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Background: The detection of large vessel occlusion (LVO) plays a critical role
in the diagnosis and treatment of acute ischemic stroke (AIS). Identifying LVO
in the pre-hospital setting or early stage of hospitalization would increase the
patients’ chance of receiving appropriate reperfusion therapy and thereby improve
neurological recovery.

Methods: To enable rapid identification of LVO, we established an automated evaluation
system based on all recorded AIS patients in Hong Kong Hospital Authority’s hospitals
in 2016. The 300 study samples were randomly selected based on a disproportionate
sampling plan within the integrated electronic health record system, and then separated
into a group of 200 patients for model training, and another group of 100 patients
for model performance evaluation. The evaluation system contained three hierarchical
models based on patients’ demographic data, clinical data and non-contrast CT (NCCT)
scans. The first two levels of modeling utilized structured demographic and clinical
data, while the third level involved additional NCCT imaging features obtained from
deep learning model. All three levels’ modeling adopted multiple machine learning
techniques, including logistic regression, random forest, support vector machine (SVM),
and eXtreme Gradient Boosting (XGboost). The optimal cut-off for the likelihood
of LVO was determined by the maximal Youden index based on 10-fold cross-
validation. Comparisons of performance on the testing group were made between
these techniques.

Results: Among the 300 patients, there were 160 women and 140 men aged from 27
to 104 years (mean 76.0 with standard deviation 13.4). LVO was present in 130 (43.3%)
patients. Together with clinical and imaging features, the XGBoost model at the third
level of evaluation achieved the best model performance on testing group. The Youden
index, accuracy, sensitivity, specificity, F1 score, and area under the curve (AUC) were
0.638, 0.800, 0.953, 0.684, 0.804, and 0.847, respectively.
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Conclusion: To the best of our knowledge, this is the first study combining both
structured clinical data with non-structured NCCT imaging data for the diagnosis of
LVO in the acute setting, with superior performance compared to previously reported
approaches. Our system is capable of automatically providing preliminary evaluations at
different pre-hospital stages for potential AIS patients.

Keywords: acute ischemic stroke, large vessel occlusion, prognosis, machine learning, deep learning

INTRODUCTION

Acute ischemic stroke (AIS) is a leading cause of morbidity
and mortality worldwide, and it is usually due to a focal
interruption of cerebral blood flow caused by occlusion of
a cerebral artery. Large vessel occlusion (LVO) accounts for
approximately only one-third of AIS but is responsible for
60% of stroke-related disability and 90% of stroke-related
deaths (Malhotra et al., 2017). Recent advances in endovascular
thrombectomy (EVT) for treatment of AIS caused by LVO
have been widely accepted around the world (Powers et al.,
2019). Similar to intravenous thrombolysis, rapid access to
EVT, preferably within 6 h from symptom onset, remains
paramount to ensure functional recovery (Saver et al., 2016;
Powers et al., 2019). As EVT is only available in specialized
centers, interhospital transfer is frequently required, leading
to an average treatment delay of 142 min and millions of
neuron loss (Saver, 2006; Saver et al., 2016). Prehospital care
therefore focuses on rapid identification of AIS and direct
transport to a hospital ideally suited to care for that patient,
avoiding the lengthy time delays of interfacility transfers
(Prabhakaran et al., 2011).

Recent decades have witnessed the development of prehospital
LVO prediction scales in order to differentiate LVO from
milder strokes, allowing paramedics to make rapid diagnosis
in the prehospital setting. Popular scales include the three-
item Stroke Scale (3I-SS) (Singer et al., 2005), the Los Angeles
Motor Scale (LAMS) (Nazliel et al., 2008), the Rapid Arterial
Occlusion Evaluation (RACE) Scale (Pérez de la Ossa et al.,
2014), the Cincinnati Prehospital Stroke Severity (SS) Scale
(Katz et al., 2015), the Field Assessment Stroke Triage for
Emergency Destination (FAST-ED) (Lima et al., 2016), and
the Prehospital Acute Stroke Severity (PASS) (Hastrup et al.,
2016). Some of these scales specifically aim to identify stroke
patients with LVO rather than all AIS patients. These scales
are simplified from National Institutes of Health Stroke Scale
(NIHSS) items, a 42-point criterion standard for stroke, and
then transformed with different linear combinations based on
the correlation between patients’ clinical symptoms and the
presence of stroke. The drawbacks of these measurements are the
ignorance of patients’ potential stroke-related co-morbidities and
risk factors, such as age and clinical history. Moreover, non-linear
relationship was not considered. In addition, the level of training
of paramedical staff will affect the utility of these scales that rely
on physical examination.

Compared with the previous standard scales, this study
intends to construct an automated LVO ischemic stroke
evaluation system based on a data hierarchy of patients’

symptoms from onset to final diagnosis. There are three stages
of modeling in this evaluation system. The first stage (Level-1)
attempts to aid prehospital triage during initial patient contact
by the emergency dispatch staff, using only basic demographic
information and easily observed symptoms (Harbison et al.,
2003); while the second stage (Level-2) aims to have a fast but
more accurate assessment using additional pre-existing clinical
features and vital signs available on ambulance or at emergency
departments; the last stage (Level-3) involves patients non-
contrast CT (NCCT) scans to further enhance the evaluation to
assist EVT pathway activation.

Given the LVO label for each patient, all three level models
were implemented with supervised learning. This algorithm
is capable to establish an approximate function that maps
an input to an output based on example input-output
pairs (Russell and Norvig, 2016). Hence, when new input
comes in, the function can automatically give predictions.
There are a variety of machine learning techniques for
the approximate mapping functions. This study applied
multiple popular machine learning algorithms, namely, logistic
regression, random forest, support vector machine (SVM),
and eXtreme Gradient Boosting (XGBoost). Comparisons
between these methods are explored to validate our LVO
evaluation system.

Additionally, for the usage of NCCT brain data in the Level-
3 model, deep learning (LeCun et al., 2015) was adopted due to
its state-of-the-art performances in many computer vision tasks
during the past several years. There are multiple applications
in the medical imaging domain (Litjens et al., 2017), such as
diagnosis classification (Esteva et al., 2017), cancer detection
(Cireşan et al., 2013), and lesion segmentation (Havaei et al.,
2017). In this study, we adopted deep learning model as a feature
extractor of brain NCCT scans in Level-3 model.

MATERIALS AND METHODS

Study Population and Data Acquisition
The patients within the database were retrospectively stratified
using a disproportionate random sampling method from the
Hong Kong Hospital Authority’s clinical management system
(HACMS) at year 2016. This database holds records of all patients
admitted to the public hospitals, including their demographic and
clinical profiles, diagnoses, treatment procedures, and outcomes.
Patients who met the following inclusion criteria were chosen:
(a) over 18 years old; (b) with a principal diagnosis coding
of AIS; (c) admitted via Accident and Emergency Department
(AED); and (d) with an NCCT brain scan performed within

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2020 | Volume 14 | Article 13

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00013 March 21, 2020 Time: 12:32 # 3

You et al. Hierarchy Evaluation System of LVO

24 h of AED admission. The pre-existing chronic diseases of the
study subjects were defined and extracted based on the Chronic
Diseases Virtual Registry for all patients ever treated in the public
hospital system.

A total of 300 subjects were selected and were randomly split
into 200 for model training and 100 for model testing. The data
used in this study were of various types, e.g., basic demographic
data, clinical data (including pre-existing medical conditions,
blood test parameters, and vital signs), and corresponding NCCT
scans. Feature details can be found in Tables 1A,B. All patients
had their corresponding brain NCCT scans as well. Those scans
had similar quality, spatial resolution, and field-of-view. The
in-plane resolution was 0.426∗0.426 mm. The slice thickness is
5.0 mm for most cases. Each axial slice has identical size of
512∗512 pixels.

The diagnosis of anterior circulation LVO was independently
verified by two cerebrovascular disease specialists (>8 years
experiences in interpretation of acute stroke neuroimaging)
based on available admission notes, discharge notes, and CT
scans on admission and 24–72 h after stroke onset. Those with
severe stroke (NIHSS > 8) and corresponding large infarct in the
ICA or MCA territories on the follow-up CT were considered
LVO when no CT angiogram was available at presentation
(Demeestere et al., 2017). Any discrepancies were resolved by
consensus. Besides, the presence of hyperdense middle cerebral
artery (MCA) sign on NCCT was verified by two cerebrovascular
disease specialists and manually drawn through FMRIB Software
Library (FSL) (Smith et al., 2004; Jenkinson et al., 2012). This sign
is a direct visualization of thromboembolic material within the
vessel lumen, which has been reported as a specific and important
sign for intravascular thrombus in the diagnosis of AIS and LVO
(Gasparian et al., 2015).

Hierarchical Modeling
The study aimed to develop machine learning models for
LVO prediction based on a data hierarchy of three different
levels (Figure 1).

Level-1 model utilized patients’ demographic information,
e.g., age and gender, and some basic symptoms that can be easily
observed even by lay-persons, including the presence of speech
deficits, facial weakness, left- and right-sided facial weakness,
limb weakness, and left- and right-sided limb weakness.

In addition to the features used in Level-1, Level-2 involved
clinical data, consisting of the pre-existing medical conditions
such as diabetes mellitus and hypertension, whether the patient
was a smoker, current smoker (or quitted = 2 years), previous
smoker (quitted > 2 years), diastolic and systolic blood pressure,
Glasgow Coma Scale (GCS), and its corresponding sub-scales
of eye, verbal, and motor function. Prior diagnoses of atrial
fibrillation, atherosclerosis, cardiombolism, and valvular heart
disease were included as well.

Together with the structured data in Level-1 and Level-
2 models, image features obtained from CT scans served
as additional information in Level-3 model. Hence, the
deep learning architecture in this step worked as a feature
extractor that converts non-structured imaging data into encoded
structured features.

TABLE 1 | (A,B) Level-1 and Level-2 features summary statistics and P-values.

LVO 130 w/o LVO 170 p-Value

(A)

Age Mean 79.69 73.19 2.00e-05

95% CI 77.55–81.84 71.15–75.24

Gender Female 84 (64.6%) 76 (58.5%) 7.05e-04

Male 46 (35.4%) 94 (41.5%)

Limb weakness Yes 129 (99.2%) 126 (74.1%) 2.84e-11

No 1 (0.8%) 44 (25.9%)

Left limb
weakness

Yes 59 (45.4%) 63 (37.1%) 1.56e-01

No 71 (54.6%) 107 (62.9%)

Right limb
weakness

Yes 73 (56.2%) 70 (41.2%) 1.06e-02

No 57 (43.8%) 100 (58.8%)

Facial
weakness

Yes 41 (31.5%) 44 (25.9%) 1.06e-05

No 11 (8.5%) 53 (31.2%)

Unknown 78 (60%) 73 (42.9%)

Left facial
weakness

Yes 19 (14.6%) 25 (14.7%) 5.74e-03

No 33 (25.4%) 72 (42.4%)

Unknown 78 (60%) 73 (42.9%)

Right facial
weakness

Yes 22 (16.9%) 19 (11.2%) 2.39e-04

No 30 (23.1%) 78 (45.9%)

Unknown 78 (60%) 73 (42.9%)

Speech deficits Yes 62 (47.7%) 72 (42.4%) 4.12e-01

No 68 (52.3%) 98 (57.6%)

(B)

Glasgow Coma
Scale (GCS)

Mean 10.70 13.68 <2.20e-16

95% CI 10.23–11.17 13.28–14.09

NA 9 (6.9%) 15 (8.8%)

GCS_Eye Mean 3.18 3.83 6.69e-07

95% CI 2.96–3.41 3.72–3.93

NA 32 (24.6%) 25 (14.7%)

GCS_Verbal Mean 2.44 4.25 <2.20e-16

95% CI 2.14–2.74 4.02–4.48

NA 32 (24.6%) 25 (14.7%)

GCS_Motor Mean 5.16 5.70 2.44e-05

95% CI 4.96–5.36 5.56–5.85

NA 32 (24.6%) 25 (14.7%)

Diastolic blood
pressure

Mean 84.50 83.90 8.04e-01

95% CI 80.71–88.29 80.99–86.82

NA 56 (43.1%) 78 (45.9%)

Systolic blood
pressure

Mean 154.82 162.40 5.90e-02

95% CI 148.62–161.02 157.46–167.34

NA 56 (43.1%) 78 (45.9%)

Diabetes
mellitus

Yes 30 (23.1%) 45 (26.5%) 5.91e-01

No 100 (76.9%) 125 (73.5%)

Hypertension Yes 89 (68.5%) 118 (69.4%) 9.0e-01

No 41 (31.5%) 52 (30.6%)

Smoker Yes 15 (11.5%) 47 (27.6%) 2.63e-03

No 62 (47.7%) 70 (41.2%)

Unknown 53 (40.8%) 53 (31.2%)

Current smoker Yes 8 (6.2%) 22 (12.9%) 6.66e-02

No 69 (53.1%) 95 (55.9%)

Unknown 53 (40.8%) 53 (31.2%)

EX smoker
(quitted > 2
years)

Yes 7 (5.4%) 25 (14.7%) 1.91e-02

(Continued)
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TABLE 1 | Continued

LVO 130 w/o LVO 170 p-Value

No 70 (53.8%) 92 (54.1%)

Unknown 53 (40.8%) 53 (31.2%)

Atherosclerosis Yes 3 (2.3%) 6 (3.5%) 2.31e-02

Unknown 127 (97.7%) 164 (96.5%)

Atrial
fibrillation

Yes 48 (36.9%) 32 (18.8%) 7.22e-04

Unknown 82 (63.1%) 138 (81.2%)

Cardiombolism Yes 8 (6.2%) 2 (1.2%) 3.98e-02

Unknown 122 (93.8%) 168 (98.8%)

Valvular
heart
disease

Yes 61 (46.9%) 86 (50.6%) 6.08e-01

Unknown 69 (53.1%) 84 (49.4%)

Continuous variables: means, 95% confidence intervals, number of missing
values and their proportions, p-values were calculated through Student’s t-test.
Discrete variables: contingency tables with figures and proportions, p-values were
calculated through Fisher’s exact test (2 × 2 tables) or Pearson’s Chi-square
test (multiple rows and columns tables). Boldfaced p-values indicated strong
dependencies based on 1% significance level.

Multiple Machine Learning Algorithms
Binary logistic regression is used to predict the odds which is
defined as the probability of an event happened divided by the
probability that the event not happened. The advantages of the
logistic regression are its simplicity, fast training speed, and
the widely use of log odds for investigating the relative risk of
various predictors on the binary outcome. However, the model
does not allow missing data and it cannot detect a non-linear
structure automatically and adaptively inherited the non-linear
structure in the model.

Random forest is an ensemble method which aims to enhance
the model performance by combining many weak classifiers
such as decision trees. Given a training set, random forest first
generates many bootstrap samples as the training set. Then a
decision tree is built for each bootstrap sample using a subset
of predictors randomly selected to consider splitting in each
node. Finally, taking the average of the predicted probabilities
of the binary outcome obtained from these fitted trees gives the
predicted probability for the fitted random forest. Random forest

models can be trained fairly quickly because of the inherent
parallel computing. Besides, unlike other machine learning
models, its randomness avoids the training to get stuck at a local
minimum; hence, it can be made more complex to improve the
prediction accuracy without the risk of overfitting.

Support vector machine takes each data point as a vector
in m-dimensional space (where m is the number of variables)
with the value of each variable being the value of a particular
coordinate. Then, it is capable to differentiate different classes
by identifying the hyper-plane. It is not hard to find a linear
hyper-plane between two classes; however, many cases are non-
linear. The most significant benefit of SVM comes from the fact
that they are not restricted to being linear classifiers, where it
contains functions that can take low dimensional input space and
transform it to a higher dimensional space, hence the algorithm
become much more flexible by introducing various types of
non-linear decision boundaries.

The XGBoost is an efficient and scalable implementation of
gradient boosting framework by J. Friedman (Friedman, 2002;
Chen and Guestrin, 2016). XGBoost is now a widely used
and popular machine learning technique among data scientists’
communities. It is an ensemble technique that builds the model
in a stage-wise method that new models are added to correct
the errors made by the previously trained models. New models
are added sequentially until no further improvement can be
made. It is a highly flexible and versatile approach that can work
through most regression, classification, and ranking tasks as well
as customized objective functions.

Deep Learning Feature Extractor
The hyperdense MCA sign is a high attenuation blood clot within
the MCA on CT scans and can be identified as irregular brighter
dot comparing with surrounding textures due to focal increased
density (Figure 2). The hyperdensity served as a significant
biomarker for large thromboembolic occlusion and is highly
correlated with LVO ischemia stroke (Lim et al., 2018). Therefore,
it can be inferred that features from a well-trained MCA sign
segmentation architecture can be helpful in the prediction of
LVO. Thus, we built a model in order to segment the MCA sign

FIGURE 1 | Hierarchy data of Level-1, -2, and -3.
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FIGURE 2 | Samples of hyperdense MCA signs. (a) Right hyperdense MCA sign (yellow arrow), partial volume artifact of bony anterior clinoid process (red arrow). (b)
Left hyperdense MCA sign (yellow arrow), MCA calcifications (red arrow). (c) Right hyperdense MCA sign (yellow arrow). (d) Left hyperdense MCA sign (yellow arrow).

and applied the model as a feature extractor to obtain useful
features from CT scans.

Non-contrast CT Pre-processing
The MCA is located within the proximal Sylvian fissure
near the center of the brain, posterior to the lesser wing of
sphenoid bone, an anatomical landmark of the skull base. Hence,
extraction of this region of interest (ROI) could allow the
model to focus on specific candidate areas and largely eliminate
irrelevant information. To have ROI extracted, we developed a

fully automated pre-processing pipeline (Figure 3) through fsl
interface of package nipype under Python.

There were mainly four steps within the pipeline: Step 1: skull
stripping to extract the brains; Step 2: rigid-body 2D registration
to a common template in order to ensure the brains were
horizontally symmetrical and aligned; Step 3: median filter and
thresholding to intensity [20, 80] to enhance the contrast of
MCA signs; Step 4: Bounding box extraction through 4th–10th
slices with two symmetric bounding boxes cropped within both
hemispheres ([128: 256, 212:340] and [256: 384, 212:340]) on the
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FIGURE 3 | Brain CT pre-process workflow. Step 1: brain extraction. Step 2: 2D rigid registration. Step 3: Median filter and intensity thresholding to [20, 80]. Step 4:
bounding box extraction (through 4th–10th slices with two symmetric bounding boxes cropped within both hemispheres ([128: 256, 212:340] and [256: 384,
212:340]) on the 512 × 512 pixelwise CT scan). All pre-processing steps were implemented through fsl interface of package nipype under Python.

512 × 512 pixelwise CT scan. Finally, each patient would obtain
12 128× 128 sized scans.

Deep Learning Architecture
The proposed architecture (Figure 4) belonged to the category
of fully convolutional networks (FCNs) (Long et al., 2015)
that extended the convolution process across the entire image

and predicts the segmentation mask from end-to-end. The
architecture mainly contained two parts, encoding and decoding,
where the encoding part extracted the image features from low
to high complexity, while the decoding part transformed the
features and reconstructed the segmentation label map from
coarse to fine resolution. Besides, the model contained skip
connections from encoding part to decoding part that able
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FIGURE 4 | Deep learning architecture. All the convolution layers used 3 × 3 as size for receptive field and 1 for the stride. Paddling was applied to make sure all the
feature maps had the identical size before and after convolutions. All activation function used ReLu after each convolution.

to make up the spatial detail lost during up-sampling. The
overall architecture resembled U-net model (Ronneberger et al.,
2015), an architecture especially focused on medical imaging
segmentation tasks. A global max pooling layer was connected
at the end of encoding part, where total 1024 feature maps, each
with size 4∗4, converted to 1024 features. The encoding part
pulled out image features from low to high intricacy, while the
global max pooling layers grabbed the maximum representation
from each feature map.

Only one slice per person would be selected to sever as image
representation for feature extraction. If predicted segmentation
exists, the slice with the largest predicted segmentation would be
chosen. If no predicted segmentations, the middle slice (third)
would be chosen. After feeding the representation image into the
pre-trained deep learning model, 1024 features were obtained
for each patient. Based on whether the patient suffered from
LVO, features can be divided into two subgroups and conducted
with two-sample t-test in order to do a brief filtering. Finally,
top-10 image features with the smallest p-values were selected

and combined with Level-2 features to build the whole feature
set for Level-3.

Experiments
The deep learning model was trained with Adam optimizer with
initial learning rate 1e-05 and momentum 0.9. To tackle the
positive versus negative ground truth imbalance issue, Tversky
loss (Salehi et al., 2017) and hard-negative-mining technique
(Shrivastava et al., 2016) were adopted to tackle the data
imbalance issue. The deep learning model was constructed
through tensorflow 1.13.1 and keras 2.2.4 under Python and
was trained for 200 epochs on Tesla K80 GPU card with
batch size of 16.

Missing Values
In the present study, there were no missing values within
features in Level-1, but the pre-existing medical conditions in
Level-2 contain some missing values. XGBoost was capable to
handle missing values automatically during training, and it could
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also provide a robust prediction when observations contained
incomplete features. In contrast, other machine learning methods
such as logistic regression, random forest, and SVM do not
allow missing data. Hence, data imputation was required for
these algorithms.

For any categorical attributes containing missing values, a
missing parameter “Unknown” was assigned to form a new
category. For continuous attributes containing missing values,
K-nearest-neighbors (KNN) imputation method (Crookston
and Finley, 2008) was adopted. The principle idea was easy
to follow. Given an observation containing a missing value
in a continuous attribute X, the k nearest neighbor subjects
in the training data were identified based on the Euclidean
distance. The missing value was then imputed by the median
of the non-missing X values among the k nearest neighbors.
The KNN imputation method was easy to be deployed to
the testing data.

Variables Selection
Variable selection is the process of selecting a subset of relevant
features for use in model building. It helps to simplify the models
and avoids the overfitting by removing redundant or irrelevant
features without loss of useful information.

Stepwise logistic regression selects a reduced number of
predictor variables during the model building process by keeping
adding significant features and removing insignificant features
one at a time to find the best-fit logistic regression model.

Random forest and XGBoost can automatically select features
while building trees. To fairly identify the relative importance
of a set of feature variables, both tree-based methods adopt
impurity-based ranking method to calculate variable importance
scores. When growing a tree, it is required to compute the
amount of the weighted impurity of each feature dropped in a
tree. Then, for a forest, the impurity dropped for each feature
can be averaged, which allows all features to be ranked and
compared to each other.

The performance of SVM largely depends on the features since
redundant variables have significant impact when constructing
separable hyper-planes. However, SVM itself does not possess
the ability to select variables. Thus, features selected from other
algorithms would be used in the SVM. Features from logistic
regression were only interpretable in linearly while random forest
and XGBoost can be interpreted in both linear and non-linear
ways. Moreover, XGBoost was modeled with raw data while
random forest used imputed data; hence, features from XGBoost
should be more persuasive.

Overall, logistic regression adopted features through stepwise
selection procedure; random forest and XGBoost handled
features automatically during model construction; SVM used
selected features from XGBoost.

Performance Evaluation
The testing performance of different models was evaluated by
recall (sensitivity), specificity, Youden Index (Youden, 1950),
accuracy, F1-score, and area under the curve (AUC) of receiver
operating characteristics (ROC) in all three levels models. In
attempt to maximize both the sensitivity and specificity of the

fitted predictive model, the cut-off was chosen based on the
Youden index, γ, which is derived from sensitivity and specificity
and denotes a linear correspondence balanced accuracy,
given as:

γ = sensitivity + specificity − 1

The Youden index has been commonly used to evaluate
predictive model performance and has shown good performance
on model assessment. The best cut-off was obtained through
the indication of largest Youden index based on a 10-fold
cross-validation.

RESULTS

Among the total 300 patients, there were 160 females and
140 males aged from 27 to 104 (mean 76.0 with standard
deviation 13.4). LVO was present in 130 (43.3%) patients.
Statistical summaries and naïve test were applied to investigate
the relationships between single feature and LVO (Tables 1A,B).
A wide range of factors were found having associations with an
increased risk of LVO. P-values were obtained by using Student’s
t-test for continuous variables, Fisher’s exact test, and Pearson’s
chi-square test for categorical variables. Based on 1% significance
level, dependent features from Level-1 included patients’ age,
gender, limb weakness, facial weakness, and left- and right-
facial weakness; while Level-2 dependent features included
patients’ habit, e.g., smoking, pre-existing medical condition,
e.g., atrial fibrillation, clinical test scales at the time of onset,
e.g., GCS and its corresponding subscales including eye, verbal,
and motor function.

Besides, among the 300 patients, 74 patients had hyperdense
MCA signs on their CT brain scans and 68 (97.1%) of them
had LVO; while among the remaining 224 patients without
hyperdense MCA sign, only 62 (27.4%) of them suffered from
LVO (p-value: < 2.20e-16). Hence, the presence of the MCA signs
is associated with LVO, but not all LVO patients had hyperdense
MCA signs on their CT scans.

The models’ performance in the testing cohort is shown
in Table 2. The cut-offs were obtained through the indication
of largest Youden index based on a 10-fold cross-validation
under training cohort. In Level-1, the best result was obtained
by XGBoost method with Youden index of 28.3%, accuracy of
64.0%, recall (sensitivity) of 65.1%, specificity of 63.2%, F-score
of 0.609, and AUC of 0.686, respectively. In Level-2, the best
result was obtained by SVM with Youden index of 59.1%,
accuracy of 78.0%, recall (sensitivity) of 90.7%, specificity of
68.4%, F-score of 0.780, and AUC of 0.839, respectively. In the
Level-3 model, the XGBoost method achieved best results, where
the Youden index of 63.8%, accuracy of 80.0%, recall (sensitivity)
of 95.3%, specificity of 68.4%, F-score of 0.804, and AUC of
0.847, respectively.

Comparing all four machine learning algorithms, the XGBoost
method gave robust and accurate performance in all three levels.
Though SVM had slightly better result in Level-2, its performance
was unsatisfying in Level-3; besides, the SVM required selected
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TABLE 2 | Models Performance under Level-1, -2, and -3.

Data Models Youden Accuracy Recall Specificity F-score AUC

Level-1 Raw Logistic regression 22.4% 61.0% 62.8% 59.6% 0.581% 0.699%

Random forest 23.6% 61.0% 67.4% 56.1% 0.598% 0.675%

SVM 24.3% 64.0% 48.8% 75.4% 0.538% 0.682%

XGBoost 28.3% 64.0% 65.1% 63.2% 0.609% 0.686%

Level-2 Imputed Logistic regression 41.7% 71.0% 69.8% 71.9% 0.674% 0.789%

Random forest 50.3% 73.0% 90.7% 59.6% 0.742% 0.816%

SVM 59.1% 78.0% 90.7% 68.4% 0.780% 0.839%

Raw XGBoost 57.9% 77.0% 93.0% 64.9% 0.777% 0.809%

Level-3 Imputed Logistic regression 53.2% 75.0% 88.4% 64.9% 0.752% 0.843%

Random forest 55.6% 76.0% 90.7% 64.9% 0.765% 0.870%

SVM 53.9% 76.0% 83.7% 70.2% 0.750% 0.827%

Raw XGBoost 63.8% 80.0% 95.3% 68.4% 0.804% 0.847%

Boldfaced Youden index means the best results achieved within specific level of modeling.

FIGURE 5 | ROC curve of XGBoost models under Level-1, -2, and -3.

variables derived from XGBoost. More importantly, instead of
using imputed data, the XGBoost method took the raw data as
input, which avoid the risk of inaccurate imputation.

The receiver operator characteristic (ROC) curve (Figure 5)
showed significant improvement of performance in XGBoost

models between each pair of Levels, indicating that the additional
features did assist model building.

As XGBoost method can automatically identify the relative
importance of variables, we first converted the total gain of the
most important feature to 1 and then standardized all other
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FIGURE 6 | Important Features of XGBoost models under Level-1, -2, and -3. Feature importance scores were calculated based on the total gain of all features
within XGBoost models. The scales were standardized based on the largest gain (scaled to 1.0), and then sorted. Any scaled importance scores less than 0.01
were omitted.

features based on it. By sorting the scales, Level-1 took the
limb weakness as the most important feature; while the GCS
ranked as the top feature in both Level-2 and Level-3 (Figure 6).
Image features from CT scans took considerable proportion
of important features in Level-3, implying their contribution
was substantial.

DISCUSSION

Acute ischemia stroke patients with LVO had high morbidity
and high mortality rate, and close to one-third of patients

passed away within 30 days of admission based on a research
with population in Hong Kong (Tsang et al., 2019b). As the
benefit of EVT for LVO diminishes over time, streamlining
prehospital diagnosis and triage plays a vital role in improving
clinical outcome by reducing prehospital and interhospital
delays. Hence, a rapid identification of potential LVO patients
in prehospital stage can effectively triage patients to appropriate
stroke hospitals, thereby avoiding interfacility transfers or
overburdening the primary stroke department with non-EVT-
eligible patients.

The innovation of our study, on one hand, is the construction
of an automated evaluation system based on a hierarchy of

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2020 | Volume 14 | Article 13

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00013 March 21, 2020 Time: 12:32 # 11

You et al. Hierarchy Evaluation System of LVO

data easily accessible by prehospital assessment on ambulance
and the early triage phase of clinical evaluation in emergency
departments. On the other hand, unlike most previous research
studies, our method is capable of combining structured
demographic and clinical data with non-structured CT imaging
data. The present model can potentially aid prehospital stroke
triage (Level-1 and -2) and assist in the early activation of EVT
treatment pathways in the stroke hospital immediately when
NCCT is performed (Level-3).

The deep learning architecture in our study worked as a
feature extractor trained with the task of MCA segmentations.
The hyperdense MCA sign is a biomarker for LVO, and their
presence largely implies the potential risk of LVO. Since all
our NCCT were 5 mm thick-cut scans and the number of
valuable slices was only six per patient; we had to adopt a
2D architecture rather than 3D. Second, the feature extractor
needed to provide unbiased features for both training and testing
cohort. If we use the deep learning architecture to directly
predict LVO, instead of hyperdense MCA sign, the training
cohort would be overfitting and the subsequent machine learning
algorithms would face similar problems when using these features
as well. Patients without hyperdense MCA sign can still be
suffering from LVO stroke. In fact, most false negative patients
within Level-2 did not demonstrate MCA sign on their CT
scans; thereby, no valuable information can be extracted to
correct those misclassified subjects. As a result, the improvement
of model performance was less apparent on Level-3 when
compared with Level-2.

Among all four implemented machine learning methods,
XGBoost was the top choice for future applications. Apart
from its outstanding performance, one key advantage was its
ability to handle missing values in both training and prediction.
Missing value is an inevitable problem when dealing with data
obtained from retrospective clinical database. Unfortunately,
most research studies were launched with the presumption of the
data being complete. Focusing only on patients with complete
data attributes would cause biased results, and eliminating
incomplete attributes or subjects containing missing values
might cause the loss of critical information as well. Though
logistic regression, random forest, and SVM methods can be
done with imputed dataset, they cannot be deployed if the
upcoming new observation contains any missing data. In such
cases, training data are required for imputation references,
which is undesirable.

A recent systematic review of pre-hospital LVO diagnostic
instruments such as NIHSS, CPSSS, LAMS, and RACE found
the AUCs of these scales were in the range of 0.70–0.85.
While these scales may achieve either a high recall or high
specificity, none was capable to provide both (Smith et al.,
2018). Most of these instruments were based on clinical signs
detected by physical examination but did not consider patient-
specific medical background and stroke risk factors. Another
study by Chen et al. (2018) compared the results obtained
by NIHSS with the addition of clinical features modeled
with artificial neural networks, and their results indicated
the additional clinical features would enhance the model’s
performance. While their results were comparable with the

present model, the use of NIHSS in their model limited
its utility in the pre-hospital setting as it requires detailed
neurological examination including visual field, ataxia, sensation,
and attention assessment. Our model using the simple Face
Arm Speech test with clinical features is less time-consuming to
perform and does not require advanced training for ambulance
or triage staff, thereby may be better suited for rapid LVO
diagnosis and triage.

There are several limitations to this study. First, the NCCT
brain scans were 5 mm thick-cut, and subtle hyperdense
MCA sign may not be identified. Besides, the thick-cut
CT scans limited our deep learning architecture to 2D
design. Second, our model is based on retrospective data,
and further prospective validation in populations of other
ethnicity is needed to assess its generalizability. Third, the
diagnosis of LVO stroke was made based on the clinical
evolution and follow-up imaging of the patients, and only a
small proportion of the study cohort (<5%) had angiogram
within the acute setting. This nevertheless reflected the
clinical utility of the algorithm in resource-tight healthcare
systems where advanced neuroimaging may not be readily
available (Tsang et al., 2019a). Finally, a larger patient cohort
may improve the performance of the deep learning model
for NCCT imaging.

CONCLUSION

In this study, we established a three-tier diagnostic tool
using machine learning for acute LVO stroke, based on a
hierarchy of demographic, clinical, and imaging data. The Level-
1 model provided preliminary triage for emergency dispatchers
and required only basic demographic information and easily
observable symptoms. In the Level-2 model, additional medical
history and patients’ vital signs were utilized to provide rapid
and accurate LVO diagnosis, potentially allowing for direct
ambulance transfer to EVT hospitals capable of providing
optimal care for LVO stroke patients. The inclusion of
NCCT brain scans, obtainable from emergency departments,
in the Level-3 model further enhanced the specificity of LVO
diagnosis and may streamline the treatment pathway for acute
reperfusion therapies.

To the best of our knowledge, this is the first study that
combined structured clinical data with non-structured CT
imaging data. Comparing with previous studies, our model
achieved superior performance and can potentially improve pre-
hospital triage systems for AIS.
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