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At present, the diagnosis of brain disease is mainly based on the self-reported

symptoms and clinical signs of the patient, which can easily lead to psychiatrists’

bias. The purpose of this study is to develop a brain network clustering model to

accurately identify brain diseases based on resting state functional magnetic resonance

imaging (fMRI) in the absence of clinical information. We use cosine similarity and

sub-network kernels to measure attribute similarity and structure similarity, respectively.

By integrating the structure similarity and attribute similarity into one matrix, spectral

clustering is used to achieve brain network clustering. Finally, we evaluate this method on

three diseases: Alzheimer’s disease, Bipolar disorder patients, and Schizophrenia. The

performance of methods is evaluated by measuring clustering consistency. Clustering

consistency is similar to clustering accuracy, which is used to evaluate the consistency

between the clustering labels and clinical diagnostic labels of the subjects. The

experimental results show that our proposed method can significantly improve clustering

performance, with a consistency of 60.6% for Alzheimer’s disease, with a consistency of

100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.

Keywords: graph mining, similarity, sub-network kernels, spectral clustering, Alzheimer’s disease

INTRODUCTION

In recent years, graph mining has become a popular research field and has been widely used
in computer networks (Zou et al., 2017), social network analysis (Halder et al., 2016) and
computational biology (Zhang et al., 2017). In addition, many new kinds of data can be represented
as graphs, such as functional magnetic resonance imaging (fMRI) data. Using fMRI data we can
construct the brain functional connectivity network in which each node represents a brain region
and each edge represents the functional connectivity between two brain regions (Kong and Yu,
2014). These brain networks provide us with a means to explore the function of the human brain
and provide valuable information for clinical diagnosis of neurological diseases, such as Alzheimer’s
disease (AD), Bipolar disorder patients (BD), and Schizophrenia (SC). Therefore, brain network
analysis based on graph mining has become a new research hotspot and attracted increasingly
more researchers.

In brain science studies, some brain network of subjects were given, some of whom suffered
from certain brain diseases (such as AD or BD), while the other group was a normal control group
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without any brain disease. The next task is to distinguish the
two types of subjects accurately. In this problem, most of the
researchers are based on the assumption that brain networks
with similar structures have similar functional characteristics.
Therefore, the key problem is how to measure the similarity of
brain network.

The existing similarity measure of brain networks can be
classified into two main classes (Mheich et al., 2019): (1) the
statistical comparison, where various graph theoretical metrics
(such as efficiency and betweenness) can also be estimated at
node or edge level of the compared networks (Bullmore and
Bassett, 2011). These metrics are then quantitatively compared
between two groups of networks via statistical tests. (2) Graph
matching, where the main purpose is to quantify a similarity
score between two brain networks by considering structure
distance. This method includes: edit distances, hamming distance
(Gao et al., 2010) and kernel methods (Shervashidze et al., 2011).

In this paper, by combining the above two class methods, a
similarity measurement method of brain network based on node
attribute similarity and structural similarity is proposed, and the
method is applied to the clustering of brain network. We use
cosine similarity and sub-network kernels to measure attribute
similarity and structure similarity, respectively. By integrating
the structure similarity and attribute similarity into one matrix,
spectral clustering is used to achieve brain network clustering.

This framework is illustrated in Figure 1. Specifically, for
each brain connectivity network, we first preprocess the fMRI
data and construct a minimum spanning tree (MST) network of

FIGURE 1 | The framework of spectral clustering based on brain network. Firstly, the fMRI data is preprocessed, and the minimum spanning tree (MST) network of the

default mode network (DMN) is constructed. Then, two different types of similarity (attribute similarity and structural similarity) are calculated. Finally, the two kinds of

similarity are effectively combined and the brain network clustering is carried out.

the Default Mode Network (DMN), then compute two different
types of similarity (attribute similarity and structure similarity)
and effectively integrate these for spectral clustering. Finally, we
evaluate the proposed method on three datasets. One dataset
was from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. The other two dataset were selected from the UCLA
Consortium for Neuropsychiatric Phenomics LA5c Study, and
the study was approved by the UCLA Institutional Review Board.
Cluster consistency is used to evaluate the performance of the
method. The cluster consistency is similar to the clustering
accuracy, which reflects the consistency between the cluster
results and the clinical diagnosis results. It can be seen from
the experimental results that the consistency of the proposed
brain network clustering algorithm is high, which shows that the
clustering of the brain network can be accurately realized without
the clinical diagnosis information.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this study was from three datasets. One was the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/). The other two were obtained from a
public database, openfMRI dataset (https://www.openfmri.org/).
Its accession number is ds000030.

In the ADNI database, 109 subjects (48 AD patients and
61 NC) were selected for analysis. Of these, 55 participants
(26 AD patients and 29 NCS) were selected from ADNI-2.
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These data meet the following parameter settings: repetition
time (TR) = 3,000ms; echo time (TE) = 30ms; slice thickness
= 3.3mm; flip angle = 80◦; slice number = 48 and 140 time
points. During scanning, all the subjects were instructed to
keep their eyes closed. Another 54 participants (22 AD patients
and 32 NCs) were selected from ADNI-3. These data meet the
following parameter settings: repetition time (TR) = 3,000ms;
echo time (TE) = 30ms; slice thickness = 3.4mm; flip angle =
90◦; slice number = 48 and 197 time points. Table 1 shows the
demographic information of the participants.

In openfMRI database, 49 bipolar disorder patients (BD), 50
schizophrenia (SC) and 49 age- and gender-matched normal
subjects (NC) were selected for analyzing. Data meets the
following parameter settings: repetition time (TR) = 2,000ms;
echo time (TE) = 30ms; slice thickness = 4mm; flip angle
= 90◦; slice number = 34 and 152 time points. The detailed
demographics and clinical features of the patients and normal
controls are described in Table 2.

Many preprocessing steps for the fMRI images were
performed using Data Processing Assistant for Resting-State
fMRI (DPARSF, http://pub.restfmri.net/) (Chao-Gan and Yu-
Feng, 2010), Statistical Parametric Mapping (SPM12) (http://
www.fil.ion.ucl.ac.uk/spm), and the Resting-State fMRI Data
Analysis Toolkit (REST 1.8) packages (Song et al., 2011).
These steps include slice time correction, brain skull removal,
and motion correction followed by temporal pre-whitening,
spatial smoothing, global drift removal, and band pass filtering.
Specifically, the first 10 time points of each subject were removed;
slice-timing correction and image realignment were carried out
on the remaining time points. Because the brain size, shape,
orientation, and gyral anatomy of each subject is different, the
fMRI data of each subject was usually normalized into the
Montreal Neurological Institute (MNI) space (resampled into 3
× 3 × 3 mm3 voxels) by using a unified segmentation on the T1
image. Then, the linear trends of the time courses were removed,
and the effect of nuisance covariates was removed by signal

TABLE 1 | Demographic information of study participants.

Group AD NC

No. of subjects (M/F) 23/25 24/37

Age (mean ± SD) 74.0 ± 8.7 73.0 ± 7.3

MMSE (mean ± SD) 22.8 ± 2.5 28.9 ± 1.2

CDR (mean ± SD) 0.8 ± 0.2 0.0 ± 0.0

AD, Alzheimer’s Disease patients; NC, Normal Control; MMSE, Mini-Mental State

Examination; CDR, Clinical Dementia Rating; M, Male; F, Female.

TABLE 2 | Demographic information of study participants.

Group BD SC NC

No. of subjects (M/F) 28/21 38/12 26/23

Age (mean ± SD) 35.2 ± 9.0 36.5 ± 8.9 31.7 ± 8.9

BD, bipolar disorder patients; SC, schizophrenia patients; NC, Normal Control; M, Male;

F, Female.

regression using the global signal, the six motion parameters,
the cerebrospinal fluid (CSF) and white matter (WM) signals.
Temporal filtering (0.01Hz < f < 0.08Hz) was applied. Lastly,
since we used only gray matter (GM) tissue to construct the
functional connectivity network, the gray matter mask was used
to mask the corresponding fMRI images to eliminate the possible
effects from CSF and WM.

Method
The core of our proposed method is listed below and will be
described comprehensively in the following sections:

(1) Labeling the DMN and generating the MST brain
functional network.

(2) Brain network similarity assessment.
(3) Spectral clustering algorithm based on brain networks.

Labeling the DMN and Generating the MST Brain

Network
Many studies have confirmed that the Default Mode Network
(DMN) maintains a relatively stable state in the whole brain
network, which is suitable for the study of the abnormality of the
brain function network connections. In addition, a large number
of studies have confirmed that AD patients have abnormal
functional connections in the DMN (Mevel et al., 2011; Garcés
et al., 2014). The connection abnormality is mainly reflected in
the decrease of functional connections in the Posterior Cingulate
Cortex (PCC) and Hippocampus (HIP), and the degree of
reduction is positively correlated with the degree of episodic
memory impairment. With the development of the disease, the
impairment of DMN is aggravated gradually. Previous studies
have confirmed that Bipolar disorder (Öngür et al., 2010),
Schizophrenia (Mingoia et al., 2010; Tang et al., 2013) patients
have abnormal functional connections in the DMN. Therefore,
the connection abnormality of the DMN could provide an
imaging marker for monitoring AD, BP, and SC.

(1) Labeling the DMN

In this paper, according to the Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) atlas in concordance with
another study (Ciftçi, 2011), the DMN consisted of 32 locations
and are shown in Table 3. These 32 locations were defined as
the nodes of the brain network, and node time series were
obtained by averaging the corresponding voxel time series in the
anatomical areas. Then, with the Pearson correlation coefficients
between pairs of nodes as connectivity weights, a functional full
connected network was finally constructed for each subject.

(2) Constructing the MST brain network

When building a brain network, the traditional approach is
to convert a fully connected network into a binary network
by setting a threshold. And there is no gold standard for the
selection of thresholds. In addition, because different thresholds
get different binary networks, this will affect the results of
subsequent analysis to a certain extent. In order to avoid the
threshold selection problem and preserve the structure of the
brain network, we adopt the minimum spanning tree network
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correction scheme to construct the unbiased brain network. The
MST method not only preserves the core framework of the
network and ensures the neural interpretability of the network,
but also eliminates the influence of the threshold. The MST
network correction scheme has been widely applied to construct
brain networks. For example, Guo et al. (2017) constructed
minimum spanning tree high-order functional connectivity
networks to identify AD from NC. van Dellen et al. (2018)
constructed the MST structural brain networks of healthy adults,
and concluded that MST was a feasible method to analyze
structural brain networks. Cui et al. (2018) constructed the MST
functional brain network for AD, MCI, and NC, analyzed the
difference of topological structure among them, and classified
them by using topological structural features.

TABLE 3 | AAL structures forming the DMN.

Region Abbreviation

Orbitofrontal cortex (superior) ORBsup

Middle frontal gyrus MFG

Orbitofrontal cortex (middle) ORBmid

Rectus gyrus REC

Anterior cingulate gyrus ACG

Posterior cingulate gyrus PCG

Precuneus PCUN

Hippocampus HIP

Parahippocampus gyrus PHG

Inferior parietal lobule IPL

Angular gyrus ANG

Superior temporal gyrus STG

Temporal pole (superior) TPOsup

Middle temporal gyrus MTG

Temporal pole (middle) TPOmid

Inferior temporal gyrus ITG

In this paper, we constructed the MST brain network based
on the full connected network by employing Kruskal’s algorithm
(Kruskal, 1956). The details of the algorithm used in this study are
as follows: (1) order the weights of the full connected network in
descending order; (2) link the nodes with maximal weight until
all the nodes are linked in a loopless subgraph; (3) skip the link if
the addition of this link leads to a loop.

In this study, the number of nodes in the topology of MST was
32 and the number of edges was 31.

Brain Network Similarity Measure
A brain network has not only attribute features but also
topological features. So the similarity of brain networks was
evaluated by their attribute similarity and structural similarity.
The brain network clustering framework is shown in Figure 2.

1. Brain network attribute similarity

Betweenness is an important graph theoretical metrics in MSTs.
In clinical application, betweenness centrality was used to
compare brain networks of healthy subjects and patients with
schizophrenia, depression and Alzheimer diseases (van den
Heuvel et al., 2010; Yao et al., 2010; Becerril et al., 2011).
Hence, the attribute similarity of brain networks is evaluated by
measuring the similarity of betweenness. Betweenness of nodes is
defined as the number of shortest paths through a node.

The betweenness bi of the node i is defined as
(Tewarie et al., 2015):

bi =
1

(n− 1)(n− 2)

∑

h, j ∈ V
h 6= j, h 6= i

ρi
hj

ρhj
(1)

where ρhj is the number of shortest paths between node h and j;

ρi
hj
is the number of shortest paths between node h and j through

the node i; V is the set of nodes; and n is the number of nodes.

FIGURE 2 | The brain network clustering framework. A graph (A) contains a number of inter-connected nodes, each node represents a brain network, different color

represent different brain region. To calculate similarities between brain networks (G and H), we first find similarity between brain networks by taking node attributes

(attribute similarity) and structures (structure similarity) into consideration (B). The similarity matrix (C) is formed by the effective combination of attribute similarity and

structural similarity. Similarity matrix and spectral clustering (D) results in final clustering results in (E).
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The attribute similarity satt (G,H) is calculated using the
cosine similarity method (Nguyen et al., 2011). The formula is
as follows:

satt (G,H) =
∑n

m= 1 bm(G)× bm(H)
√

∑n
m= 1 (bm(G))

2 ×
√

∑n
m= 1 (bm(H))2

(2)

where bm(G) is the betweenness of the m-th node in the brain
network G, bm(H) is the betweenness of the m-th node in brain
network H, and n is the number of nodes in the brain network.

2. Brain network structure similarity

A kernel can be seen as a measure of similarity between a pair
of subjects. When a kernel is used for graph data, called a graph
kernel, the data is mapped from the original graph space to the
feature space and further measures the similarity between two
graphs by comparing their topological structure (Shervashidze
et al., 2011).

In this paper, sub-network kernels (Jie et al., 2018) were used
to measure the topological structure similarity of brain networks.
Compared with traditional graph kernels, sub-network kernels
not only take into account the uniqueness of each node in brain
networks, but also capture the multi-level topological properties
of the brain network nodes.

The detailed process of sub-network kernels is summarized
as follows:

(1) We construct a set of sub-networks on each node to reflect the
connectivity of the brain network at multiple levels.

Specifically, G = (V ,E) andH = (V ,E′) represent a pair of brain
networks, where V represents the node set for the networks. E
and E′ represent the edge sets for G and H, respectively. Because
the brain has the same brain area they share the same nodes.

To reflect the multi-level topological properties of brain
networks, we first define two sets of sub-networks on each node
Vi in the networks G and H,

Gh
i = {Gj

i = (V
j
i ,E

j
i)}j= 1,2,··· ,h

Hh
i = {Hj

i = (V
′ j
i,E

′ j
i)}j= 1,2,··· ,h (3)

where V
j
i = {v ∈ V|s(v, vi) ≤ j},Eji = {(u, v) ∈ E|u, v ∈

V
j
i },Vi

′j = {v ∈ V|s(v, vi) ≤ j},Ei′j = {(u, v) ∈ E′|u, v ∈ Vi
′j}

and s(·, vi) is the length of the shortest-path between node Vi and
the other node. Here, h determines the maximum of s(·, vi) and
also defines the number of sub-networks in the set Gh

i and Hh
i .

According to Equation (3), for a brain network of n nodes, we
can obtain n sets of sub-networks:

G = {Gh
1 ,G

h
2 , · · ·,G

h
n}

H = {Hh
1 ,H

h
2 , · · ·,H

h
n}

(2) We can calculate the kernel of brain networks G and H
by calculating the similarity of all sub-network groups from
the same node. The kernel of brain networks G and H is
defined as:

k (G,H) =
1

n

n
∑

i= 1

f (Gh
i ,H

h
i ) (4)

with

f
(

Gh
i ,H

h
i

)

=
1

h

h
∑

j= 1

g(G
j
i,H

j
i) (5)

and

g
(

G
j
i,H

j
i

)

= exp(−
1

2
log(

∣

∣

∣
A
j
i

∣

∣

∣

√

∣

∣

∣
CG

j
i

∣

∣

∣

∣

∣

∣
CH

j
i

∣

∣

∣

)) (6)

where | · | is the determinant, CG
j
i ∈ Rd×d and CH

j
i ∈ Rd×d

are the corresponding covariance matrices which are defined on

the sub-networks G
j
i and H

j
i by Equation (7) (Shrivastava and Li,

2014), respectively, d represents the number of power iterations,

n denotes the number of nodes in the brain network, and A
j
i is

defined in Equation (8).

CW
i,j = cov

(

NWie
∥

∥Wie
∥

∥

1

,
NWje
∥

∥Wje
∥

∥

1

)

(7)

A
j
i =

(CG
j
i + CH

j
i )

2
(8)

where CǫRd×d is a covariance matrix, d is the number of power
iterations, cov denotes the covariance between two vectors, W
denotes the adjacency matrix for the sub-network, e is the vector
of all ones, and ‖·‖1 denotes the l1 norm of a vector. Here, the set

of power iterations on a given vector e,
{

e,We,W2e, . . . ,Wde
}

,

is known as the “d-order Krylov subspace” which contains
sufficient information to describe the adjacency matrix W for
some appropriately chosen d.

Finally, the topological structural similarity between two brain
networksG andH is equal to the kernel of the two brain networks
G and H, and is defined as:

sstr(G,H) = k (G,H) (9)

3. Brain network similarity

Because the similarity of brain networks includes two parts
(attribute similarity and structure similarity), it is necessary to
combine them into one similarity. For this combination, we use
a weight δ to control the degree of contribution of each part.
In addition, since attribute similarity and structure similarity
are two different types, normalization must be performed before
combining them. The normalization is defined as:

snorm (X,Y) =
s(X,Y)

√
s(X,X)s(Y ,Y)

(10)

The similarity sG,H of two brain networks G and H is defined
as follows:

sG,H = δsatt(G,H)+ (1− δ)sstr(G,H) (11)

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2020 | Volume 13 | Article 79

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Cui et al. Clustering Method for Brain Functional Network

So similarity matrix for all brain networks S is defined as follows:

S =

















s11 · · · s1h · · · s1n
...

. . .
...

. . .
...

sg1 · · · sgh · · · sgn
...

. . .
...

. . .
...

sn1 · · · snh · · · snn

















(12)

where sgh represents the similarity between brain networksG and
H, and n represents the number of brain networks. sgh ranges
between 0 (no similarity at all) to 1 (fully similar / same network).

Spectral Clustering Algorithm Based on Brain

Networks
With the similarity matrix S obtained in the above section, we can
formulate the clustering of brain networks as a spectral clustering
(Ng et al., 2002; von Luxburg, 2007) problem, in which brain
networks with a higher similarity tend to be grouped into the
same cluster.

Algorithm 1: Spectral clustering algorithm based on
brain networks
Input: A set of brain networks with each brain network an
undirected graph; and cluster numberm.
Output:m clusters c1,c2. . . cm

1. Initialize the similarity matrix S as an n × n zero matrix, n is
the number of brain networks;

2. Form the brain network attribute similarity matrix satt by
Equation (2);

3. Form the brain network structure similarity matrix sstr by
performing sub-network kernels;

4. Form the similarity matrix S defined by Equation (11) and
Equation (12);

5. Define D to be the diagonal matrix whose (i,i)-element is
the sum of S’s i-th row, and construct the matrix L=D−1/2S

D−1/2 ;
6. Find x1, x2 · · · , xm, the m largest eigenvectors of L, and form

the matrix X = [x1, x2 · · · , xm] ∈ Rn×m by stacking the
eigenvectors in columns;

7. Form the matrix Y from X by renormalizing each of X’s rows
to have unit length;

8. Treating each row of Y as a point in Rm, cluster them into m
clusters via the K-means algorithm;

9. Finally, assign the brain network to cluster ci if and only if row
i of the matrix Y was assigned to cluster ci.

Methodology
In all algorithms, we set the number of clusters to 2 for
classifying the patients and the healthy controls. In addition,
there were certain parameters that needed to be set in the
proposed algorithm: (1) We apply grid search to find the optimal
value for δ. We do grid search for δ in {0.1, 0.2, . . . 0.9}. (2) In
the sub-network kernels, the parameters h and d are set to 3 and

3 for AD, the parameters h and d are set to 3 and 1 for SC and
BP, respectively.

To evaluate the consistency between the clustering labels and
clinical diagnostic labels of the subjects, we defined clustering
consistency as similar to clustering accuracy (Wang et al., 2010),
which can be used to discover one to one relationships between
clusters and clinical classes and can measure the extent to which
each cluster contains data points from the corresponding class.

Clustering consistency sums up the entire matching degree
between all pair class clusters. Clustering consistency can be
computed as

consistency =
1

n
max(

∑

Cm ,Lp

T(Cm, Lp)) (13)

where Cm denotes the m-th (m[{1, 2}) cluster in the final results,
and Lp is the diagnostic p-th (p[{1, 2}) group (patient group and
control group). T(Cm, Lp) is the number of samples that belong
to group p and are assigned to clusterm. n represents the number
of brain networks. Consistency is the maximum sum of T(Cm,
Lp) for all pairs of clusters and groups, and these pairs have
no overlaps.

RESULTS

The minimum spanning tree brain network of the default
mode network was constructed using Kruskal’s algorithm. Then,
According to a certain proportion, the attribute similarity
matrix and the structure similarity matrix were combined
to form a similarity matrix which is used for clustering.
Finally the clustering of the brain network was completed by
spectral clustering.

Clustering Performance
In order to evaluate the clustering performance of our proposed
method, we compared our method with methods that use a
different similarity measure for the same dataset, including:

TABLE 4 | Clustering performance of different similarity measure.

Dataset Similarity

measurement

Consistency

Patient (%) Control (%) Total (%)

AD Node attribute 64.6 54.1 58.7

Kernel method 60.4 39.3 48.6

Siminet 58.3 59 58.7

Our method 62.5 59 60.6

SC Node attribute 90.0 77.6 83.8

Kernel method 98.0 100 98.9

Siminet 58.0 55.1 56.6

Our method 100 100 100

BP Node attribute 53.1 46.9 50

Kernel method 100 100 100

Siminet 63.3 51.0 57.1

Our method 100 100 100

The bolded values represent the clustering performance of our method.
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(1) Spectral clustering algorithm based on node attributes: It
is an existing similarity measure of brain networks only
considering node attribute similarity. We first constructed
the similarity matrix only based on node betweenness and
then used the similarity matrix as the input for normalized
spectral clustering.

(2) Spectral clustering algorithm based on kernel method
(Jie et al., 2018): It is an existing similarity measure of
brain networks only considering structure distance between
two brain networks. We first constructed the similarity
matrix for graphs based on the kernel method and then
used the similarity matrix as the input for normalized
spectral clustering.

(3) Spectral clustering algorithm based on SimiNet (Mheich
et al., 2018): SimiNet takes into account the physical
locations of nodes and the weight difference of edge when
computing similarity between two brain graphs. We first
constructed the similarity matrix for graphs based on
SimiNet and then used the similarity matrix as the input for
normalized spectral clustering.

In all experiments, we evaluate the performance of methods by
measuring clustering consistency. Clustering consistency is used
to find one-to-one relationships between clusters and clinical
classes of the subject, and to measure the extent to which each
cluster contains data points from the same class. Table 4 shows
the clustering performances of the different methods with the
same dataset. The results showed that our proposed method
achieved the best clustering performance, with a consistency
of 60.6% for AD, with a consistency of 100% for SC, with a
consistency of 100% for BP.

DISCUSSION

Performance Evaluations
The clustering performance of four different similarity
measurement methods is listed in Table 4. When the consistency
is 100%, the clustering label of all subjects is consistent with the
clinical diagnostic label, and the clustering accuracy is 100%.
When the consistency is 0%, the clustering label of all subjects is

FIGURE 3 | The cluster result of AD with respect to different values of parameter δ, h, and d.
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inconsistent with the clinical diagnosis label, and the clustering
accuracy is 0%.

As shown in Table 4, among the four similarity measure
methods, our method performed the best on the three datasets in
terms of consistency. The node attribute and the kernel methods
achieved a slightly better result.

The node attribute method directly used the node attributes
of a brain network for calculating the similarity between each
pair of brain networks, which was utilized for the final brain
network clustering. The result shows that the similarity of the
brain network cannot be more accurately determined from the
node attributes (betweenness) alone. The result shows that the
brain disorders are associated with alterations in the hubs. Many
studies have also demonstrated that the hubs of the human brain
are generally implicated with brain disorders (He et al., 2008;
Lynall et al., 2010), such as AD and SC.

The kernel method computed the similarity matrix by
performing sub-network kernels on the brain network. The result

means that when the attributes of the network change, this will
affect the global connection structure of the network. Therefore,
the description of the global structure has a great effect on
the clustering.

SimiNet measures the similarity between the two graphs
according to the node and edge attributes under the spatial
constraints related to the physical position of the nodes. The key
feature of this algorithm is that it takes into account the physical
locations of the network nodes. However, in the not-weight brain
network constructed with rs-fMRI (resting state fMRI) data, the
position of the nodes is the same, so the advantages of the
algorithm are not fully reflected. As shown in Table 4, we can see
that this method achieved a slightly better result.

Different to the above methods, our method combines both
the attribute similarity and structure similarity, where the
attribute similarity captures the topological characteristics of
brain networks and the structure similarity captures the structure
distance. In addition, sub-network kernels were used to measure

FIGURE 4 | The cluster result of SC with respect to different values of parameter δ, h, and d.
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the structural similarity of brain networks. It not only takes
into account the uniqueness of each node, but also captures
the multi-level topological properties of nodes in the networks,
which are essential for defining the similarity measure. These
results indicated that the attribute features and the interior-node
structure were important for graph clustering. So, the similarity
measurement method based on the combination of attributes
and structure can accurately describe the similarity of the brain
network, thus improving the clustering performance.

In addition, the results show that when the method is applied
to different data sets, the clustering performance is also different,
which indicates that the clustering performance is affected by
the data to a certain extent. This is because we choose DMN
as regions of interesting to construct brain network in this
study. The damage degree of DMN is different in different brain
diseases, which affects the performance of clustering.

Effect of Parameters δ, d, and h
To compute the similarity of two graphs, the parameters δ, d, and
h need to be set. d controls the number of power iterations, and

h is the size of a sub-network set. The weight δ is used to control
the degree of contribution of attribute similarity and structure
similarity. In this section, we explore the effect of parameters
δ, d, and h on clustering performance. To analyze the effect
of these parameters on our method, we set different values for
d ∈ {3, 4, 5, 6, 7, 8} and h ∈ {1, 2, 3}, and δ was set from 0.1 to 0.9
with a step of 0.1. Figures 3–5 shows the clustering results of AD,
SC, and BP with respect to different values of these parameters.

From Figure 3 we can see that the consistency for AD is
between 51 and 60.6%. The best clustering performance was
obtained when h = 3 and δ = 0.9, with the consistency of 60.6%.
From Figure 4 we can see that the consistency is between 84
and 100% for SC. The best clustering performance was obtained
when h= 1 and ∈ [0.1, 0.7], with the consistency of 100%. From
Figure 5 we can see that the consistency is between 50 and 100%
for BP. The best clustering performance was obtained when h =
1 and δ ∈ [0.1, 0.7], with the consistency of 100%.

Figures 3–5 shows that, with a fixed h, the curves varied with
the value of d are very smooth, which shows that our method is
very robust to the parameter d. Moreover, we can observe that,

FIGURE 5 | The cluster result of BP with respect to different values of parameter δ, h, and d.
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given a fixed d, the clustering performance is largely affected
by different values of h. When h = 1, our method obtains the
best clustering performance for SC and BP. When h = 3, our
method obtains the best clustering performance for AD. These
results imply that the selection of h is critical for our proposed
method. This is reasonable since the number h controls the size
of a sub-network set for each node in a brain network, and
thus affects the similarity measurement of brain networks. In
additional, these results imply that the selection of δ is critical
for our proposed method. It is because that δ controls the degree
of contribution of attribute similarity and structure similarity.

The experimental results showed that the topological structure
and the attribute features of brain networks play important roles
in clustering brain networks. The setting of parameters is related
to the experimental data.

Limitation
Although the proposed method is effective, when this method
is applied to different datasets, the clustering performance is
different, which indicates that the clustering performance is
affected by the data to a certain extent. In addition, the proposed
method does not take into account a priori knowledge of the
subject, such as Mini-Mental State Examination and Clinical
Dementia Rating. A large number of studies have shown that
making full use of a priori knowledge in the process of searching
for clusters can significantly improve the performance of the
clustering algorithm (Jiao et al., 2012). Therefore, it will be
meaningful to combine this knowledge with spectral clustering.

CONCLUSION

In this paper, we proposed a framework for spectral clustering
based on attribute feature similarity and topological structure
similarity. Specifically, we use cosine similarity to measure the
attribute similarity between brain networks. Then, we use sub-
network kernels to calculate the structure similarity between
brain networks. Finally, according to an optimal parameter δ,
the similarity matrix was obtained by integrating the structure
similarity and attribute similarity, and spectral clustering is
carried out. Hence, this new similarity matrix considers both the
global and local similarity of brain networks. In experiments with
the AD, BP, and SC dataset, we demonstrated that our proposed
method can significantly improve clustering performance in
terms of consistency. In our future work, we will explore the
combination of a priori knowledge and spectral clustering and
carry out further research in this area.
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