motor Parameters as
Continuous Variables
The third class of ECoG-based BCIs treats the parameters of
movements, such as limb position and velocity, as continuous
variables that are decoded from brain activity. Many studies have
employed a center-out task for continuous decoding. During
this task, subjects repeatedly perform cued or self-paced arm or
hand movements from a center into different directions. These
movements are usually converted into 2D or 3D movements of a
cursor. The center-out task gained popularity after the studies of
Georgopoulos et al. (1982) of the directional tuning properties
of monkey motor cortical neurons. In ECoG studies with this
design, four (Leuthardt et al., 2004; Reddy et al., 2009), six (Toro
et al., 1994a), and eight (Leuthardt et al., 2004; Sanchez et al.,
2008; Ball et al., 2009; Anderson et al., 2012; Wang et al., 2012;
Nurse et al., 2015; Gunduz et al., 2016) targets locations have been
used, all equidistant from the center. Center-out movements can
be performed with a joystick (Reddy et al., 2009; Anderson et al.,
2012; Wang et al., 2012), computer mouse (Kellis et al., 2012),
stylus (Nurse et al., 2015), or the index finger moving on the
surface of a touchscreen (Sanchez et al., 2008).

In a pioneering study that combined a center-out task
with ECoG recordings in humans, Toro et al. (Toro et al.,
1994a) evaluated tuning of ECoG in the 8–12 Hz band to
the direction of arm movements. ECoG was sampled from
the sensorimotor cortex and adjacent regions. Ten years later
Leuthardt et al. (2004) analyzed a wider (0–200 Hz) range of
frequencies and discovered directional tuning for various ECoG
spectral bands. The center-out task was performed with a hand-
held joystick and incorporated four or eight targets. Ball et al.
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(2009) decoded movement direction from ECoG during the
execution of a center-out task and assessed the representation of
directional information in different cortical areas. Their subjects
performed self-paced center-out movements with their arms to
four target locations. Decoding was performed with regularized
linear discriminant analysis (RLDA) applied to either smoothed
ECoG signals or different frequency bands. Decoding accuracy
of 75% was achieved using the features calculated over the
movement-execution period whereas 45% accuracy was achieved
using the pre-movement period. ECoG channels corresponding
to the hand and arm representing areas of the primary motor
cortex were the most informative for the decoding. The analysis
of additional data from a subject performing an eight-target
task showed that ECoG activity (in the low-frequency and
high-gamma bands) was cosine-tuned to the direction of arm
movements. Anderson et al. (2012) investigated ECoG tuning to
movement speed and velocity for center-out and tracing tasks
performed with a force feedback joystick. ECoG recordings were
conducted in multiple cortical areas. The strongest modulations
to direction, speed, and velocity were observed in the primary
motor cortex.

Wang et al. (2012) decoded movement direction with a time-
varying dynamic Bayesian network. Center-out movements were
performed with a joystick toward eight targets. Accuracy was
quantified as the mean angular error between the actual and
decoded direction; it was <90◦ in all subjects. Gunduz et al.
(2016) reported a similar experimental design with center-out
movements performed with a joystick, and eight targets. The task
incorporated a delay period when the subjects prepared to move
while holding the joystick still, which allowed decoding a person’s
planned direction of movement. Direction was decoded with a
stepwise multilinear regression applied to high gamma activity
and/or LMPs. The median angular error was in the range 62–
70◦ across subjects. The authors observed directionally specific
modulations of both high-gamma ECoG and LMPs during the
delay and movement periods. Directionally tuned high-gamma
activity was most prominent in the sensorimotor cortex whereas
LMP modulations occurred in prefrontal cortices. The authors
concluded that sampling directionally tuned ECoG frommultiple
cortical areas could improve the decoding of both planned and
executed movements.

Reddy et al. (2009) enriched the center-out task with a
tapping condition, which allowed testing how well center-
out movements could be distinguished from the other types
of movements. Center-out movements were performed with
a joystick in response to arrows pointing in four possible
directions. Additionally, subjects responded to a trigger cue (a
square shown on the screen) by clicking on top of the joystick
with the index finger. Decoding was performed using Naïve
Bayes classifier applied to time-frequency features. Decoding
accuracy for movement direction was in the range 83–96% for
the preparatory period and 58–86% for the movement period.
The trigger condition was distinguished with 72–93% accuracy
from the center-out conditions.

Bundy et al. (2016) added the third dimension to the center-
out task. Their subjects performed arm reaching movements
with the starting position located at the center of a cube and

cube vertices serving as targets. The kinematic parameters of
movements were decoded with a hierarchical partial-least squares
regression model. Correlation coefficients between the true and
predicted kinematic parameters ranged 0.31–0.80 across subjects
for speed, 0.27–0.54 for velocity and 0.22–0.57 for position. The
final position was reconstructed with an accuracy of 49.0–66.2%.

Several studies employed reaching tasks that differed from the
classical center-out paradigm. In the study of Kellis et al. (2012),
patients moved a cursor with a computer mouse from an initial
position at the bottom of the screen to the upper right or upper
left corner; trajectories were decoded from ECoG with a Kalman
filter. Sanchez et al. (2008) continuously decoded kinematic
parameters in two tasks: a center-out task where subjects tracked
smoothly varying trajectories extending from the center to
predefined locations, and a target selection task where subjects
performed reaches toward color-coded targets placed along the
top edge of the screen. Cursor movements were decoded from
ECoG frequency bands with a Wiener filter. Pistohl et al. (2008)
had subjects acquire targets randomly positioned on a plane;
hand coordinates were decoded with a Kalman filter. Schalk et al.
(2007) reported highly accurate decoding of position and velocity
using linear models for the task, performed with a joystick, where
subjects pursued a target that moved counterclockwise along
a circular trajectory. ECoG activity was cosine tuned to target
angle, and decoding accuracy was comparable to the accuracy
reported for monkeys implanted with MEAs.

In several studies, kinematics of finger movements was
decoded from ECoG. Kubanek et al. (2009) extracted the time-
course of finger movements from motor cortical activity. The
subjects repeatedly flexed individual fingers in response to
a visual cue. Decoding was performed with PaceRegression
algorithm. Several other decoding algorithms of different
complexity have been used for reproducing finger movements
from ECoG, including switching linear model (Flamary and
Rakotomamonjy, 2012; Liang and Bougrain, 2012) empirical
mode decomposition (Hazrati and Hofmann, 2012), logistic-
weighted regression (Chen et al., 2014), and LSTM (Du et al.,
2018; Xie et al., 2018).

In addition to the aforementioned reaching tasks and finger-
movement tasks, more complex motor tasks have been used in
ECoG-BCI studies. Hammer et al. (2013) employed a game-
like continuous one-dimensional motor task where subjects
controlled the horizontal position of a car with a steering wheel.
Position, velocity and acceleration were decoded with a linear
regression algorithm. In the study of Nakanishi et al. (2013),
participants repositioned blocks on a board. ECoG features were
transformed into a three-dimensional arm trajectory with a
sparse linear regression algorithm. In the subsequent study by
the same group, subjects repositioned blocks with three different
masses (Nakanishi et al., 2017). With this design, representations
of intrinsic (e.g., muscle force) and extrinsic (e.g., target location)
parameters of movements could be compared. ECoG recorded
in the primary motor cortex was correlated mostly with the
intrinsic parameters whereas ECoG recorded in pre-motor cortex
was correlated with the extrinsic parameters. Wang et al. (2014)
varied movement duration to investigate whether the entire
movement course could be decoded from ECoG or only the
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values of motor parameters at movement onset. Wu et al.
(2016) implemented a three-dimensional isometric force task
where subjects exerted force in different directions without
moving their arms. Directional information was extracted from
the fronto-parietal ECoG recorded during both preparation
and execution of the isometric task. The decoding algorithm
incorporated a jPCA reduced-rank hiddenMarkovmodel (jPCA-
RR-HMM), regularized shrunken centroid discriminant analysis,
and LASSO regression.

Continuous-decoding BCIs based on ECoG recordings hold
promise of eventually satisfying the requirements of paralyzed
patients who need high-performance neuroprosthetic devices
for restoration of mobility of their limbs. With a continuous-
decoding neural prosthesis, patients would be able to execute
a variety of movements in a near-normal way, where limb
kinematics is constantly under the user’s voluntary control and
fine modifications of motor parameters could be done. Although
a BCI with such an ideal control has not been demonstrated
yet, recent advances in building fully implantable ECoG systems
that perform continuous decoding (Vansteensel et al., 2016;
Benabid et al., 2019) suggest that patients could improve in such
BCI control through long-term practice that engages cortical
plasticity mechanisms.

4. DECODING ALGORITHMS

In this section, we describe in more detail the decoding
algorithms used in ECoG-based BCIs. These algorithms bear
similarity to the decoders for EEG-based interfaces, which have
been covered in several review articles (Lotte et al., 2007,
2018; McFarland and Wolpaw, 2017). Here we review only the
literature on the decoding of movements from ECoG.

ECoG recordings capture electrical potentials of large
neuronal populations formed by synchronous dendritic
potentials and spikes (Buzsáki et al., 2012). Decoding of motor
parameters from ECoG is possible because modulations of
neuronal population activity are consistently correlated with
task events and changes in motor parameters (Anderson et al.,
2012; Lebedev, 2014). Multichannel ECoG data contains spatial
(i.e., where in the cortex) and temporal (i.e., when and how)
information that could be used for decoding of movement
characteristics. Spatial ECoG components reflect, according
to the somatotopic cortical map of the body, the body part
engaged in a motor action. Temporal ECoG components reflect
the time-dependent changes of motor parameters, such as limb
position, speed, and acceleration.

An ECoG decoder takes multichannel ECoG data as the
input and returns the signals of interest (the presence of
movement, movement type, body part being moved, kinematic
parameters, etc.) as the output. Many machine learning methods
are applicable to this problem. The signal processing chain of a
neural decoding algorithm comprises several blocks (Figure 2A).
First, the raw data is transformed into features that contain
information relevant to the BCI tasks. Ideally, these features
should not contain redundant information. Next, a learning
algorithm forms a decision rule that solves either a classification

or regression problem. Classification algorithms solve the
problem of matching an input with one of the predefined discrete
classes. Regression algorithms match the input signals to the
output continuously. For example, identification of the finger
being moved is a classification problem, whereas decoding finger
trajectory is a regression problem.

To properly set the decoder parameters, training data are
needed that contain a sufficient number of examples of the inputs
and their corresponding outputs. Based on the training data, a
function is formed that, given the inputs from the dataset, returns
values that are close to the corresponding desired outputs. A
practicable decoder should be able to generalize to new data,
that is, it should remain accurate when applied to the inputs
not included in the training dataset. The case where decoding
performs well for the training data but fails to work for the
new data is called overfitting (Babyak, 2004). Overfitting often
occurs when the decoder uses too many adjustable parameters,
such as weights of the multiple linear regression. The presence of
overfitting indicates that the transfer function is narrowly tuned
to the anecdotal correlations between the input and output values
taken from the training data rather than implements a generic
transfer rule that reflects consistent input-output relationships.
To avoid overfitting, feature space dimension reduction and
appropriate regularization techniques should be employed. Thus,
if an iterative approach is used to optimize decoder parameters, a
proper stopping rule should be used to avoid overfitting.

Decoding algorithms have been developed that maintain
generalization even when the sampled neural signals drift
over time. Thus, Paul et al. (2017) used the higher-order
statistics of ECoG bispectrum to overcome the difficulties
decoding signals that were recorded during multiple task
sessions. Their algorithm extracted signal features that were
retained after a session-to-session transfer. This finding is
consistent with the results of previous EEG-based studies
(Shahid and Prasad, 2011; Das et al., 2016).

An additional important requirement is the versatility of
training data, which means that the space of movements should
be covered during sampling in such a way that the decoder
interpolates to new data points rather than extrapolating to them.
Practically, this means that experimental settings used to collect
training data should be similar to the settings for online BCI
control, including both the characteristics of movements and
neural activity patterns. In the case of a mismatch between the
training and online-BCI conditions, adjustments of the decoder
may be needed to improve BCI performance.

4.1. Spectral Features
An important advantage of ECoG recordings compared to EEG
is the wider range of signal frequencies that contain information
useful for BCI control. ECoG activity comprises multiple
frequency bands, from the low frequency activity (below 1 Hz)
to high gamma (50–400 Hz). Some of these spectral components
are clearly rhythmic, with clear peaks present in ECoG spectra
(Miller et al., 2007). Each frequency band has specific functional
correlates, which allows implementing decoders that capture
different aspects of the behavioral tasks, such as responses to
stimuli, transition from rest to movement, characteristics of limb
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FIGURE 2 | Types of data processing chains employed in ECoG-based BCIs. (A) Classical approach, where preselected features are extracted from ECoG

recordings, followed by a classification or regression algorithm that generates BCI output. (B) Deep learning approach that handles both feature selection and

decoding. (C) Hierarchical scheme with multiple decoders and processing chains that perform switching or relative weights adjustment.

kinematics, and engaging different body parts. An ECoG decoder
that uses multiple frequency bands simultaneously is potentially
more accurate and versatile compared to the decoder based on a
single spectral band.

To extract task-related spectral features, ECoG signal is either
bandpass filtered (Liang and Bougrain, 2012; Chestek et al., 2013;
Nakanishi et al., 2013) or converted into the frequency domain
using non-parametric methods, such as Fourier transform (Chin
et al., 2007; Miller et al., 2007; Blakely et al., 2009; Reddy

et al., 2009; Ryun et al., 2014), multitaper methods (Ball et al.,
2009; Kellis et al., 2012; Pistohl et al., 2012; Elgharabawy and
Wahed, 2016), parametric techniques, such as autoregressive
model estimation (Leuthardt et al., 2004; Schalk et al., 2007;
Kubanek et al., 2009; Wang et al., 2012; Xie et al., 2015), and
the maximum entropy approach (van Vugt et al., 2007; Collinger
et al., 2014; Bundy et al., 2016; Gunduz et al., 2016). Spectral
features can be also extracted with filter bank methods, such
as Gabor filters (Liu et al., 2010; Elghrabawy and Wahed, 2012;
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FIGURE 3 | Typical changes in ECoG activity that occur during the execution of a motor task (in this case, finger flexion). Task-related activity is compared to ECoG

activity recorded during a rest period. (A) Channel index × spectral frequency diagram with the color-coded values representing desynchronization index calculated as

2 Ptask−Prest
Ptask+Prest

. (B–D) Cortical distribution of desynchronization index for different ECoG frequency bands. (B) Data for the alpha band. It can be seen that, during a motor

task, alpha-band activity is desynchronized over a large portion of the sensorimotor cortex. (C) Data for the beta band. Beta band activity is desychronization over a

more compact cortical area as compared to the alpha-band. (D) Data for the beta band for the high frequency gamma activity (40–60 Hz), which exhibits a

pronounced synchronization over a small cortical area. The light-gray shaded spot shows the localization of the hand-related sensorimotor are obtained with fMRI.

Elgharabawy and Wahed, 2016; Wu et al., 2016). Ideally, neural
signals should be processed in such a way that an optimal trade-
off is reached between the temporal and spectral resolution.

ECoG mu (8–12 Hz) and beta (18–26 Hz) rhythms recorded
in the sensorimotor are commonly used for decodingmovements
from ECoG. These oscillations are thought to reflect the activity
in corticothalamic loops (Schalk and Leuthardt, 2011). The mu
and beta rhythms are typically not confined to local cortical
areas but rather occur over large surfaces (Brunner et al.,
2009). Movement and motor imagery cause desynchronization
(i.e., decrease in amplitude) of these rhythms, which allows
implementing BCIs that detect movement onset and time course.
While ECoG recordings are useful for measuring the mu and
beta activity, approximately the same measurements, albeit with
a lower spatial resolution, could be accomplished with EEG
recordings, which are suitable for monitoring cortical rhythms
below 40 Hz. By contrast, gamma-band activity (40 Hz and
higher) cannot be reliably recorded with EEG due to signal
contamination by facial EMG activity that belongs to the same

frequency range. Yet, gamma activity is reliably sampled with
ECoG. ECoG activity in the gamma band matches the activity of
single neurons in the same area (Buzsáki et al., 2012) and, unlike
the slower rhythms, it is not widespread but rather occurs in local
cortical areas (Schalk and Leuthardt, 2011). These properties
make ECoG gamma activity suitable for decoding based on
cortical location and for decoding specific aspects of movement
planning and execution with the accuracy comparable to the
decoding from neuronal spikes (Anderson et al., 2012; Gunduz
et al., 2016). ECoG gamma recordings are also useful to study
cognitive mechanisms (Sturm et al., 2014). Thus, high-frequency
ECoG components are especially valuable for implementing BCIs
of different kinds. Figure 3 shows the typical changes that occur
in different ECoG frequency bands during the execution of a
motor task.

At the lower end of ECoG spectrum (<2 Hz), ECoG low-
frequency component (LFC) has been shown to be applicable for
BCI decoding because it contains information about movement
timecourse and kinematics (Mehring et al., 2003; Rickert et al.,
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2005; Pistohl et al., 2008; Ball et al., 2009; Hammer et al., 2013).
LFC can be extracted, for example, by smoothing the signal
with Savitzky-Golay filters (Pistohl et al., 2008, 2012; Ball et al.,
2009). Schalk et al. (2007) called this component local motor
potential (LMP) and computed it as a running average. LMP is
modulated duringmotor behaviors, so it can be used for decoding
limb kinematics (Kubanek et al., 2009; Acharya et al., 2010; Fifer
et al., 2012; Wang et al., 2012; Chen et al., 2014; Hotson et al.,
2014; Bleichner et al., 2016; Bundy et al., 2016; Wu et al., 2016).
Hammer et al. suggested that LFC phase is more informative
for motor decoding than LFC magnitude (Hammer et al., 2013).
While LFC is highly informative for decoding, it can be easily
contaminated by mechanical and electrical artifacts caused by the
movements of the limbs and recording equipment. Because of
this issue, a special care should be taken to minimize the artifacts,
remove them from the data programmatically and ensure that
they are not utilized for decoding.

Besides spectral band power modulations, within-band and
across-band coupling features appear to be informative on
movement intentions. Thus, Brunner et al. (2005) found extra
information in the phase coupling between different ECoG
channels, measured as phase locking value (PLV). This method
worked well when applied to the beta and gamma bands.

Several connectivity measures have been applied to the
analysis of ECoG. Bayesian networks (TV-DBN) and eigenvector
centrality analysis have been used to identify brain regions
relevant to motor tasks (Newman et al., 2015). Benz et al. (2012)
used TV-DBN to quantify task-related changes in connectivity
and to decode hand kinematics. With this approach, higher
accuracy was achieved compared to spectral feature decoders.
Babiloni et al. (2017) utilized lagged linear connectivity (LLC)
between several cortical areas in the delta-theta (<8 Hz) band to
distinguish action execution from action observation.

4.2. Spatial Features
Decoder accuracy is known to improve with increasing number
of recording channels (Nicolelis and Lebedev, 2009). In addition
to the mere number of channels, improvements in decoding
can be gained by accounting for the spatial arrangement of
recording sensors, such as the arrangement of electrodes in
an ECoG grid. The procedure that improves decoding using
the information about the electrode locations is referred to as
spatial filtering. Spatial filters treat different ECoG channels
as coordinates for multivariate data sampling. This coordinate
system is transformed by the filter to improve decoding.
For example, spatial filtering could be used to reduce data
dimensionality or improve separability of different observations.

The initial spatial filtering is usually accomplished with the
reference schemes utilized during ECoG recordings. Common
average reference (CAR) is typically used as a simple denoising
technique (Schalk et al., 2007; Kubanek et al., 2009; Wang
et al., 2012). This method reduces noise that is common to all
recording channels but it does not handle channel-specific noise
and it may also introduce noise into otherwise clean channels.
Several alternative filtering techniques have been proposed to
address these problems. Morales-Flores et al. (2014) developed
a non-supervised algorithm where the spatial filter coefficients

are adjusted using a steepest descent method that minimizes
the variance on differences of the linear combination of ECoG
channels. This approach improved the decoding of finger flexions
from ECoG when compared to the data produced by CAR.
Liu et al. (2015) considered the problem of the introduction
of channel-specific noise when CAR is applied to the channel
sets containing noisy channels. They tested several types of
unsupervised spatial filters and techniques for detecting artifacts.
After the noisy channels were automatically removed, data
contamination was reduced. Moreover, they developed a median
average reference filter that reduced channel-specific noise even
when the noisy channels remained in the set.

Principal component analysis (PCA) is widely used in
conjunction with spatial filtering, primarily for dimensionality
reduction (Freeman et al., 2000; Boye et al., 2008). This method
transforms the original data into principal components, which
are uncorrelated with each other and are created in such a way
that the first several components capture the largest possible
amount of variance in the data. The principal components are
quantitatively characterized in terms of how much variance (i.e.,
information contained in the data) they comprise. After the
PCA transformation, the least informative (or least powerful)
components can be discarded, reducing data dimensionality.
This approach is, however, not optimal in the cases where
information is present in the low-power features of the ECoG
signal. In some cases, dimensionality reduction techniques, such
as PCA, are applied not only to ECoG signals but also to
motor parameters (Liu et al., 2010; Samiee et al., 2010; Hotson
et al., 2014). This is particularly useful when movements are
unconstrained. In this algorithm, the decoder first generates
output in PCA coordinates, and this output is then converted
into the original coordinates. Canonical correlation analysis is
another technique that can handle high multidimensionality of
both ECoG and movement data. This method performs a linear
transformation thatmaximizes the correlation between the ECoG
activity and movements (Spüler et al., 2016).

Common spatial patterns (CSP) is a spatial filtering technique
that is often used in EEG- and ECoG-based BCIs to extract
features that are useful for classification (Kapeller et al., 2014,
2015; Xie et al., 2015; Jiang et al., 2017). When two classes
of observations are used, CSP maximizes the ratio of their
variances to increase the separability of the two classes. After
the CSP transformation, dimensionality reduction can be carried
out based on the separability of the two classes in different
dimensions. Additionally, CSP performs more robustly and
exhibits better generalization properties when preceded by a
separate dimension reduction step (Nicolae et al., 2017).

Source reconstruction methods are applicable to improve
the performance of ECoG-based BCIs. The use of dynamical
spatial features obtained from the reconstructed cortical current
source density has been already shown to drastically improve
the decoding accuracy in the MEG and EEG based BCIs where
subjects generate outputs using motor imagery (Lin et al., 2013;
Edelman et al., 2019). Raw ECoG recordings better reflect the
surface distribution of cortical sources compared to non-invasive
measurements (Schalk and Leuthardt, 2011). Yet, the activity of
sources located deep in the sulci spreads into several recording
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channels and therefore can not be assessed selectively in the raw
data. As a solution to this problem, a sufficiently fine model can
be built that describes the relationship between the activity of
neuronal sources and the ECoG measurements (Gramfort et al.,
2010). Based on such forward model, reasonably accurate current
source density reconstructions can be obtained for neuronal
sources located within 1 cm from the cortical surface (Zhang
et al., 2008; Pascarella et al., 2016; Todaro et al., 2018). We foresee
that such reconstruction of sources from ECoG will be useful for
BCI decoding by providing decoding algorithms with the inputs
that discern the activity of more compact cortical areas compared
raw ECoG data. To fully benefit from this approach, care needs
to be taken to accurately determine grid location with respect
to the cortical surface. In addition to geometric calculations, the
techniques exploiting functional data-driven methods based on
maximizing model evidence (Henson et al., 2009) could improve
the performance of these methods.

In addition to the methods described above that perform
spatial filtering and/or reduce data dimensionality (Gu et al.,
2012), the decoding accuracy benefits from techniques to
determine the most informative features for classification, such
as requesting a certain separation in power for a certain ECoG
spectral band for different movements (Ryun et al., 2014),
choosing features strongly correlated with the task (Leuthardt
et al., 2004), successively adding features correlated to the class
and not correlated to the previously selected features (Schalk
et al., 2007), or choosing features according to a scatter-matrix
based separability (Samiee et al., 2010). Several filter selection
algorithms utilize a wrapper-based approach, where features
are scored using the learning algorithm that is then used for
regression or classification (Gu et al., 2012). In this approach,
the feature set is enhanced in consecutive steps, where features
are added to the previous feature set to improve decoding
accuracy estimated with cross-validation (Liang and Bougrain,
2012; Wang et al., 2012; Elgharabawy and Wahed, 2016; Li
et al., 2017). When following these strategies, one should bear
in mind that ECoG features assumed to be useful could be
contaminated by noise that is accidentally correlated to the
parameters being decoded.

4.3. Classification and Regression
Starting with the report of Levine et al. (1999) on movement-
related ECoG patterns, pattern matching techniques have been
applied to derivemotor commands from ECoG recordings. Thus,
movement-related ECoG desynchronization was detected using
an average ECoG template and cross-correlating it with ECoG
samples (Huggins et al., 1999). More complex features can be
used for the same purpose (Graimann et al., 2003). Such pattern-
matching approach has been successfully used to classify multiple
movement types (Bleichner et al., 2016) and to implement BCI
control (Levine et al., 2000).

As explained above, the capacity to generalize to new data is
essential for both classification and regression algorithms. Since
the number of features is often large, regularization methods are
applied to prevent overfitting. Algorithms with fewer parameters
are less susceptible to overfitting and often perform no worse
than more complex algorithms (Marjaninejad et al., 2017).

For decoding ECoG into discrete classes, linear discriminant
analysis (LDA) is often used (Ball et al., 2009; Samiee et al., 2010;
Pistohl et al., 2012; Xie et al., 2015; Bleichner et al., 2016; Jiang
et al., 2017). Classification can be performed as well using other
algorithms, such as k-nearest neighbor method (Chin et al., 2007;
Samiee et al., 2010; Paul et al., 2017) and Naïve Bayes classifier
(Chestek et al., 2013).

Support vector machines (SVM) is another class of models
that solve the problem of separating samples of different
classes by maximizing the margin between them. This group
of algorithms is versatile and allows constructing highly non-
linear decision surfaces. Linear kernel is often used to prevent
overfitting and ensure robustness (Yanagisawa et al., 2009, 2011;
Ryun et al., 2014; Elgharabawy and Wahed, 2016). Additionally,
radial basis functions can be employed (Wang et al., 2012). The
disadvantage of this approach is that kernel selection remains
largely heuristic and is usually performed via some sort of cross-
validation that requires additional data.

For continuous decoding of motor parameters from ECoG,
linear models are often used, including linear regression (Schalk
et al., 2007; Liang and Bougrain, 2012; Hammer et al., 2013;
Hotson et al., 2014; Gunduz et al., 2016) and its modifications
designed to reduce overfitting (Kubanek et al., 2009; Nakanishi
et al., 2013). Sanchez et al. used the Wiener filter, a linear
model, to decode movement trajectory (Sanchez et al., 2008).
Pistohl et al. (2008) and Kellis et al. (2012) utilized the
Kalman filter, which better handles non-stationary inputs. Wang
et al. (2012) employed a modification of dynamic Bayesian
network to capture non-stationarity in the temporal and spatial
ECoG characteristics.

Several studies utilized prior knowledge of the task
performance to improve decoding. Schalk and Leuthardt
(2011) developed a Bayesian decoding model that incorporated
constraints on finger flexion. Wu et al. (2016) employed a hidden
Markov model that highlighted rhythmic task behavior. Saa et al.
(2016) enhanced their decoding algorithms with the assumption
that subjects do not perform rapid changes between movement
and rest.

Hierarchical algorithms (i.e., the ones that stack several
models) are often used to enable online BCI tasks. In
these schemes, different regression and classification tasks are
performed in a certain order (Figure 2C). Yanagisawa et al.
(2011) and Hotson et al. (2016) used a hierarchical algorithm,
where one model classified between rest and movement and
detected movement onset and the second model classifies
movement type. In several studies, switching between regression
models was performed based on a classification algorithm
(Flamary and Rakotomamonjy, 2012; Bundy et al., 2016;
Elgharabawy and Wahed, 2016). Additionally, Chen et al.
developed an algorithm where the output of one model was used
to weigh the output of the other model to improve prediction
accuracy (Chen et al., 2014).

Artificial neural networks are the class of algorithms that
handle complex, non-stationary patterns of brain activity. They
can be applied to both classification and regression problems. The
primary advantage of artificial neural networks is their versatility.
With sufficient number of model parameters (units or neurons),
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complex neural patterns can be processed. While shallow neural
networks with few layers are useful for decoding, during the
last several years deep neural networks containing many layers
have significantly advanced. Advantages of deep learning models
include their ability to automatically extract features useful for
decoding rather than hand-engineering them (Figure 2B) and to
generate representations at multiple levels of abstraction.

Deep learning is rapidly gaining popularity as a BCI decoding
method. In the last few years, deep learning algorithms have
been applied to ECoG data processing (Roy et al., 2019),
seizure forecasting (Meisel and Bailey, 2019), language mapping
(RaviPrakash et al., 2018), and speech decoding (Livezey et al.,
2018; Angrick et al., 2019a,b). Several studies have already
employed deep learning for decoding movements from ECoG.
Xie et al. (2018) decoded finger trajectory with high accuracy
using LSTM recurrent neural network. Du et al. (2018) applied
LSTM to the same data and implemented real-time control
of a robotic arm. Wang et al. (2018) employed a deep model
to detect the upper body joints movement based on both
ECoG recordings and video data. Pan et al. used recurrent
neural networks that recognized temporal dependencies in
ECoG signal for rapid and robust gesture decoding (Pan
et al., 2018). We foresee further and fruitful development
of deep learning approaches for ECoG-based BCIs. This is
because of several advantages of this approach. Deep learning
architectures applied to electrophysiological data (Roy et al.,
2019) perform on par or slightly better than the classical
algorithms and do not require neural features to be defined
upfront. While such automated processing can be considered
as an advantage, BCI researchers still would want to better
understand the processing chain performed by a deep learning
algorithm, and ideally to relate the processing steps to certain
physiological characteristics of the recorded neural signals.
Such understanding of the representation of information deep
architectures employed for decoding purposes is crucial in order
to assess validity of the obtained solutions (Hammer et al., 2013).
Thus, it is important to understand the contribution to decoding
from different types of neuronal activity, such high-frequency
ECoG components better corresponding to neuronal discharges
and low-frequency ECoG reflecting synchronization of large
neuronal populations (Aoki et al., 1999; Chestek et al., 2013).
Additionally, one needs to be able to distinguish causal decoding
that captures commands generated by the brain from the
decoding based on the peripheral reafferent signals resulting from
overt behaviors (Livezey et al., 2019).With a better understanding
of these functional relationships, BCI developers can make full
use of the information carried by the neural signals, avoid
inadvertent uses of informational confounds, establish practical
utility of their algorithmic solutions, and gain fundamental
neurophysiological insights.

5. SOFTWARE

ECoG-based BCIs can be implemented using several currently
available software packages that perform real-time processing
of multichannel neural data. OpenVIBE (Renard et al., 2010)

is one popular project that offers tools for visual programming
and scripting signal processing pipelines. Experimental task
descriptions are saved as XML files. OpenVIBE is closed
source software. Another popular closed source package for
implementing BCIs is BCI2000 (Schalk et al., 2004). BCI2000
is written in C/C++. It incorporates several algorithms for
processing multichannel recordings. In our laboratory, we have
recently developed NFBLab1, an open-source software written
in Python for implementing a variety of BCI designs (Smetanin
et al., 2018b). This software accepts ECoG signals as inputs,
as well as EEG and MEG recordings and synchronizes them
with motion-tracking information and other multimodal data.
Lab Streaming Layer2 protocol is used to interface NFBLab
to data acquisition devices. NFBLab implements temporal and
spatial filters for selecting signal feature and removing artifacts.
Inverse solvers that generate source-space representation of
multichannel inputs are implemented via an interface to
MNE-Python software (Gramfort et al., 2014). Additionally,
NFBLab incorporates algorithms that reduce processing latency
(Smetanin et al., 2018a).

Several standard general purpose libraries are available for
implementing deep learning approaches, such as PyTorch,
TensorFlow, and Keras. Currently, only a few wrappers
are available implementing specific functions that facilitate
electrophysiological data processing. The Braindecode toolbox by
Schirrmeister et al. (2017) is based on PyTorch and supports trial-
wise and cropped decoding of raw EEG data. This toolbox is
applicable to ECoG data. A novel software package MNEFlow
for dealing with EEG/MEG data is currently being developed3

with three architectures implemented so far: LFCNN, VARCNN
(Zubarev et al., 2018), and EEGNet. The latter architecture
(Lawhern et al., 2018) implements a compact convolutional
network; it is available for download4. While these libraries have
not been developed to specifically process ECoG, they can be
rapidly adapted to process ECoG data.

The developers of decoding algorithms can utilize open ECoG
datasets containing data from movement and motor imagery
tasks. For instance, dataset 4 from international BCI competition
IV5 contains data for finger movements. This dataset is often
used as a benchmark for BCI decoders that classify the finger
beingmoved and/or perform continuous reconstruction of finger
movements. The other ECoG dataset from BCI competition
III6 contains recordings from several experimental sessions, so
it is useful for testing how well a BCI decoder generalizes
from one session to another. Researches from Brunton Lab
made available a large annotated dataset7 containing long-
term ECoG recording along with joint kinematics. Stanford
Collection of ECoG Data8 includes recordings from 250 subjects
conducted over an 8-years period. This dataset includes ECoG

1https://github.com/nikolaims/nfb/wiki/Experiment-file-structure
2https://github.com/sccn/labstreaminglayer
3https://mneflow.readthedocs.io
4https://github.com/vlawhern/arl-eegmodels
5http://www.bbci.de/competition/iv/
6http://www.bbci.de/competition/iii/
7https://www.bingbrunton.com/data
8https://purl.stanford.edu/zk881ps0522
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recordings from the sensorimotor cortex in patients performing
motor tasks.

6. DISCUSSION

Over the last two decades we observe a growing number
of ECoG-based BCI studies in patients who underwent
implantation for clinical purposes. This research is clinically
relevant and holds promise to provide new treatments for people
suffering from severe motor and sensory disabilities caused by
such conditions as spinal cord injury, stroke and amyotrophic
lateral sclerosis. At the same time, these studies have already
provided benefits to the patients and materialized in take-home
BCI systems for text-dialing purposes (Brunner et al., 2011),
novel safer solutions for passive speech mapping of eloquent
cortex during neurosurgery (Taplin et al., 2016; Sinkin et al.,
2019) and wireless ECoG devices (Matsushita et al., 2018) that
reduce septic risks and can be employed for chronic monitoring
of patients with epilepsy. In recent years, it has become clear
that ECoG-based BCIs are a viable approach to restoration and
rehabilitation of motor functions. ECoG recordings are useful
for decoding such motor parameters as movement onset (Wang
et al., 2012; Pistohl et al., 2013), movement type (Pistohl et al.,
2012; Ryun et al., 2014), and limb trajectory (Pistohl et al.,
2008; Nakanishi et al., 2013; Eliseyev and Aksenova, 2014; Xie
et al., 2018). These decoded signals can be then sent to external
devices, such as hand prosthesis with many degrees of freedom
(Yanagisawa et al., 2011; Hotson et al., 2016) or a lower-limb
exoskeleton (Vansteensel et al., 2016; Benabid et al., 2019). ECoG-
based BCIs can control two-dimensional and three-dimensional
movements of a cursor or a prosthetic arm (Anderson et al.,
2012; Yanagisawa et al., 2012). Several kinematic parameters
can be extracted from ECoG, including position, velocity, and
acceleration (Hammer et al., 2013). Extrinsic variables, such as
target location, can also be also decoded from ECoG and utilized
for BCI control (Nakanishi et al., 2017). The recently developed
fully implantable ECoG-based BCIs (Vansteensel et al., 2016;
Benabid et al., 2019) have extended the functionality of such
systems as they enable long-term operations and engage cortical
plasticity. With the rapid development of new technologies for
high-fidelity ECoG recordings (Viventi et al., 2011; Akinwande
et al., 2014; Khodagholy et al., 2015) and of neural decoding
methods (Faust et al., 2018; Richards et al., 2019), ECoG-based
BCIs will likely continue to improve.

ECoG-based BCIs are clinically relevant due to their safety
as compared to the intracortical implants (e.g., Utah array)
and have a better spatial and temporal resolution than non-
invasive, EEG-based BCIs. At the same time, the ECoG grids
cover relatively cortical areas which allows to take advantage
of the spatial-temporal encoding principles implemented by the
brain. Such large-scale recordings improve BCI accuracy by
allowing for simultaneous access to the information processed
by many brain regions involved in programming and execution
of movements.

Broad spectral and spatial extent of ECoG recordings open the
opportunity to explore at various scales interregional interactions
between and within several frequency bands from delta-band
(Gunduz et al., 2016) correlates of movement, desynchronization
in the alpha and beta bands in spatially distributed task-
relevant cortical areas to more localized synchronization in
the high gamma range and cross-frequency coupling between
bands and specific cytoarchitectonic assemblies. This flexibility
leads to significant variability in the choice of features,
decoded parameters and decoding models witnessed in the
range of described ECoG studies. Thus, depending on the
clinical needs, different ECoG components and associated
neurophysiological phenomena can be utilized in practical
BCI system.

In recent years, an active development of the decoding
algorithms is underway. Several strategies have been particularly
useful, including switching models, adapting algorithms,
and the decoders utilizing prior information on movement
characteristics and the nature of physiological processes.
Even more versatile methods are currently being developed,
such as those based on deep learning which allows for
capturing complex relationship between motor parameters
and ECoG characteristics.

We foresee that the next series of major advances will be
made in bidirectional BCI technology that combines motor-
control loops with sensory feedback provided by cortical
stimulation and/or sensory substitution methods (Wilson
et al., 2012; Cronin et al., 2016; Hiremath et al., 2017).
The development of bidirectional ECoG-based BCIs will
bring new challenges for modeling the complex relationships
between ECoG signals and different motor and sensory
parameters. Previous studies have reported a range of promising
results regarding the possibility of building BCIs that employ
ECoG recordings to enable motor functions. With the rapid
developments in ECoG technologies (Shokoueinejad et al.,
2019), surgical implantation procedures and mathematical
algorithms for neural decoding, it is reasonable to expect
that a variety of practical, fully-implantable (Vansteensel
et al., 2016) ECoG-based neural prostheses will emerge
for enabling motor and sensory functions to neurologically
impaired patients.
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