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Automatic alignment of brain anatomy in a standard space is a key step when
processing magnetic resonance imaging for group analyses. Such brain registration
is prone to failure, and the results are therefore typically reviewed visually to ensure
quality. There is however no standard, validated protocol available to perform this
visual quality control (QC). We propose here a standardized QC protocol for brain
registration, with minimal training overhead and no required knowledge of brain anatomy.
We validated the reliability of three-level QC ratings (OK, Maybe, Fail) across different
raters. Nine experts each rated N = 100 validation images, and reached moderate to
good agreement (kappa from 0.4 to 0.68, average of 0.54 ± 0.08), with the highest
agreement for “Fail” images (Dice from 0.67 to 0.93, average of 0.8 ± 0.06). We then
recruited volunteers through the Zooniverse crowdsourcing platform, and extracted a
consensus panel rating for both the Zooniverse raters (N = 41) and the expert raters.
The agreement between expert and Zooniverse panels was high (kappa = 0.76). Overall,
our protocol achieved a good reliability when performing a two level assessment (Fail
vs. OK/Maybe) by an individual rater, or aggregating multiple three-level ratings (OK,
Maybe, Fail) from a panel of experts (3 minimum) or non-experts (15 minimum). Our
brain registration QC protocol will help standardize QC practices across laboratories,
improve the consistency of reporting of QC in publications, and will open the way for
QC assessment of large datasets which could be used to train automated QC systems.

Keywords: quality control, fMRI, brain registration, crowdsourcing, visual inspection, inter-rater agreement

INTRODUCTION

Aligning individual anatomy across brains is a key step in the processing of structural magnetic
resonance imaging (MRI) for functional MRI (fMRI) studies. This brain registration process allows
for comparison of local brain measures and statistics across subjects. A visual quality control (QC)
of brain registration is crucial to minimize incorrect data in downstream analyses of fMRI studies.
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However, no standardized, validated protocol has yet been
developed to streamline this QC. Here, we present a standardized
procedure for visual QC of brain registration and describe
the reliability of QC ratings from both expert raters and a
large panel of non-experts recruited through an online citizen
science platform1.

Brain Registration
Magnetic resonance imaging is a non-invasive technique that
can be applied to study brain structure (sMRI) and function
(fMRI). Multiple steps are required to transform raw MRI
data to processed images ready for downstream statistical
analyses. One critical preprocessing step is brain registration;
this involves aligning 3D brain images to a standard stereotaxic
space, such as the MNI152/ICBM2009c template (Fonov et al.,
2009). State-of-the-art registration procedures use non-linear
optimization algorithms such as ANIMAL (Collins and Evans,
1997), DARTEL (Ashburner, 2007), or ANTS (Avants et al.,
2009). Dadar et al. (2018) compared five publicly available,
widely used brain registration algorithms in medical image
analysis and found a failure rate of 16.8 ± 3.13% on
their benchmarks. This lack of robustness is mainly due
to differences in image quality, shape and cortical topology
between individual brains. A visual QC of registered brain
images is thus required to ensure good data quality for
subsequent analyses.

Visual QC
The specific focus of the visual QC for sMRI registration
depends on the intended use of the data. Voxel-based analysis
of brain morphology typically calls for a highly accurate
registration, as this step can impact brain tissue segmentation.
In contrast, fMRI studies usually rely on larger voxel size and
spatial blurring, and are less likely to be affected by small
registration errors. To our knowledge, as of yet, there are no
standardized criteria for tolerable errors in sMRI registration
for fMRI processing pipelines. Many fMRI analytical software
packages present users with images to assess the quality of
T1 image registration. In one of the most recent packages
developed by the community, fMRIprep (Esteban et al., 2019),
the registered T1 image is presented across 21 brain slices, along
with images for three other processing steps (skull stripping,
tissue segmentation, and surface reconstruction), yielding a total
of 84 brain slices for visual inspection. Established processing
tools like FMRIB Software Library (Jenkinson et al., 2012) or
the Statistical Parametric Mapping MATLAB package (Wellcome
Centre for Human Neuroimaging, n.d.) also present users with
reports that often include more than ten brain slices for visual
inspection for each subject. This makes visual inspection tedious
and time-consuming. Critically, none of these packages offer
guidelines on how to assess the quality of structural brain
registration for fMRI studies. Without such guidelines and with
a large number of images to review, QC is likely to vary
significantly across raters.

1www.zooniverse.org

Inter-Rater Agreement
Quality control studies of preprocessed images rarely report
inter-rater reliability, and no such study examined brain
registration to our knowledge. Pizarro et al. (2016) applied a
support vector machine algorithm on visually rated (N = 1457
usable/unusable) sMRI data from 5 to 9 investigators who rated
the same 630 images, but did not report agreement metrics. White
et al. (2018) compared automated QC metrics and manual QC
from 6662 sMRI data from 4 different cohorts/sites, merging
visual inspection across sites, raters, protocols and scan quality
but without presenting agreement statistics. Studies that do
report inter-rater agreement mostly focus on issues related to raw
MRI images (e.g. signal-to-noise ratio or susceptibility artifacts),
head motion (e.g. ghosting or blurring), brain extraction, and
tissue segmentation. Inter-rater agreement in these studies is
found to vary considerably. For example, Backhausen et al. (2016)
reported high agreement for two trained raters who visually
inspected the same 88 sMRI, achieving an intra-class correlation
of 0.931 for two categories of quality (pass-fail) on issues related
to MRI acquisition and head motion. Esteban et al. (2017)
reported a kappa of 0.39 between two raters for three quality
categories (Exclude/Doubtful/Accept) on 100 images when
ratings were based on the quality of the MRI acquisition, head
motion, brain extraction and tissue segmentation. Table 1 shows
recent (2010 onward) studies reporting inter-rater agreements
on visual QC of sMRI for a variety of issues. Only one study,
Fonov et al. (2018), included brain registration for visual QC
assessment. These authors reported a test-retest Dice similarity
of 0.96% from one expert rater who evaluated as pass or fail 1000
images twice, but no inter-rater reliability estimate. Variability in
reliability across studies may be due to two types of factors: user-
and protocol-related factors. Protocol-related factors (e.g. clarity,
levels of rating or training set) can be addressed by multiple
iteration and refinement of the protocol. Factors related to the
rater (e.g. level of expertise, fatigue, motivation, etc.) are more
difficult to constrain or control. One solution to circumvent
individual rater variability is to aggregate multiple ratings from
a large pool of raters.

Crowdsourced QC
Crowdsourcing can be used to achieve multiple QC ratings
on large collections of images rapidly. Crowdsourcing, as first
defined by Howe in 2016, is “ the act of taking a job traditionally
performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people in
the form of an open call” (Howe, 2006). Crowdsourcing can be
used in citizen science research projects where a large number
of non-specialists take part in the scientific workflow to help
researchers (Franzoni and Sauermann, 2014; Simpson et al.,
2014). Crowdsourcing labor-intensive tasks across hundreds or
thousands of individuals has proven to be effective in a number
of citizen science research projects, such as modeling complex
protein structures (Khatib et al., 2011), mapping the neural
circuitry of the mammalian retina (Kim et al., 2014), and
discovering new astronomical objects (Cardamone et al., 2009;
Lintott et al., 2009).
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TABLE 1 | Reported agreement in visual inspection of sMRI data on QC studies.

Reported visual inspection issue related to

Study QC agreement details MRI Aquisition Head motion Brain extraction Tissue segmentation Brain registration

Backhausen et al.,
2016

Nb. Images 88 Image sharpness,
ringing. Contrast to
noise ratio
(subcortical
structures and
gray/white matter)
and susceptibility
artifacts

Ghosting or blurring N.R N.R N.R

Nb. Raters 2

Rating scale Include/Exclude

QC Manual Supplementary Material

Agreement ICC = 0.93

Esteban et al.,
2017

Nb. Images 100 signal-to-noise
ratio. Image
contrast and
Ringing

Head motion
artifacts

Gray/white matter
and the pial
delineation

Gray–white matter
segmentation

N.R
Nb Raters 2

Rating scale Exclude/Doubtful/
Accept

QC Manual N.R

Agreement Cohen’s Kappa = 0 39

Rosen et al., 2018 Nb. Images Phasel = l00, Phase2 = 100 N.R N.R N.R N.R N.R

Nb. Raters Phase1 = 2, Phase2 = 3

Rating scale 0/1/2

QC Manual N.R

Agreement Phasel = 100%,
Phase2 = 85%

Fonov et al., 2018
(preprint)

Nb. Images 9693 (1000 rated twice) Effect of noise and
image intensity
non-uniformity

N.R N.R N.R Incorrect estimates
of, translation,
scaling in all
directions and
rotation.

Nb. Raters 1

Rating scale Accept/Fail

QC Manual Dadar et al., 2018 paper

Agreement intra-rater Dice
similarity = 0.96

Klapwijk et al.,
2019

Nb. Images 80 N.R Ringing Division between
gray/white matter
and pial surface

Gray–white matter
segmentation

N.R

Nb. Raters 5

Rating scale Excellent/Good/
Doubtful/Failed

QC Manual Supplementary Material

Agreement Reliability = 0.53

QC studies since 2010 that uses sMRI and reported their inter/intra-raters agreement (Pizarro et al., 2016; Esteban et al., 2017; Dadar et al., 2018; Fonov et al., 2018; Rosen et al., 2018; Klapwijk et al., 2019). N.R: Not
reported.
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In brain imaging, recent work by Keshavan et al. (2018)
showed the advantages of using citizen science to rate brain
images for issues related to head motion and scanner artifacts.
These authors were able to gather 80,000 ratings on slices drawn
from 722 brains using a simple web interface. A deep learning
algorithm was then trained to predict data quality, based on the
gathered rating from citizen science. The deep learning network
performed as well as a the specialized algorithm MRIQC (Esteban
et al., 2017) for quality control of T1-weighted images. QC
of large open access databases like HCP (Glasser et al., 2016),
UKbiobank (Alfaro-Almagro et al., 2018) or ABCD (Casey et al.,
2018) is challenging and time consuming task if done manually.
Using crowdsourced rating could be a key element to rate huge
databases and eventually use these ratings to efficiently train a
machine learning models to perform QC.

Here, we propose a novel, standardized visual QC protocol
for the registration of T1 images by non-experts. We formally
assessed protocol reliability, first with “expert” raters familiar
with visual inspection of brain registration, and second with a
large pool of “non-expert” raters with no specific background
in brain imaging. These citizen scientists contributed via the
world’s largest online citizen science platform, called Zooniverse
(Simpson et al., 2014). Zooniverse enabled the enrollment of
more than 2000 volunteers from around the globe, thus enabling
the evaluation of consensus between non-expert raters on a large
scale. Specific aims and hypotheses of the study were as follows:

1. To establish a QC procedure for MRI brain registration
that does not require extensive training or prior
knowledge of brain anatomy. Our hypothesis was
that such a procedure would help raters achieve more
reliable visual QC.

2. To quantify the agreement between a consensus panel
composed of non-expert raters and that of experts. Our
hypothesis was that the consensus of non-experts would
be consistent with experts’ assessments, since the protocol
requires no knowledge of brain anatomy.

METHOD

Quality Control Protocol Building
The QC protocol was developed iteratively over the past 5 years,
with several rounds of feedback from users. Initially, the protocol
was used internally in our laboratory (Yassine and Pierre, 2016),
and required a visual comparison of T1 slices against a template
using the Minctool register (Janke and Fonov, 2012). Although
the protocol achieved good consistency of ratings between two
expert users (kappa = 0.72), it was time consuming and hard
to teach. We then switched from an interactive brain viewer
to a static mosaic comprised of 9 different slices (3 axial, 3
sagittal, 3 coronal, see Figure 1B), and we highlighted anatomical
landmarks using a precomputed mask. These landmarks were
selected because we expected all of them to align well in the case
of a successful registration, and the precomputed mask served as
an objective measure to decide on the severity of a misalignment.
We established guidelines on how to rate a registered image

on a three-level scale (“OK,” “Maybe,” or “Fail”) using these
landmarks. The new protocol limited the need for extensive
training for new users and potentially reduced the subjectivity of
decision, notably for edge cases. The following sections describe
the details and the validation of the final protocol (brain slices,
landmarks and rating guidelines).

Brain Slices
A mosaic view of nine brain slices was extracted from each
registered brain. The x, y, and z coordinates, corresponding to
axial, coronal and sagittal views, were as follows:

x (sagitai) y (coronal) z (axial)

−50 −65 −6
−8 −20 13
30 54 58

Two images were generated: one using the individual T1 image
of a subject, after brain registration, and one using the MNI2009c
MRI T1 template averaged from 152 adults after iterative non-
linear registration (Fonov et al., 2011), see Figure 1A.

Anatomical Landmarks
Notable anatomical landmarks included the central sulcus,
cingulate sulcus, parieto-occipital fissure, calcarine fissure,
tentorium cerebelli, lateral ventricles, bilateral hippocampal
formation and the outline of the brain (see Figure 1B). To
highlight these landmarks, we hand-drew a red transparent
outline inside the brain with the MRIcron drawing tool (Rorden,
2014) using the MNI 2009 gray matter atlas as a reference. For
the outline of the brain, we substracted a 4-mm eroded brain
mask (MNI2009c release) from a 4-mm dilated brain mask. This
process resulted in a roughly 8-mm thick mask centered on the
outline of the brain in template space. The landmark boundaries
served as the “confidence interval” of acceptable registration.
The width of this confidence interval was somewhat arbitrary,
but critically helped raters to consistently assess what amount
of misregistration was acceptable. The scripts to generate the
mosaic brain images with highlighted landmarks have been made
available in the GitHub repository2.

Rating Guidelines
We instructed raters to focus on the brain structures within the
red anatomical landmarks, comparing the individual brain, after
registration, with the MNI 2009c template. The two images were
presented superimposed with each other, and raters were able to
flip manually or automatically between the individual and the
template brain. For a given anatomical landmark, raters were
asked to tag any part of the brain structure that fell outside of
the anatomical landmark for the individual brain. The template
acted as a reference for what the structure looked like, and where
it was supposed to be. Figure 1C provides examples of acceptable
and unacceptable registration of brain structures within the

2https://github.com/SIMEXP/brain_match
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FIGURE 1 | QC protocol for brain registration. (A) Brain slices. The rater is presented with two sets of brain slices (3 axial, 3 sagittal and 3 coronal), one of them
showing the template in stereotactic space and the other showing an individual T1 brain after registration. In the interface, the two images are superimposed and the
rater can flip between them to visually assess the registration. (B) Anatomical landmarks. The landmarks for QC included: the outline of the brain (A), tentorium
cerebelli (B), cingulate sulcus (C), parieto-cingulate sulcus occipital fissure (D), calcarine fissure (E), the lateral ventricles (F), central sulcus (G) and the hippocampal
formation (H) bilaterally. The landmarks were outlined in stereotaxic space. (C) Rating guidelines. The boundaries of red landmarks act as “confidence interval” for
registration: an area is tagged as a misregistration only if the target structure falls outside the boundaries. (D) Tags. Raters put tags on each misregistered brain
structure. (E) Final rating. A final decision is reached on the quality of registration: an image with no tags is rated OK, one or more non-adjacent tags are rated
Maybe, two or more adjacent tags are rated Fail. An image that is excessively blurry is also rated Fail.

landmarks. Raters were instructed to click all misregistered brain
structures, which resulted in a series of tag spheres with 4 mm
radius (Figure 1D). After an image was fully tagged, the overall
registration quality was evaluated by the rater as follows:

• “OK” if no tag was reported,
• “Maybe” if one or several regions were tagged, yet no tag

spheres overlapped (less than 8 mm apart),
• “Failed” if two tag spheres overlapped, meaning that

an extensive brain area (>8 mm) was misregistered.
Alternatively, a “Failed” rating was also issued if the entire

image was of poor quality due to motion or a ringing artifact
(Figure 1E).

Zooniverse Platform
We used the online citizen science platform Zooniverse (Simpson
et al., 2014) as an interface to perform the validation of our
QC protocol3. Zooniverse offers a web-based infrastructure
for researchers to build citizen science projects that require a
human visual inspection and possibly recruit a large number of
zooniverse volunteers, who are not familiar with neuroimaging

3https://www.zooniverse.org/projects/simexp/brain-match
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and have no formal requirements to participate (Franzoni
and Sauermann, 2014; Simpson et al., 2014). Our project,
called “Brain match” was developed with the support of the
Zooniverse team, to ensure compliance with Zooniverse policies
and appropriate task design for an online audience4, and the
project was also approved by our institutional review board.
Note that the raters were considered part of the research team,
and not participants of the research project, and thus they were
not required to sign an informed consent form. The project
underwent a “beta review” phase on zooniverse, where we
collected feedback on the clarity and difficulty level of the task.
Rating was performed by Zooniverse raters and expert raters. All
ratings were performed on the zooniverse platform through the
Brain Match dashboard5. The rating workflow was the same for
the two types of types raters. Note that individuals participating
in Zooniverse choose to voluntarily dedicate some of their time
to science and thus do not constitute a representative sample of
the general population.

Brain Images Validation and Training
Sets
We used a combination of two publicly available datasets,
COBRE (Mayer et al., 2013) and ADHD-200 (Bellec et al.,
2017), for both the beta and the full launch of the project.
These datasets have been made available after anonymization by
consortia of research team, each of which received ethics approval
at their local institutional review board, as well as informed
consent from all participants. Each individual sMRI scan was
first corrected for intensity non-uniformities (Sled et al., 1998)
and the brain extracted using a region growing algorithm (Park
and Lee, 2009). Individual scans were then linearly registered
(9 parameters) with the T1 MNI symmetric template (Fonov
et al., 2011). The sMRI scans were again corrected for intensity
non-uniformities in stereotaxic space, this time restricted to the
template brain mask. An individual brain mask was extracted a
second time on this improved image (Park and Lee, 2009) and
combined with template segmentation priors. An iterative non-
linear registration was estimated between the linearly registered
sMRI and the template space, restricted to the brain mask
(Collins et al., 1994). The processed data were finally converted
into mosaics and merged with a mask of anatomical landmarks
using in-house scripts. Two expert raters (PB,YB) rated each 954
preprocessed images in ADHD-200, achieving a kappa of 0.72
(substantial agreement) from a random subset of 260 images. The
COBRE dataset was rated by YB only.

On Zooniverse, raters were first invited to read a tutorial
(Supplementary Figure S2) explaining the protocol, and then
completed a QC training session, featuring 15 selected images
(5 rated OK, 5 rated Maybe and 5 rated Fail, as rated by YB).
Because the COBRE structural images were of higher quality, OK
images were selected from COBRE while Maybe and Fail were
selected from ADHD-200. For each training image, the rater was
first asked to assess the image, and was then able to see the tags
and the final ratings by an expert rater (YB).

4https://www.zooniverse.org/lab-policies
5https://www.zooniverse.org/projects/simexp/brain-match

After completing the training session, raters were presented a
series of 100 “open label” cases, and were free to rate as many of
these images as they wanted. We chose to present only 100 images
in order to ensure we would have many ratings by different raters
for each image, within a relatively short time frame. We arbitrary
selected a subset of 100 images with a ratio of 35 Fail, 35 Maybe,
and 30 OK images based on one expert rater (YB). Once again, the
OK images were drawn from COBRE, while the Fail and Maybe
were drawn from ADHD-200.

Raters
More than 2500 volunteers took part in our Brain Match project.
They performed approximately 21,600 ratings of individual
images over 2 beta-testing phases and two full workflows for a
total of 260 registered brain images (see Brain images section).
We used a retirement of 40 ratings, which means each image
was rated by 40 different Zooniverse raters before being removed
from the workflow. Only individuals who rated more than 15
images were kept in the final study. After data cleaning, 41
Zooniverse volunteer raters were kept. The distribution of rating
per image showed a mean number of ratings of 21.76± 2.75 (see
Supplementary Figure S1).

A group of 9 experts raters were also recruited for this study
and each asked to rate all of the 100 validation images using the
Brain Match interface. They were instructed to first start with the
training session and to carefully read the tutorial before starting
the main QC workflow. All raters had prior experience with QC
of brain registration in the past. Each rater was free to perform
the QC task at her pace without any specific direction on how to
do it. The process was completed once all ratings were submitted.

Finally, a radiologist was also recruited for the study. He
rated the same 100 images using Brain Match interface, also
undergoing the training session before the rating process.
Although the radiologist had no prior experience in QC of
brain registration, that participant had very extensive experience
in examining brain images following a standardized protocol,
and served as a gold standard about what to expect from a
fully compliant rater, trained on QC solely through available
online documentation.

Agreement Statistics
We used Cohen’s kappa (Cohen, 1960) to assess inter-rater
reliability across all nine experts (ratings R1–R9). The kappa
metric measures the agreement between two raters who rate the
same amount of items into N mutually exclusives categories. The
kappa is based on the difference between the observed agreement
(po, i.e. the proportion of rated images for which both raters
agreed on the category) and the probability of chance or expected
agreement (pe). Kappa (k) is computed as follows:

k =
po − pe

1− pe

In this work we used a weighted kappa metric, which assigns
less weight to agreement as categories are further apart
(Cohen, 1968). In our QC cases disagreements between OK
and Maybe, and between Maybe and Fail count as partial
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disagreements; disagreements between OK and Fail, however,
count as complete disagreements. We used the R package irr
(Gamer, 2012) to estimate the weighted kappa and Landis
and Koch’s (1977) interpretation of the strength of agreement
for κ ≤ 0 = poor, 0.01–0.20 = slight, 0.21–0.40 = fair,
0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–
1 = almost perfect.

We also used the Sørensen–Dice coefficient (Dice) to assess
the agreement within the rating categories of OK, Maybe and Fail
(Sørensen et al., 1948), as follows:

DSC =
2
∣∣X⋂Y

∣∣
|X| + |Y|

where X is the set of images rated “OK” by one rater and Y is the
set of images rated “OK” by a second rater,

⋂
is the intersection

between two sets, and |X| is the number of images. In plain
English, the Dice between two raters for the OK category is the
number of images that both raters rated “OK,” divided by the
average number of images rated “OK” across the two raters. The
same Dice measure was generated as well for “Maybe” and “Fail”
images. We interpreted Dice coefficients using the same range of
strength of agreement as for the Kappa coefficient (≤0 = poor,
0.01–0.20 = slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–
0.80 = substantial, and 0.81–1 = almost perfect).

Consensus Panels
We also evaluated the reliability of QC ratings after pooling
several raters into a consensus panel. The panel consensus was
generated by counting the number of OK, Maybe and Fail
attributed to an image from different raters (number of votes).
The category with the highest vote count was selected as the
consensus on that specific image for the panel. If there was a
tie between 2 or 3 categories, the worst category was selected
(Fail < Maybe < OK).

We tested different panel configurations, large and small,
for expert and Zooniverse raters separately. Large panels were
composed either by all 9 experts (panel Ec) or 41 Zooniverse
users (panel Zc). We compared the agreement between Ec and
Zc versus each individual expert rater (R1 to R9) as well as the
ratings from the radiologist (Ra). For small panel, experts were
arbitrarily split into three panels of three raters (panels Ec1, Ec2,
and Ec3). The Zooniverse users were also arbitrarily split into
two independent consensus panels of roughly equal size (Zc1 and
Zc2). We quantified the agreement between small panels, as well
as small vs. large panels.

RESULTS

Expert Raters Achieved Moderate
Agreement, With “Fail” Rating Being the
Most Reliable
Kappa agreement between expert raters across the three classes
(OK, Maybe, Fail) was moderate to substantial (range 0.4–0.68,
average of 0.54 ± 0.08), see Figure 2. However, there were
marked differences in agreement across the three rating classes.

The highest reliability was for “Fail,” with between-rater Dice
agreement ranging from substantial to almost perfect (0.67–0.93,
average of 0.8 ± 0.06). The second class in terms of reliability
was “OK,” with Dice ranging from fair to strong (0.38–0.76), and
the least reliable class was “Maybe,” with Dice agreements ranging
from slight to strong (0.23–0.72).

Large Panel of Experts or Zooniverse
Raters Give Convergent, Reliable QC
Ratings
We found that the kappa between Ec and individual expert
raters was, as expected, improved over comparison between
pairs of individual experts, with a range from moderate to
strong (0.56–0.82), see Figure 3. As observed before, the Dice
scores for Ec were highest in the “Fail” category (almost perfect
agreement, range of 0.76–0.98), followed by the “OK” category
(from substantial to almost perfect: range 0.66–0.85) and finally
“Maybe” (fair to almost perfect, ranging from 0.38 to 0.8). These
findings confirmed our previous expert inter-rater analysis, with
“Fail” being a reliable rating, “Maybe” being a noisy rating,
and “OK” being a moderately reliable rating. When comparing
the individual experts with the Zooniverse panel Zc, we only
observed a slight decrease in average Kappa compared with
the Expert panel (0.61 for Zc vs. 0.7 for Ec), mostly driven
by the “Fail” (0.82 for Zc vs. 0.88 for Ec) and “Maybe” (0.58
for Zc vs. 0.68 for Ec) ratings. When directly computing the
agreement between the two consensus ranels Ec and Zc, the
kappa was substantial (0.76), with almost perfect agreement for
“Fail” (Dice 0.9) and “OK” (0.82), and substantial agreement for
“Maybe” (0.77), see Figure 3. This comparison demonstrated that
aggregating multiple ratings improved the overall quality, and
that expert and zooniverse raters converged to similar ratings.
The radiologist achieved a level of agreement with panels similar
to what was observed with expert raters, and was substantially
lower than the agreement between panels. This shows that the QC
training material alone was enough for a radiologist to agree with
QC experts, but a single user can likely not achieve high quality
QC ratings by herself.

Small Consensus Panels of Expert
(N = 3) or Zooniverse (N = 20) Raters
Achieve Reliable QC Ratings
Once we established that large panels of raters lead to high levels
of agreements, our next question was to determine whether small
panels could also lead to reliable assessments. The small expert
panels Ec1-3 reached lower agreement with Zc than the full Ec.
Specifically, kappa was 0.64, 0.64, and 0.73 for Ec1 to Ec3 (with
respect to Zc), compared to kappa of 0.76 for Ec vs. Zc. Similar
observations were done when breaking down the comparison
per category with Dice, with a decrease of 5% to 10% in this
coefficient (see Figure 4). Comparing small zooniverse panels
Zc1-2 with the full expert panel Ec, a slight decrease in reliability
was observed, very similar in magnitude with comparisons
between Ec1-3 and Zc. The agreements Ec1-3 vs. Zc, as well as
Zc1-2 vs. Ec, remained substantial. This suggests that reliable
three-level QC assessments can be performed by small panels of
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FIGURE 2 | Between-expert agreement. (A) Matrix of Kappa agreement between raters (top). Note that R1 to R9 are identification codes for the different expert
raters. The distribution of agreement is also presented (bottom). For example, the boxplot for R1 shows the agreement between R1 and R2-R9. (B–D) Matrix and
distribution for the Dice agreement between raters in the OK (B), Maybe (C), and Fail (D) categories.

FIGURE 3 | Zooniverse, expert and radiologist agreements. (A) Matrix of Kappa agreement between consensus of experts (Ec), zooniverse users (Zc) and radiologist
(Ra) raters, in rows, vs. individual experts (R1–R9), in column (top). The distribution of agreement is also presented (bottom). (B–D) Matrix and distribution for the
Dice agreement in the OK (B), Maybe (C), and Fail (D) categories.

three experts (n = 3), or moderate panels of zooniverse users, with
roughly 20 assessments by image (see Supplementary Figure S1
for distribution).

DISCUSSION

This project proposes a standardized QC protocol with minimal
training overhead and no required knowledge of brain anatomy.
Our goal was to quantify the reliability of QC ratings between
expert raters, as well as panels of expert or Zooniverse raters.
Overall, our results demonstrated that our protocol leads to good
reliability across individual expert raters, in particular for “Fail”
images, and good reliability across panels of raters (both experts
and Zooniverse), even for panels featuring only three experts.

To our knowledge, this is the first quantitative assessment of
between-rater agreement on QC of brain registration.

Visual QC
Our protocol was designed to be simple enough that even a
rater without brain anatomy knowledge or prior QC experience
could generate meaningful ratings. The mosaic view of 9 slices
used in our protocol is similar to display images used in fMRI
preprocessing tools like MRIQC (Esteban et al., 2017), fMRIPrep
(Esteban et al., 2018) or CONN (Whitfield-Gabrieli and Nieto-
Castanon, 2012). These QC tools also use an overlay that
highlights brain borders or tissues segmentation. Differentiating
aspects of our protocol are (1) fewer number of brain slices
in the mosaic view, so that raters can more easily examine
all presented images and (2) the overlay provides an objective
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FIGURE 4 | Agreement between small panels of raters for both experts and Zooniverse panels. (A) Matrix of Kappa agreement between large panel consensus of
experts (Ec), zooniverse users (Zc) and a small panel of expert (Ec1 = 3 rater, Ec2 = 3 rater, Ec3 = 3 rater) and small panel of Zooniverse raters (Zc1 = 20 rater,
Zc2 = 21 rater) (top). The distribution of agreement is also presented (bottom). (B–D) Dice distribution between group consensus in the OK (B), Maybe (C), and Fail
(D) categories.

confidence interval to assess the severity of misregistration in
key anatomical landmarks. We believe that these two design
principles helped reduce the subjectivity of brain registration
QC, and increase between-rater agreement, although we did not
formally test these hypotheses.

Inter-Rater Agreement
Table 1 shows that the visual QC agreement reported in recent
studies ranged from 0.39 to 0.9. Interestingly, the studies which
reached high levels of agreement (0.93–0.96) used ratings with
only two levels (ex: pass, fail). Studies with three or more rating
levels reported lower agreement scores (0.39–0.85), which were
in line with our findings (average of 0.54 for experts). The most
challenging rating in our protocol appeared to be the “Maybe”
class, featuring mild, spatially limited registration errors. In
contrast, good and failed registrations were easily detectable by
expert raters. When working with three levels of ratings, the
reliability of our protocol is not high enough to work with a
single rater. We found that a consensus panel of three experts
was sufficient to reach a good level of agreement (average of
0.64), which appears as a minimum panel size to generate high
quality QC scores. Aggregating rating between expert or non-
expert is a good solution to overcome the variability among
human observers on the QC task.

Crowd Sourced QC
Crowdsourcing QC rating could be one solution to generate high
quality QC ratings in big datasets like the UK biobank (Alfaro-
Almagro et al., 2018). A recent work from Keshavan et al. (2018)
showed that crowdsourced QC ratings on raw brain images can
reach the performance of an automated state-of-the-art machine

learning QC tool (Esteban et al., 2017). This work relied on
a large pool (N = 261) of participants, many of whom had
prior experience in neuroimaging. We recruited more than 2000
zooniverse non-expert raters, and found that a consensus panel of
non-experts with adequate size (about 40 ratings per image) leads
to QC ratings of similar quality to a panel of three experts.

Limitations of the Study
Our study has a number of limitations. First, our protocol
is intended to be used with anatomical brain registration in
the context of fMRI analyses in volumetric space, rather than
surface. Structural brain imaging studies (i.e. cortical thickness)
or surface-based fMRI analyses need other protocols that
examine more closely fine anatomy and tissue segmentation.
Also, our primary use case is large-scale research studies, and
not clinical applications. Some clinical applications may require
more stringent standards being applied on brain registration. Our
protocol was validated with a specific brain registration tool, the
CIVET pipeline, and may not be well suited for other algorithms.

Second, we did not control for screen size, screen resolution
or fidelity of color representations in our validation, be it with
experts or zooniverse individuals. The main use case for our
protocol is the review of thousands of brain registration [e.g.
in the ABCD sample (Casey et al., 2018)] in a relatively short
span of time. The quality control procedure only examines
coarse anatomical landmarks, and the required precision of the
alignment is on the order of couple of millimeters. For that
reason, we think that the characteristics of the screen will not
affect significantly between-rater agreement. This is however a
potential source of variations which may have decreased the
observed agreement, both between experts and zooniverse raters.
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Third, The success rate of our registration tool varies widely
as a function of the imaging protocol. The Cobre dataset has
almost only OK registration, while the ADHD has a lot of Maybe
and some Fail. So we decided to mix two dataset, in order
to assemble representative examples of the three classes. This
may influence the results by increasing the potential agreement,
if subjects learned to recognize which datasets the examples
originated from.

Fourth, our choice on the number of rated images (N = 100)
was selected arbitrarily. We checked the appropriateness of that
choice by assessing the minimum number of rated cases with a
three-choice decision using the R package “irr” (Gamer, 2012),
that uses the minimum sample size estimation formula from
Flack et al. (1988). We estimated the minimum sample size under
the following scenario. The vector of marginal probability was
given by rates for the 3 categories, OK = 0.3, Maybe = 0.35
and Fail = 0.35. These marginal probabilities were decided by
our team when designing the dataset, based on an initial QC
assessment performed by YB and PB. The value of kappa under
the null hypothesis was set equal to 0.5 (k0 = 0.5) – i.e. we want
to demonstrate an improvement over a baseline κ of 0.5. The
true kappa statistic estimated between two expert was set equal
to 0.72 (k1 = 0.72), as was observed in our sample. The type I
error test was set equal to 0.05 (α = 0.05). The desired power to
detect the difference between the true kappa and the null kappa
was investigated at 0.8 and 0.9, separately. The required number
of ratings was estimated at N = 54 for a power of 0.8, and N = 72
for a power of 0.9. In our case, the number of images rated per
expert was N = 100, which is more than required by the power
analysis.

Fifth, We were unable to assess to what degree this protocol
improves or not over current best practices in the fMRI
community, in the absence of other standardized protocols
available for comparison. We still produced preliminary evidence
while developing the current protocol. During the beta phase
of our project, we tested the agreement between consensus of
Zooniverse raters and experts raters (on 29 images). The protocol
used during that phase was different from the actual one. In
particular, we did not instruct raters on how to take the final
decision on the quality of registration (Figures 1C–E), and we did
not offer a training set. The kappa measure between consensus
Zooniverse raters and an expert during phase 1 was 0.34, by
contrast with 0.61 using the current protocol. We regard these
results as preliminary evidence that our protocol improves over
our previous iteration. These results are to be interpreted with
caution, as the number of images rated was low and we used
only one expert rating. Note that the feedback received by beta
testers helped us identify the importance of steps described
in Figures 1C–E, and we suspect that protocols that do not
include such detailed explanation have poor reliability. But we
did not attempt to demonstrate this formally within the scope of
the present study.

Finally, our protocol is missing an evaluation of another
key registration step, i.e. alignment between functional images
and the structural scan (Calhoun et al., 2017). We are
currently working on an extension of our protocol for
functional registration.

Future Work: Impact of QC on
Downstream Analyses
Despite the ubiquity of visual brain registration QC in the
neuroimaging research community, the impact of visual QC
of brain registration on statistical analyses remains poorly
characterized. Gilmore et al. (2019) used a multi-site dataset of
structural MRI images with different age ranges to show how
automated image quality metrics impacted regional gray matter
volumes and their relationship with age. Ducharme et al. (2016)
showed a significant impact of visual QC on the estimation
of cortical trajectories. They demonstrated that, when omitting
to discard subjects that did not pass QC, the developmental
trajectory of cortical thickness followed a quadratic or cubic
trend. By contrast, after filtering those subjects, the trajectory
followed a linear trend. Standardizing the QC protocol will allow
different laboratories to join their effort of rating and open up
new opportunities to systematically investigate the impact of
visual QC on the relationship between the brain and various
phenotypes. This represents an important area of future work for
brain registration.

CONCLUSION

Our QC protocol is the first reliable visual protocol for
brain registration in fMRI studies. The protocol is easy to
implement and requires minimum training effort. This protocol
demonstrates a good reliability when performing a two level
assessment (Fail vs. OK/Maybe) by an individual rater, or
aggregating multiple three-level ratings (OK, Maybe, Fail) from
a panel of experts (3 minimum) or non-experts (15 minimum).
The images necessary to apply the protocol can be generated
using an open-source tool, called dashQC_fmri (Urchs et al.,
2018) and a live version can be tested on this link https://simexp.
github.io/dashQC_BrainMatch/index.html. We hope this new
protocol will help standardize the evaluation and reporting of
brain registration in the fMRI community. This standardization
effort will also enable the generation of high quality QC ratings on
large amounts of data, which will in turn allow to train machine
learning models to automatically perform brain registration QC,
alleviating the need for visual review.
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