
TECHNOLOGY AND CODE
published: 11 September 2020
doi: 10.3389/fninf.2020.00027

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2020 | Volume 14 | Article 27

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

Chris Van Der Togt,

Netherlands Institute for Neuroscience

(KNAW), Netherlands

Padraig Gleeson,

University College London,

United Kingdom

*Correspondence:

Petr Ježek

petr.jezek@gmail.com

Received: 04 March 2020

Accepted: 20 May 2020

Published: 11 September 2020

Citation:

Ježek P, Teeters JL and Sommer FT

(2020) NWB Query Engines: Tools to

Search Data Stored in Neurodata

Without Borders Format.

Front. Neuroinform. 14:27.

doi: 10.3389/fninf.2020.00027

NWB Query Engines: Tools to Search
Data Stored in Neurodata Without
Borders Format
Petr Ježek 1*, Jeffery L. Teeters 2 and Friedrich T. Sommer 2

1 Faculty of Applied Sciences, New Technologies for the Information Society, University of West Bohemia, Plzeň, Czechia,
2 Redwood Center for Theoretical Neuroscience & Helen Wills Neuroscience Institute, University of California, Berkeley,

Berkeley, CA, United States

The Neurodata Without Borders (abbreviation NWB) format is a current technology for

storing neurophysiology data along with the associated metadata. Data stored in the

format is organized into separate HDF5 files, each file usually storing the data associated

with a single recording session. While the NWB format provides a structured method

for storing data, so far there have not been tools which enable searching a collection of

NWB files in order to find data of interest for a particular purpose. We describe here

three tools to enable searching NWB files. The tools have different features making

each of them most useful for a particular task. The first tool, called the NWB Query

Engine, is written in Java. It allows searching the complete content of NWB files. It

was designed for the first version of NWB (NWB 1) and supports most (but not all)

features of the most recent version (NWB 2). For some searches, it is the fastest tool.

The second tool, called “search_nwb” is written in Python and also allow searching the

complete contents of NWB files. It works with both NWB 1 and NWB 2, as does the

third tool. The third tool, called “nwbindexer” enables searching a collection of NWB

files using a two-step process. In the first step, a utility is run which creates an SQLite

database containing the metadata in a collection of NWB files. This database is then

searched in the second step, using another utility. Once the index is built, this two-step

processes allows faster searches than are done by the other tools, but does not enable as

complete of searches. All three tools use a simple query language which was developed

for this project. Software integrating the three tools into a web-interface is provided which

enables searching NWB files by submitting a web form.

Keywords: NWB format, HDF5, neurophysiology, metadata, search, Java, Python, SQLite

1. INTRODUCTION

Effectivemanagement of neurophysiology data requires not only storing the data on disk or in some
other medium, but also having a method in place to enable efficient search for finding parts in the
data that are needed for some purpose. The efficiency of methods of data search depend on how the
data are stored. If the data are stored so that all components of the data are accessible using a single
software tool, then the searches can be performed using that software. For example, the DataJoint
software (Yatsenko et al., 2015) uses a relational database to store data, and if all data needed to
be searched was stored within a single DataJoint database, then searches could be done using tools
designed for searching relational databases, such as SQL.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00027
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00027&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:petr.jezek@gmail.com
https://doi.org/10.3389/fninf.2020.00027
https://www.frontiersin.org/articles/10.3389/fninf.2020.00027/full

Ježek et al. NWB Query Engines

However, for various reasons (including: convenience, a
potentially large size of the data, ease of data exchange,
compatibility with software tools), currently neurophysiology
data are often not stored as a single integrated collection
such as a relational database, but instead, data are stored in
multiple, independent files. These files are typically organized
by experimental sessions, so that data recorded in separate
sessions of an experiment are stored in separate files. Metadata
are either stored in these files or in an external file typically
in JSON or XML format. There are many file formats used
to store neurophysiology data in this manner. Examples are:
the BrainVision data format1 used by Brain Products Analyzer;
the European Data Format (EDF) (Kemp and Olivan, 2003);
standard ASCII used by EEGLab (Delorme and Makeig,
2004); the BDF format, a variation of EDF used in BioSemi2

products; Spike2 format (Smith, 2003); Klustakwik (Harris et al.,
2000; Rossant et al., 2016); NIX (Stoewer et al., 2014); BIDS
(Gorgolewski et al., 2016); NSDF (Ray et al., 2016); and Sonata
(Dai et al., 2020).

Another recently developed format that stores data in
individual files is the Neurodata Without Borders (or NWB)
format (Teeters et al., 2015; Rübel et al., 2017, 2019). The
NWB format stores different types of neurophysiology data in a
standard manner to allow data to be more easily shared across
labs and to potentially make data easier to use within a laboratory.
The NWB data format is open source, includes a Python and
MATLAB API, and uses HDF5 as a backend. The NWB format
is becoming well-established in the neuroscience community as
evident by the fact that: its development has been funded by the
National Institutes of Health (NIH); hackathons, tutorials, and
workshops about the format are being held each year; it has been
adopted by labs in the Allen Institute for Brain Science3 and other
major labs, and the format won a 2019 R&D100 Award4.

Searching data that is distributed across many individual files,
such as the aforementioned formats, requires software that is
customized to read the data in the individual files and provide
some type of interface that allows searching it. Here, we present
such software for the NWB format—a suite of NWB query
engines. The tools allow searching data within NWB files that are
stored locally and also (using the third tool) searching contents
of files that are not local after an index of the file contents is
constructed. We also provide a web interface to all of the tools,
which enables searching files (or index of file contents) that are
stored on remote systems running the query engine. This enables
search in files without having to first download the files. This
feature is useful if the files are large, which is often the case with
neurophysiology data.

To make the query tools as easy-to-use as possible, and to
accommodate the hierarchical organization of data within the
NWB format, the specification of the search in each tool (that
is, the query), is done using a custom query language that was

1https://www.brainproducts.com/filedownload.php?path=products/more/

BrainVisionCoreDataFormat_1-0.pdf
2https://www.biosemi.com/
3https://alleninstitute.org/what-we-do/brain-science/
4Described in News section at http://nwb.org

developed for this project and is simpler than SQL. Although
the main motivation for this project was to provide a method
for searching NWB data, the solutions we provide could also be
useful for querying data in other formats.

The paper is organized as follows: section 2 describes some
related software and the requirements for the search tools.
Section 3 describes the developed tools. Lastly, section 4
summarizes the tools and assumptions made when developing
them and describes how they may be used and extended.

2. MATERIALS AND METHODS

2.1. The HDF5 Data Model
The NWB format uses HDF5. HDF5 is a technology suite
that includes a data model, library, and file format for storing
and managing data (Folk et al., 2011; Koziol, 2011). HDF5 is
used in many science disciplines and software supporting it is
available on all major platforms5. In addition to NWB, several
other neuroscience software systems use HDF5, including: NIX
Stoewer et al. (2014), which provides a domain-independent way
of storing data—and associated metadata using odML (Grewe
et al., 2011); the KlustaKwik tools used for spike sorting (Rossant
et al., 2016); and the BRAINformat (Rübel et al., 2016).

The HDF5 data model contains three main entities:

• Groups are containers that can contain other groups and
datasets.

• Datasets are multidimensional arrays of data. The data can
be various types, including built-in types (such as integers,
strings, floating point numbers and so on), or user-defined
types that are composites of the built-in types.

• Attributes are a key-value dictionary associated with a group
or dataset. They map a key (an attribute name, which is a
string) to a value which can be a scalar value or an array.

The groups and datasets are used to create a hierarchical
organization of data within an HDF5 file, analogous to the
organization of files within directories on a file system. In this
analogy, groups correspond to directories in a file system and
HDF5 datasets correspond to files within the directories. The
sequence of groups (starting from the top, or root group) to a
group or dataset in an HDF5 file is known as the “absolute path”
or “location”. The attributes are used to store metadata associated
with groups and datasets.

In addition to the entities listed above, the HDF5 format also
allows links between components within a file and between files.
These are analogous to hard and soft links in a file system. The
links between files (called external links) allow data to be stored
in multiple files, but accessed through the HDF5 API as a single
hierarchical structure.

2.2. The Neurodata Without Borders
Format
The NWB format was created to provide a standard way of
storing neurophysiology data. The NWB format is currently
available in two versions, NWB 1 (also called NWB:Cellular

5https://support.hdfgroup.org/HDF5/

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2020 | Volume 14 | Article 27

https://www.brainproducts.com/filedownload.php?path=products/more/BrainVisionCoreDataFormat_1-0.pdf
https://www.brainproducts.com/filedownload.php?path=products/more/BrainVisionCoreDataFormat_1-0.pdf
https://www.biosemi.com/
https://alleninstitute.org/what-we-do/brain-science/
http://nwb.org
https://support.hdfgroup.org/HDF5/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

Neurophysiology or NWB:CN) (Teeters et al., 2015) and NWB
2 (also called NWB:Neurophysiology or NWB:N) (Rübel et al.,
2017, 2019)6. This section summarizes the features of both
versions that are important for searching data stored using
the format.

2.2.1. Overall Layout
The experimental data typically stored in NWB files consists of
data that is invariant throughout the session (such as information
about the subject, anatomical locations of the electrodes, and
so on) and data that varies throughout the session (such as
measurements of neuronal activity and behavior, stimuli, and
processed data).

To store these different data types in a consistent manner
within HDF5, the NWB format prescribes a standard layout
(organization of HDF5 groups, datasets and attributes) for each
type of data. Some commonly used layouts are shown in Figure 1.
Most of the HDF5 groups and datasets specified in the format
have a fixed location (all components of the absolute path are
specified). These include the top-level groups (Figure 1A) and
session-invariant metadata (Figure 1B). The format also uses
HDF5 groups and datasets that do not have a fixed location,
but instead some components of the path are “variable” (that
is chosen during creation of the NWB file). Variable paths
allow multiple instances of a layout to be stored in the same
file (but in different locations). An examples is the TimeSeries
layout (Figure 1C), which are stored in many different top-
level groups within an NWB file. NWB version 2 provides a
layout called “DynamicTable” for storing data that are organized
into tables. An example is the content of the /interval/epochs
group (Figure 1D). The DynamicTable layout is described in
section 2.2.2.

In addition to the built-in layouts summarized above, the
NWB format can be extended to include additional HDF5 groups
and datasets in order to store types of data that are not described
by the built-in layouts. These may also be in variable locations.
The built-in layouts and any extended layouts are usually stored
within a single NWB (HDF5) file, but sometimes the data are
split between multiple files and HDF5 external links (described
in section 2.1) are used to maintain the relationship specified by
the layouts even though the contents are in multiple files.

2.2.2. Representation of Tables
There are many instances in which tabular data (that is, data
organized similar to a spreadsheet, where columns indicate
different features, and rows indicate instances of an item having
the features) must be stored in NWB files. Examples of the kinds
of data and the features stored in tables are: experimental epochs
(features are start time, stop time, trial Id, tags indicating trial
properties), electrode locations (features are x, y and z coordinates
in some reference frame), properties of individual neurons (units)
(some features are: unit id, location in brain, spike waveform,
spike time, quality of recording).

6 The latest version of the NWB format specification is at: https://nwb-schema.

readthedocs.io/en/latest/.

The storage of tabular data within HDF5 requires different
methods depending on the characteristics of the data. If all the
columns in the tabular data contain only a single scalar value
(e.g., an integer or real number or a string7) and if the type of
data in all columns are the same (e.g., all columns store integers),
then the table can be stored directly in HDF5 using a single
HDF5 dataset containing one of the built-in HDF5 data types.
However, if either some of the cells can contain multiple values
or if the type of data in the table is heterogeneous (for example,
one feature is integer, another string), then a single HDF5 dataset
that contains elements of the HDF5 built-in types cannot be used
to store the table since such HDF5 datasets store only arrays of
homogeneous values. The methods used in the NWB format to
store tabular data in these two cases (non-homogeneous data
types and non-scalar values) are described below.

2.2.2.1. Storing non-homogeneous tabular data
To store tabular data that contains non-homogeneous data types,
two methods are used. These are:

• Use Aligned datasets. The tabular data is stored using multiple
datasets, each of which contains data of a single type. These
tables are aligned on the first dimension. For example, a table
that contains an integer in one column and a float in another
can be stored as two datasets, one containing the integer
column and the other containing the float column. To access
the contents of a row, the corresponding element from both
dataset are retrieved. This is illustrated in Figure 2B. In Rübel,
2019, this method is referred to as “column-based” tables. This
method is used in both NWB 1 and NWB 2 although in NWB
1 (unlike NWB 2) there is no indication at the level of the
enclosing HDF5 group that the contained datasets are aligned.
In NWB 2, the “DynamicTable” layout is used to store such
data. This layout uses an attribute named “colnames” on the
enclosing group that list the datasets within the group storing
columns of the table and each column may have an associated
index array which is used for storing non-scalar values. The
index array is described in section 2.2.2.2.

• Use a compound data type. With this method, a HDF5
“compound” data type is defined that includes all of the data
fields, then a dataset is created which has elements of that
compound type. This method is used only in NWB 2. An
example is shown in Figure 3.

2.2.2.2. Storing tabular data with non-scalar elements
To store tabular data that contains non-scalar values in one or
more columns, there are also two methods used. These are:

• Use a Separate group for each row. Each row in the table is
stored in a separate HDF5 group that is named to indicate
the order of the row in the table, e.g., “epoch_001.” Within
each group the columns that have scalar values are stored as a
dataset containing only the scalar value. The columns that have
multiple values are stored as a dataset containing the multiple

7Even though the “string” data type may contain multiple characters, it is

considered to be a scalar because in HDF5 strings can be stored using a pointer

to the characters making up string, and the pointer is a scalar.

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2020 | Volume 14 | Article 27

https://nwb-schema.readthedocs.io/en/latest/
https://nwb-schema.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

A B

C

D

FIGURE 1 | Some of the main data layouts the NWB format. (A) Top-level groups are used to broadly organize the data. (B) Some commonly used session-invariant

metadata. In (A,B), the leading slash in the location indicates that these are at a fixed location in the HDF5 file (full absolute path is specified). (C) NWB timeseries are

used to store data that varies with time. For each timeseries, the components are all stored within a parent group that has a variable name (chosen by the creator of

the file) and can be located in different places within the NWB file. (D) The NWB DynamicTable layout stores data that is logically organized as a table in multiple

datasets. Multiple values in the same cell (non-scalar values) are supported using pairs of datasets: one to store the values, e.g., tags; and the other to store value

indices, e.g., tags_index.

A B

FIGURE 2 | Table storage using the DynamicTable layout. (A) The table to store contains three columns: trial_id (an integer), start_time (a float) and tags (zero or more

strings). Trial_id 1 (first row) has three tags, trial_id 2 has no tags, and the other two trials each have one tag. (B) Storage in NWB format using the DynamicTable

layout. The tags column is stored using two datasets: tag_index and tags. The tags dataset contains all the tags from all trials concatenated. The trial_id and

start_time and tags_index are store in separate datasets with their elements aligned according to each row. (This illustrates aligned datasets). The tags_index array

indicates which tags (elements of the tags array) are in each row of tags column of the table. Each element of tags_index is the index just beyond the last value

included for that row. (This illustrates the index array).

values. In Rübel et al. (2019), this is referred to as “Implicit
Ragged Arrays.” This method is only used in NWB 1.

• Use an index array. The columns that may contain multiple
values are stored using two datasets: a single “value” dataset
that contains all the values from all rows concatenated
together, and an “index” dataset that contains for each row, the
index of the element in the value dataset after the last element
that goes into that row. Through this, the index dataset
specifies which elements in the value dataset are associated
with a given row of the table. It is used in the DynamicTable
layout in NWB 2 (see Figures 2, 3). This method is called
“Region-based Ragged Arrays” in Rübel et al. (2019). It is used
in NWB 2 only.

2.3. Required Searches
TheNWBQuery engine tools were developed to enable searching
multiple NWB files in order to find those that match a search
criterion and to also search an individual file to find parts of
the file matching a search criterion. For both purposes, the
search criterion is specified as one or more entities within
the HDF5 file and a characteristic each entity must satisfy.
Since the NWB format includes layouts that have both a
fixed and variable location (as described in section 2.2.1), it
must be possible to search for criteria for entities stored at
both types of locations. It also must be possible to search
for tabular data that is stored using the different methods
described in section 2.2.2 and search data that is organized

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

A B

FIGURE 3 | Compound datatype used in DynamicTable layout. (A) The table to store contains information indicating what part of two different timeseries data layouts

correspond to the trial intervals. There is information about two timeseries. (B) The HDF5 compound datatype is used along with an index array to indicate which

timeseries segments are associate with each trial.

into multiple files using HDF5 external links as described in
section 2.2.1.

2.4. Existing Search Tools for HDF5
HDF5 does not natively include a search capability, but
several tools to search HDF5 files have been created. HDF5-
FastQuery (Gosink et al., 2006; Chou et al., 2011) provides
a fast way of finding subsections of multi-dimensional data
in HDF5 datasets by creating bitmap indices of datasets that
are stored within the original file. Another indexing approach
for HDF5 (Wang et al., 2013) creates a light-weight data
management layer that allows running queries expressed in
the SQL syntax on a metadata storage which is generated
from an HDF5 file at runtime. A third tool, HDFql8 also
facilitates working with HDF5 files by providing a SQL-like
language interface.

These tools cannot be used to perform the required
searches (section 2.3) because all of them (except for
HDFql) require that the full location of the HDF5 entities
being searched for are known in advance and none
of them allow searching a collection of files with one
query. Furthermore, none of the tools allow searching
tabular data stored using all of the methods described in
section 2.2.2.

2.5. Scope and Requirements
The NWB Query Engine tools must implement the required
searches described in section 2.3. Basic relational and set
operators must be provided to support comparisons and
union and intersection of partial results. The implementation
should not narrowly focus on just the NWB format, but
should be extensible to other formats. Since many tools

8http://www.hdfql.com/

in neuroscience are implemented in Python (Muller et al.,
2015), a Python interface must be available. To make the
system easy to use (e.g., without requiring the installation
of local software or requiring learning a complex query
language) the system must be accessible using a web
interface and the queries must be easy to specify, e.g. easier
than SQL.

3. RESULTS

3.1. NWB Query Engine Tools
Guided by the requirements given in section 2.5, we created a
suite of software tools that facilitate querying NWB files. The
software suite consists of three independent query systems that
work in complementary ways. The first, called the “NWB Query
Engine,” allows performing a query on one or more NWB files
by searching within the HDF5 files directly. This software is
written in Java and can be called from both Java and Python. It
was designed for NWB 1, but can also be used for many types
of searches of NWB 2 files. The second query system, called
“search_nwb” is written in Python. Like the NWB Query Engine,
it enables searching one of more NWB files by reading them
directly, but unlike the NWB Query Engine, it allows searching
for data stored using all of the table representation methods
described in section 2.2.2. The third tool, called “nwbindexer”
is also written in Python. It works by first creating an SQLite9

index of content in one or more NWB files, then allows searches
to be performed on the index. Once the index is built, this enables
faster searches than the other twomethods. It allows searching all
of the table representations described in section 2.2.2, but does
not allow searching the entire contents of an NWB file because
only a subset of the file is stored in the index.

9http://www.sqlite.org

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2020 | Volume 14 | Article 27

http://www.hdfql.com/
http://www.sqlite.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

All three of these software tools use the same language to
express queries. This language is described in the next section,
followed by a description of each of the query systems.

3.2. Query Grammar
To allow performing the required searches described in section
2.3, an easy-to-use query language was developed. This language
allows a user to define a query using subqueries. Each subquery
consists of two parts separated by a “:”. The left side is the name
of a “parent” group or dataset. The name consists of the HDF5
path to the parent and may include one or more asterisk “∗”
(wildcard character) whichwill match any sequence of characters.
The right side is an expression containing the names of “child”
items to search for within the parent along with value restrictions.
These items will be attributes of the parent if the parent is a
dataset, and they will be attributes or datasets if the parent is a
group. A query can consist of just one subquery or be composed
of multiple subqueries that are joined by logical and (“&”) and
or (“|”). The composite query succeeds (finds items matching
the query specification) if the logical expression formed with the
subqueries is True when the subqueries that are successful are
evaluated as True and the subqueries that do not succeed are
evaluated as False.

The following operators are supported to define value
restrictions for the items (attributes or datasets) named on the
right side of the colon:

• and &
• or |
• parenthesis ()
• substrings in strings LIKE
• relational operators: < lesser than, <= lesser or equal, > greater

than, >= greater or equal, and == equal.

A formal description of the grammar is given in Figure 4.
Some sample queries are shown in Table 1. The grammar is
simpler than the grammar of SQL SELECT statements (which has
keywords, table alias, joins, and so on) because SQL is designed
for relational databases which use tables with primary and foreign
keys to organize data whereas the grammar defined here is
intended to operate on the hierarchical structure of HDF5 files,
which is more straightforward.

3.3. NWB Query Engine
In this section we describe the NWB Query Engine, which is the
first of the three query systems.

3.3.1. Architecture
The architecture of the NWBQuery Engine is shown in Figure 5.
The NWB Query Engine contains three main components: the
Query Parser, the NWB Processor, and the File API. The first
component, the Query Parser, parses a query that is expressed
according to the grammar described in section 3.2 and unfolds
it into a binary tree that has an operator at each internal node
and operands at the leaves. The binary tree is used by the second
component, the NWB Processor. The NWB Processor processes
the tree by searching within the NWB file for HDF5 attributes
or datasets that fulfill the constraints specified by the expression

encoded in the tree. The search within the NWB file is performed
by the HDF5 connector, which is part of the third component,
the File API. Each dataset that satisfies the search criteria is
used by the NWB Processor to create an NWB Result object,
which contains the location of the NWB file, the path within
the NWB file to the dataset or attribute and the matching value.
Since the File API performs all searches within NWB files, this
one component can be updated to allow the Query Engine to
work with different NWB storage methods (other than HDF5)
or different data formats.

The software interfacing to the NWB Query engine includes
the Python server and Web Interface. The Python server can run
on a local or a remote host and enables processing queries using
Python code. The Web interface is described in section 3.7.

3.3.2. Operation and Limitations
As part of the step of evaluating expressions, the NWB Query
Engine compares the value of each dataset or attribute referenced
in the query to the constant given on the right hand side
of the relational operator independently of any other datasets
or attributes referenced in the query. If the value is a scalar
(which is often the case for metadata) the comparison is done
on the retrieved scalar value. For example, if the query has
the expression “x > 4” and the value of x retrieved from
the NWB file is the scalar 5, then the expression would
be evaluated as True. If the value retrieved is not a scalar
(e.g., has multiple elements) then the comparison is done
on each independently to find all elements that evaluate as
True. For example, if the value retrieved by x was a dataset
containing three elements, (6, 4, 5), then with expression “x
> 4” the Query Engine would evaluate True for the first
and third since these elements are greater than 4, but not
the second.

One consequence of this method of evaluation is that the
NWB Query Engine cannot be used to search tabular data stored
using the aligned datasets or the index array methods (described
in section 2.2.2) that satisfy more than one constraint since it
will return results for each constraint independently regardless of
whether or not the elements are in the same row. For example,
if the query is: “quality > 0.95 & location LIKE "CA1"” and
both quality and location are columns in a table stored using
the aligned datasets method, then the NWB Query Engine will
return a matching result if any value in the quality and location
dataset satisfy these conditions, rather than returning a match
only if values in the same row satisfy the condition. Other
limitations are that the NWB Query Engine cannot currently
search compound datasets or HDF5 Object references10 (which
are also used in NWB 2). This is because it is built on top of
the HDFql library which cannot currently read HDF5 compound
data types or object references. These limitations arose because
the NWB Query Engine was developed before NWB 2 was
available and it was not designed to query data stored using
the DynamicTable layout used in NWB 2. The details of the

10HDF5 Object references are similar to pointers in “C,” but they point to groups

and datasets within an HDF5 file.

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

FIGURE 4 | Formal description of query grammar in BNF form. <query> is made up of one or more subqueries. The ()* construct at the end of <query> indicates zero

or more occurrences. <parent> is a path to an HDF5 group or dataset. <child> is the name of an attribute or dataset within the parent. <string> is a string constant

enclosed in single or double quotes. <number> is a numeric constant.

TABLE 1 | Query Examples.

Query Description

/general/subject: (species == "Mus musculus") selects all files with the specified species.

/general:(virus) selects all records with a virus dataset

/general:(virus LIKE "%infectionLocation: M2%") selects all datasets virus with infectionLocation: M2

*:(neurodata_type == "RoiResponseSeries") select all TimeSeries containing Calcium imaging data

*/data: (unit == "unknown") selects all datasetes data which unit is unknown

/epochs/: (start_time > 500 & start_time < 550 & tags LIKE "%HitL%" &

tags LIKE "%LickEarly%")

select all epochs with the matching start_time and tags

/general/subject: (subject_id == "anm00210863") & */epochs/*: (start_time

> 500 & start_time < 550 & tags LIKE "%LickEarly%")

select files with the specified subject_id and epochs

/units: (id > -1 & location == "CA3" & quality > 0.8) select unit id where location is CA3 and quality > 0.8

The left column shows query examples. The right column describes the expected result.

implementation of the NWB Query Engine are given in the
Supplementary Materials.

3.4. search_nwb
The search_nwb utility was developed to overcome the
limitations of theNWBQuery Engine for searches of NWB 2 files.
In particular, in addition to searching layouts common to NWB
Versions 1 and 2, it also allows searching tabular data stored
using the DynamicTable layout described in section 2.2.2 and also
searchingHDF5 object references11 which are used in NWB 2 but
not NWB 1. Like the NWB Query engine, the search_nwb utility
works by directly reading NWB files and searching for contents
that match the specified query. It is written in Python and uses
the H5py library12 to read the contents of the NWB files.

3.4.1. Enhancements to Query Grammar
Both search_nwb and nwbindexer (described in the next section)
accept queries that conform to the grammar given in section 3.2.

11In search_nwb and nwbindexer, object references are searched by converting

each object reference to the path of the target (the path will be a string) and

searching the string
12https://www.h5py.org

However, both of these utilities also support some extensions to
the grammar. These extensions are:

1. The parentheses around the subquery part on the right of the
colon are optional.

2. Each subquery can include a list of children of the parent
immediately after the “:”. The values of these children are
included with the results even if they are not used in
an expression that specifies constraints on the values. The
elements in the list can be separated by a single comma
and/or spaces.

3. To allow searching compound datasets and two-dimensional
datasets that are used within a DynamicTable layout, a column
index of a 2-d dataset or a component name of a compound
dataset may be specified inside square brackets after the child
names used in a query.

The following example query illustrates these extensions:
intervals/epochs: id, tags, start_time,

stop_time, timeseries[timeseries] LIKE
"%test%"

In the above example: There is no parentheses around the
query part to the right of the colon. The variables “id” “tags,”

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2020 | Volume 14 | Article 27

https://www.h5py.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

FIGURE 5 | Architecture of NWB Query Engine. The NWB Query Engine is composed of three core components: the Query Parser, the File API and the NWB

Processor. The query parser translates a user input into an internal tree representation. The NWB Processor uses the tree to perform searches in a NWB file through

the HDF5 Connector. The retrieved data are wrapped in a NWBResult object, which is returned by the query engine. The individual blocks communicate via interfaces

to facilitate using the software in different environments, for example, using different data storage methods. The Python server enables calling the query engine from

Python code. The Web Interface provides a user-friendly web page that allows running queries from a web browser. The Web Container is a part of the web server

that processes user requests and communicates with the NWB Query Engine.

“start_time,” and “stop_time” are the names of children of the
parent for which the values are included in the search results.
The string “timeseries” appears twice. The first occurrence
(before the square brackets) is the name of the compound
dataset, and the second occurrence (within the square brackets)
is the name of a component of the compound dataset. (In
general, these will not be the same, but they are in this
example because that is how the data is organized.) The
layout of the compound dataset being searched is illustrated in
Figure 3B. It is in the interval/epochs group as illustrated in
Figure 1D.

3.4.2. Implementation
The implementation of the search_nwb utility leverages
the Python “eval” function which allows executing
strings that contain Python code from within a Python
program and also the Python “filter” function which
enables performing operations on corresponding elements
of aligned lists. The “filter” function is used to find
which values satisfy the query expression. Details of the
implementation of the search_nwb utility are in section 2
(Supplementary Materials).

3.5. nwbindexer
Because both the NWBQuery Engine and search_nwb tools work
by reading though NWB files to process each query, they can
become slow to complete a query if there is a large number of
files or HDF5 nodes that need to be searched. In order to speed up
the search process, nwbindexer was developed. Unlike the other
NWB Query Engine tools, nwbindexer operates in two steps.
First, a program (called build_index.py) is run, which reads the
contents of NWB files and stores a subset of the contents into a
SQLite database (also called the “index”). This database is used by
the second program, called query_index.py, that allows searching
the SQLite database using queries that are in the same form as
used in the search_nwb tool. These programs and the database
are described below.

3.5.1. build_index.py
The build_index.py program has a required command line
parameter which is the path to a directory containing NWB files.
It scans the directory for NWB files and for each NWB file found,
it adds a subset of the content to the SQLite database. The subset
of content added is described in section 3.5.3. The build_index.py
program creates the SQLite database, and there is no additional
action needed by the user to setup or administer the database.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

FIGURE 6 | SQLite database schema used for nwbindexer. Each arrow indicates a 1:M (one-to-many) relationship from a foreign key to a primary key.

3.5.2. SQLite Database Schema
The schema that is used to store the subset of the NWB file
contents is shown in Figure 6. There are five tables. The names
of the tables and a summary of the contents are as follows:

• File - contains the location (full path on the file system) of
every NWB file which is indexed (has values stored in the
database).

• Path - stores the path to all nodes in an HDF5 file that have
children (either attributes, groups or datasets). For example,
the path “a/b/c” would be stored in the path table if node “c”
had a child, otherwise path “a/b” would be stored (since “b” has
at least one child, that is “c”).

• Name - stores the last component of the HDF5 path to each
node. This allows the full path to a child to be formed by
appending the name of the node to the path associated with
the parent node.

• Node - contains information about each HDF5 node, where
node (as used here) includes not only groups and datasets, but
also attributes.

• Value - contains values of both datasets and attributes.

An example showing how these tables are used to represent
hierarchically organized content in two NWB files is given in
Figure 7. Of the five tables in the database, only two of them
(“file” and “node”) contain contents that are not shared across
files. In other words, there is a unique row in the file table for
every file and a unique row in the node table for every group,
dataset and attribute in every file. The other tables (path, name,

and value) store content that is shared across files. This reduces
the space required to store the information because a given path,
name or value is only stored once regardless of how often it may
be used in all the files. It also facilitates efficient searches since it
allows using one SQL query to find all files that satisfy a particular
path or value constraint.

3.5.3. Storing Values
Data values contained within NWB files (that is, values of HDF5
attributes and datasets) are stored in the database “value” table.
The value table “nval” field stores only a single numeric value
(integer or float). The “sval” field is used to store all other types
of data including strings, string arrays, and numeric arrays that
are in a DynamicTable. The Python csv13 module is used to
encode arrays as comma separated values for storing in the
sval field. All strings (if they are not already in Unicode) are
converted to Unicode before saving in the value table. All object
references are first converted to the path (a string) of the object
being referenced.

When constructing the database, a judicious selection of what
values to store must be made because it is impossible to store all
values (otherwise the database would be too large since it would
include the full contents of all indexed NWB files). Since the
database is used for searching, only values that are likely to be
referenced in searches should be included. To do this, two sets of
criteria were used:

13https://docs.python.org/3/library/csv.html

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2020 | Volume 14 | Article 27

https://docs.python.org/3/library/csv.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

A B

FIGURE 7 | Example NWB file hierarchy stored using SQLite database tables. (A) NWB file contents. (B) Corresponding database tables. Table entries that are empty

store a NULL. The node table field “node_type” is “g” for group and “d” for dataset. The value table “type” field is “s” to indicate a scalar string. Details are given in

sections 3.1 and 3.2 (Supplementary Materials).

First, for values that are not part of a DynamicTable, only
scalar numeric values, scalar strings and short string arrays (up
to 20 elements long) with a total length (of string or string
arrays) not greater than 3000 characters are saved14. This is

14These thresholds, as well as others mentioned in this section, can be configured

by constants in the top of the build_index.py program.

because these types of values are likely to be metadata referenced
in searches15.

Second, for values that are part of a DynamicTable (that is,
in a DynamicTable column), all values are saved (up to a cutoff

15Examples metadata of these different types from the queries in Table 1 are:

start_time - scalar numeric; species - scalar string; tags - string array.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

length, currently 10,000 elements per column) because these are
also likely to be referenced in searches. Details of the storage of
values are given in section 3.2 (Supplementary Materials).

3.5.4. query_index.py
The query_index.py program has a required command-line
argument which specifies a database (built by build_index.py) to
query. It can either process a query entered on the command line
or process queries entered interactively.

Like the search_nwb tool, the query_index.py utility uses
the Python eval and filter functions to find values which
match the constraints specified by the expression within each
subquery. However, the steps used in the query_index.py utility
are different from those used in search_nwb because, to find the
groups or datasets to check for matches to the expression, the
search_nwb utility must read the NWB files directly, whereas
the query_index.py program does this by querying the SQLite
database. Details of the implementation of nwbindexer are
described in section 3 (Supplementary Materials).

3.6. Performance
A variety of queries were used to test the performance of the tools.
The queries included comparing two numeric values, searching
for exact string, searching a substring using the LIKE construct,
searching values stored in a DynamicTable and searching using
wildcards in the parent path. Compound queries with logical
operators were also tested.

The tests were performed on a collection of 70 NWB files with
a total size of 31GB. Each search was run 12 times. The average
time, as well as the minimum and maximum time, needed to
execute each search was recorded over each query and tool. The
time required to build the index used by nwbindexer (that is the
time required to run the build_index.py program, which took
about 8 minutes) was not included in the time for nwbindexer
because it only needs to be done once.

The NWB files used for testing are listed below. The first item
in the list are NWB 1 files; all others are NWB 2. Except for the
first and last items in the list, all files in the list are referenced on
the Examples page on the NWB website16.

• The first 16 files from the alm-1 data set at CRCNS.org, which
contains anterior motor cortex recordings from the Svoboda
Lab at Janelia Farm17 (2.2 GB).

• A file from a data set referenced in a Nature publication
(Steinmetz et al., 2019) that was converted to the NWB
format18 (267.96 MB).

• A data file from the Buzsáki Lab; File: YutaMouse41-
150903.nwb19 (10 GB).

• Files in file “nwb_1_28.zip” from the Anne KChurchland lab20

(28 files, 17 GB total).

16https://www.nwb.org/example-datasets/
17http://crcns.org/data-sets/motor-cortex/alm-1
18File: Steinmetz2019_Forssmann_2017-11-05.nwb, Available at: https://figshare.

com/articles/Datasets_from_Steinmetz_et_al_2019_in_NWB_format/11274968
19Available at: https://buzsakilab.nyumc.org/datasets/NWB/SenzaiNeuron2017/
20http://labshare.cshl.edu/shares/library/repository/37693/

• Files generated from the PyNWB tutorials21 in commit
fcb919a322 (22 files, 542 MB total).

The test results are summarized in Figure 8. For Figure 8
queries A-C, nwbindexer was over 20x faster than the other
two tools, and the NWB Query Engine was about 1.5x faster
than the search_nwb tool. These queries have wildcards in
the parent location that match lots of groups in the HDF5
hierarchy. The nwbindexer tool is much faster for such queries
because the matching groups are found using a SQL SELECT
statement, whereas the other two tools sequentially search
for the many matching groups and that negatively affects
their performance.

For Figure 8 queries D-F, nwbindexer and search_nwb were
about the same speed, with nwbindexer slightly faster. Both of
these tools were about 3x to 4x faster than the NWB Query
Engine. These queries included: comparisons of scalar values,
LIKE conditions with wildcards in the matching pattern and
compound queries.

These results indicate that for data that is indexed by
nwbindexer, it would probably be the fastest tool. However,
as mentioned in section 3.5.3, not all data in an NWB file is
indexed by nwbindexer. For searching for data that is not indexed
by NWB indexer, in some cases (queries that reference lots of
HDF5 nodes and for data not stored using the DynamicTable
layout) the NWB Query Engine will likely be the fastest
tool. For other cases (queries matching fewer nodes or which
search DynamicTable layouts), search_nwb would be the fastest
(or the only) tool that could be used. The search_nwb tool
supports the most complete searches because it allows searching
values not stored by nwbindexer and also allows searching
DynamicTable layouts which are not searched by the NWB
Query Engine.

3.7. Web Interface
A web interface is provided with the NWB Query Engines which
enables client computer systems to run the tools through a web
browser without installing them locally. This feature would be
useful within a laboratory that uses multiple computer systems
because the NWB Query Engines would only need to be installed
once (on a system that has access to the NWB files) then the files
can be searched from other computers in the lab using a web
browser. It could also be useful for laboratories that use a remote
(“cloud-based”) system to store data. In this case, the Query
Engine tools would be installed on the server in the cloud hosting
the data, and then could be searched by client systems in the lab
using the web browser. (The shift of neurodata laboratories from
locally maintained systems to cloud-based solutions is discussed
in Rosenthal et al., 2010 and Vogelstein et al., 2016). The web
interface could also be useful to enable search of files stored
in neuroscience data repositories, for example, CRCNS.org23,
G-NODE24, and EEGBase (Moucek et al., 2014).

21https://pynwb.readthedocs.io/en/latest/tutorials/index.html
22https://github.com/NeurodataWithoutBorders/pynwb/tree/

fcb919a3b5c50a92c473e04a6a0b66f7e0204a27/docs/gallery
23http://crcns.org/
24http://www.g-node.org/

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2020 | Volume 14 | Article 27

https://www.nwb.org/example-datasets/
http://crcns.org/data-sets/motor-cortex/alm-1
https://figshare.com/articles/Datasets_from_Steinmetz_et_al_2019_in_NWB_format/11274968
https://figshare.com/articles/Datasets_from_Steinmetz_et_al_2019_in_NWB_format/11274968
http://labshare.cshl.edu/shares/library/repository/37693/
https://pynwb.readthedocs.io/en/latest/tutorials/index.html
https://github.com/NeurodataWithoutBorders/pynwb/tree/fcb919a3b5c50a92c473e04a6a0b66f7e0204a27/docs/gallery
https://github.com/NeurodataWithoutBorders/pynwb/tree/fcb919a3b5c50a92c473e04a6a0b66f7e0204a27/docs/gallery
http://crcns.org/
http://www.g-node.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

A preview of the web interface is shown in Figure 9. It is a
simple web page displaying basic information. The centerpiece
of the web page is a search box for the user to input a query
and select which tool should be used. When the user runs a
query, the selected tool is called in the background. This call
can be time consuming if a lot of data have to be searched. For
this reason the web page is implemented dynamically, so that
data are read and displayed incrementally as they are loaded. A
progress bar informs the user how many data files have been
searched. Once files matching the search are found the user can
download them.

The web Interface is implemented in the Spring framework
(Johnson et al., 2004). It is an implementation of the Dependency
Injection design pattern that allows developers to easily integrate
individual modules to the core application. It also integrates
other technologies, such as the Wicket framework, in user
layer and an Ajax-based framework for the implementation
of dynamic data loading. The design of the web pages is
implemented in the Apache Bootstrap framework, a library of
predefined CSS templates ready to be immediately deployed.
A block schema of the web interface implementation is shown
in Figure 10.

3.8. User Guide
All of the tools and the web interface are hosted in GitHub
repositories25. The README file in each repository has
installation instructions. The minimal requirement for running
the NWB Query Engine is to have installed JRE 826. When
the query engine is called from a Python code a py4j python
library27 is required in Python installation. The web interface
runs in the Apache Tomcat28 web container. Since running
and configuring a tomcat container could be an obstacle for
some user, we also provided a docker29 file for easy build of
a docker image. The search_nwb and nwbindexer tools require
Python 3.7.

The output (search results) of the tools consist of the NWB
file names, HDF5 path and values matching the search criteria.
The format of the output varies slightly between the tools. The
output of the search_nwb and nwbindexer tools is in JSON
and is formatted to be human-readable30. The output of the
NWB Query Engine is a human-readable table if it is run
from a command line, but if the tool is used as a library
called from a client application then that client application is
responsible for formatting the search results. The output of
all the three tools is unified in the web interface as a human
readable table.

25NWB Query Engine: https://github.com/jezekp/NwbQueryEngine, nwbindexer

& search_nwb: https://github.com/jeffteeters/nwbindexer, web interface: https://

github.com/jezekp/nwbQueryEngineWebInterface
26http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-

2133155.html
27https://www.py4j.org/install.html
28https://tomcat.apache.org/download-80.cgi
29https://www.docker.com/
30The structure of the output is described in the online documentation at https://

nwbindexer.readthedocs.io

4. DISCUSSION

The storage of neurophysiology data and metadata is complex,
and there have been many systems developed to store such
data. Systems that rely on a relational database to store the data
(such as Datajoint, Yatsenko et al., 2015) allow searching the
data because there is already a technology (SQL) developed for
that purpose. However, for a variety of reasons, most systems
for storing neurophysiology data use separate files which are
organized so that the data recorded from a single session are
stored independently of data recorded from other sessions. There
is a need to be able to search collections of such files in order to
find data of interest for a particular analysis. However, there does
not yet exist any standard ways of implementing such searches.

We address this problem by presenting novel approaches and
software to query neurophysiology data stored in separate files.
The query tools we created are targeted for the recently developed
Neurodata Without Borders format (Teeters et al., 2015; Rübel
et al., 2017, 2019).

Because the NWB format is currently implemented using
HDF5, our tools were designed to search within HDF5 files.
Requirements for the search were based on the properties of the
NWB format, which include storing data at locations for which
the full path within the file may, or may not be, known in advance
(described in section 2.2.1) and the storage of tabular data using
different NWB-specific methods (describe in section 2.2.2) and
for which data may be organized in multiple files using HDF5
external links (described in section 2.2.1).

Existing systems to search HDF5 files could not be used
because most did not allow searching for data if the full path was
not known in advance and none of them could be used to search
data stored using the DynamicTable layout that is used in NWB
2 (described in section 2.2.2). In addition, none of the existing
systems allow searching a collection of files. Instead, they only
allow searching a single file.

The types of searches required, led us to define a syntactic
structure of queries which has just two parts (a location,
and an expression) separated by a colon. The syntax is
much simpler than the SQL SELECT statements that are
used for querying relational databases. An advantage of the
query language presented here is that its use does not
require any specific knowledge of database systems, SQL or
even programming.

The query language we developed is similar to the DataJoint
query language31 in the specification of the constraints on
metadata values (called “operators” in DataJoint), but must
be different in the specification of where in the file the
metadata is located, because our tools are querying a hierarchical
structure which does not have tables related by primary
and foreign keys which are referenced in the DataJoint
query language32.

31Described at https://docs.datajoint.io/python/queries/Queries.html
32While the nwbindexer tool does convert the hierarchical structure to a relational

database, the resulting database cannot be queried by the DataJoint query language

because the underlying relationships are still hierarchical. To query it, simple

queries expressed in our query languagemust be translated to very complex queries

in SQL (an example is given in Figure S6). It would be too complex (practically

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2020 | Volume 14 | Article 27

https://github.com/jezekp/NwbQueryEngine
https://github.com/jeffteeters/nwbindexer
https://github.com/jezekp/nwbQueryEngineWebInterface
https://github.com/jezekp/nwbQueryEngineWebInterface
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.py4j.org/install.html
https://tomcat.apache.org/download-80.cgi
https://www.docker.com/
https://nwbindexer.readthedocs.io
https://nwbindexer.readthedocs.io
https://docs.datajoint.io/python/queries/Queries.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

FIGURE 8 | Comparison of performance of all the three tools. The numbers above each colored bar are the average time for the query using that tool. The vertical line

passing through the top of each bar shows the range between the minimum and maximum times. The tested queries are: (A) epochs*:(start_time>200 &

stop_time<250 | stop_time>4850), (B) */data: (unit == "unknown"), (C) general/subject: (subject_id == "anm00210863") & epochs/*: (start_time > 500 & start_time <

550 & tags LIKE "%LickEarly%"), (D) units: (id > -1 & location == "CA3" & quality > 0.8), (E) /general:(virus LIKE "%infectionLocation: M2%"). (F)

general/optophysiology/*: (excitation_lambda).

FIGURE 9 | NWB Query Engine Web Interface Preview. The web interface provides a Google-like search box. The progress bar informs the user the percentage of

searched files. A table with results is displayed piece by piece. A table row contains the name of the file with requested data, the name of the dataset in which data

has been found, the value in the dataset, and a link for downloading the file.

Frontiers in Neuroinformatics | www.frontiersin.org 13 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

FIGURE 10 | Implementation of Web Interface to the NWB Query Engines. The Web Interface is implemented in a common three layer architecture. We used the

Spring Framwework. The data layer accesses data via the NWB Query Engine and returns results to the view layer via the service layer. The view layer is implemented

in the Wicket framework.

FIGURE 11 | Comparison of tool features. Each tool is best for a particular purpose.

Three tools are presented. The first, the NWB Query Engine,
is written in Java, but includes a Python and Web interface. It

speaking, impossible) for a user to query the generated database directly without

this automated translation step.

was originally designed to query files in NWB 1 but can also
query files in NWB 2, but with some limitations on the search
of tabular data. These limitations are overcome by the other two
tools. The second tool, search_nwb, can query all data in both
NWB 1 and NWB 2 files. The third tool, nwbindexer, operates

Frontiers in Neuroinformatics | www.frontiersin.org 14 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

in two steps: First a utility is run to build an SQLite database
(index) containing the content of NWB files to be searched. Once
this is done, queries are performed by a program that converts
the queries into SQL which are then executed within SQLite. In
many cases, these queries are faster than searches using the other
tools. Since the SQLite database cannot contain all data in the
NWB files the queries using nwbindexer search only a subset of
the data. A comparison of the features of the three tools is shown
in Figure 11.

Since these tools will normally be used to search metadata and
not raw data, and the bulk of data in NWB files will usually be
raw data (such as measurements of voltages or pixel intensities),
typical searches using these tools can operate quickly even with
very large file sizes because the raw data in the files will not be
searched, only the much smaller metadata.

Even though the presented tools are specific to the NWB data
format, two of them (the NWB Query Engine and nwbindexer)
are implemented in a way that facilitates extending them to be
used with other formats. In particular, the modular structure of
the NWBQuery Engine facilitates the extension to different types
of data and formats for which separate files are used to store
related data and for which the data within each file are organized
in a hierarchical manner. Likewise, nwbindexer uses a single
utility to build the SQLite database containing the data to be
searched. This utility could be modified to read data from other
hierarchically-organized formats and build an SQLite database
for those. Once the SQLite database is created, the searches would
be identical.

The tools we provide will work with NWB files regardless of
how the files are created (whether they are created by Matlab,
Python, or some other software). Installation of the tools only
requires open source software (Java for one tool, Python for the
others). The tools can be operated either from an interactive shell
or from the web interface so the users are not required to be
familiar with programming at all. The SQLite database used by
the nwbindexer tool does not require any user effort to setup or
administer since it is created automatically by running a single
program (build_index.py).

Only the installation of the web interface will require technical
knowledge. It is intended to be installed only once within a lab by
a system administrator.We facilitate the installation by providing
a docker file for building a transferable image. Installing the web
interface is optional because it is not needed for running the tools.

Even though the tools are written in Java and Python they can
be used from other languages. For example, programs written in
Matlab can call Python functions, so Matlab code could also call
any of the tools.

While the NWB format is evolving, both by changes
to the core schema and also additions of extensions to
the format, these tools should be sufficiently robust so to
still work with future versions. This is because the tools
do not depend on any particular NWB metadata, but they
provide a framework (through the query language) to search
any metadata. The user specifies the metadata when doing
the search. The metadata to be searched is not hard-
coded into the tools. In fact, an approach requiring hard-
coding metadata into the tool would not work because it is

impossible to know in advance what metadata will be included
in extensions.

The tools operate on a single file system. However there
are methods to connect individual data sources to a federated
network, which would enable accessing distributed data as if they
were on a single file system. Once data were federated in this
distributed network all of the tools could operate on all files over
the network. However, it is likely that only the nwbindexer tool
would enable fast queries since the other two tools would require
reading the NWB files over the network to do the search.

There are several assumptions that were made in creating
these tools. One is that the user running the query must
be familiar with how the data is stored within the NWB
files, that is, within HDF5. Fortunately, for both NWB 1 and
NWB 2, the layout of the data within HDF5 are described
in the format documentation. Furthermore, there is a free
utility called HDFView33 which allows a user to examine the
contents of an HDF5 file in order to identify metadata that
should be searched. So it should always be possible for users
to know how data are stored in the files and thus create
the queries.

A second assumption is that the NWB files will be using
HDF5. This assumption is true with NWB 1 and is currently true
with NWB 2. However, a goal of NWB 2 is to allow for other
backend storage methods, not just HDF5. If the NWB files were
stored in something other than HDF5, the tools presented here
would need to be modified to read the data in the format they
are stored.

DATA AVAILABILITY STATEMENT

The datasets referenced in this study are publicly available
through the links provided.

AUTHOR CONTRIBUTIONS

PJ implemented the NWB Query Engine and the web interface.
JT implemented the nwbindexer and search_nwb tools. FS
supervised the project. PJ, JT, and FS wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This publication was supported by project LO1506 of the
Czech Ministry of Education, Youth and Sports under the
program NPU I; grant 1516527 of the United States National
Science Foundation; and the Kavli Foundation. FS was supported
by NIH grant 1R01EB026955.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2020.00027/full#supplementary-material

33https://www.hdfgroup.org/downloads/hdfview/

Frontiers in Neuroinformatics | www.frontiersin.org 15 September 2020 | Volume 14 | Article 27

https://www.frontiersin.org/articles/10.3389/fninf.2020.00027/full#supplementary-material
https://www.hdfgroup.org/downloads/hdfview/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ježek et al. NWB Query Engines

REFERENCES

Chou, J., Howison, M., Austin, B., Wu, K., Qiang, J., Bethel, E. W., et al. (2011).

“Parallel index and query for large scale data analysis,” in 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC) (Seattle, WA), 1–11. doi: 10.1145/2063384.2063424

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A. P., et al.

(2020). The sonata data format for efficient description of large-scale network

models. PLoS Comput. Biol. 16:e1007696. doi: 10.1371/journal.pcbi.1007696

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). “An

overview of the HDF5 technology suite and its applications,?? in Proceedings

of the EDBT/ICDT 2011 Workshop on Array Databases, AD ’11 (New York, NY:

ACM), 36–47. doi: 10.1145/1966895.1966900

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E.

P., et al. (2016). The brain imaging data structure, a format for organizing

and describing outputs of neuroimaging experiments. Sci. Data 3:160044.

doi: 10.1038/sdata.2016.44

Gosink, L., Shalf, J., Stockinger, K., Wu, K., and Bethel, W. (2006). “HDF5-

fastquery: accelerating complex queries on HDF datasets using fast bitmap

indices,” in 18th International Conference on Scientific and Statistical Database

Management (SSDBM’06) (Vienna), 149–158. doi: 10.1109/SSDBM.2006.27

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach

to data annotation in neurophysiology. Front. Neuroinform. 5:16.

doi: 10.3389/fninf.2011.00016

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsaki, G.

(2000). Accuracy of tetrode spike separation as determined by simultaneous

intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414.

doi: 10.1152/jn.2000.84.1.401

Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C., Harrop, R., Risberg,

T., et al. (2004). The spring framework-reference documentation. Interface

21:27. Available online at: https://docs.spring.io/spring/docs/current/spring-

framework-reference

Kemp, B., and Olivan, J. (2003). European data format ‘plus?(EDF+), an EDF alike

standard format for the exchange of physiological data. Clin. Neurophysiol. 114,

1755–1761. doi: 10.1016/S1388-2457(03)00123-8

Koziol, Q. (2011). HDF5. Boston, MA: Springer.

doi: 10.1007/978-0-387-09766-4_44

Moucek, R., Bruha, P., Jezek, P., Mautner, P., Novotny, J., Papez, V., et al. (2014).

Software and hardware infrastructure for research in electrophysiology. Front.

Neuroinform. 8:20. doi: 10.3389/fninf.2014.00075

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and

Davison, A. P. (2015). Python in neuroscience. Front. Neuroinform. 9:11.

doi: 10.3389/fninf.2015.00011

Ray, S., Chintaluri, C., Bhalla, U. S., and Wójcik, D. K. (2016). NSDF:

neuroscience simulation data format. Neuroinformatics 14, 147–167.

doi: 10.1007/s12021-015-9282-5

Rosenthal, A., Mork, P., Li, M. H., Stanford, J., Koester, D., and Reynolds,

P. (2010). Cloud computing: a new business paradigm for biomedical

information sharing. J. Biomed. Informat. 43, 342–353. doi: 10.1016/j.jbi.2009.

08.014

Rossant, C., Kadir, S. N., Goodman, D. F. M., Schulman, J., Hunter, M. L. D.,

Saleem, A. B., et al. (2016). Spike sorting for large, dense electrode arrays. Nat.

Neurosci. 19:634. doi: 10.1038/nn.4268

Rübel, O., Dougherty, M., Denes, P., Conant, D., Chang, E. F., and Bouchard,

K. (2016). Methods for specifying scientific data standards and modeling

relationships with applications to neuroscience. Front. Neuroinform. 10:48.

doi: 10.3389/fninf.2016.00048

Rübel, O., Tritt, A., Camp, D., Chang, E. F., Donofrio, D., Frank, L. M., et al.

(2017). “An advanced data software architecture for neurodata without borders

(NWB) to enable efficient management. Use and sharing of neurophysiology

data,” in 2017 Neuroscience Meeting Planner (Washington, DC: Society for

Neuroscience).

Rübel, O., Tritt, A., Dichter, B., Braun, T., Cain, N., Clack, N., et al. (2019).

NWB:N 2.0: an accessible data standard for neurophysiology. bioRxiv.

doi: 10.1101/523035

Smith, G. (2003). Spike2 for Windows, Version 5. Cambridge, UK: Cambridge

Electronic Design Limited.

Steinmetz, N., Zatka-Haas, P., Carandini, M., and Harris, K. (2019). Distributed

coding of choice, action and engagement across the mouse brain. Nature 576,

266–273. doi: 10.1038/s41586-019-1787-x

Stoewer, A., Kellner, C. J., Benda, J., Wachtler, T., and Grewe, J. (2014). File format

and library for neuroscience data and metadata. Front. Neuroinform. 8:27.

doi: 10.3389/conf.fninf.2014.18.00027

Teeters, J., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B.,

et al. (2015). Neurodata without borders: Creating a common data

format for neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.2015.

10.025

Vogelstein, J. T., Mensh, B., Häusser, M., Spruston, N., Evans, A. C., Kording, K.,

et al. (2016). To the cloud! a grassroots proposal to accelerate brain science

discovery. Neuron 92, 622–627. doi: 10.1016/j.neuron.2016.10.033

Wang, Y., Su, Y., and Agrawal, G. (2013). “Supporting a light-weight data

management layer over HDF5,” in 2013 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing (Delft), 335–342.

doi: 10.1109/CCGrid.2013.9

Yatsenko, D., Reimer, J., Ecker, A. S., Walker, E. Y., Sinz, F., Berens, P., et al. (2015).

Datajoint: managing big scientific data using MATLAB or Python. bioRxiv.

doi: 10.1101/031658

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ježek, Teeters and Sommer. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 September 2020 | Volume 14 | Article 27

https://doi.org/10.1145/2063384.2063424
https://doi.org/10.1371/journal.pcbi.1007696
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1109/SSDBM.2006.27
https://doi.org/10.3389/fninf.2011.00016
https://doi.org/10.1152/jn.2000.84.1.401
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://doi.org/10.1016/S1388-2457(03)00123-8
https://doi.org/10.1007/978-0-387-09766-4_44
https://doi.org/10.3389/fninf.2014.00075
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.1007/s12021-015-9282-5
https://doi.org/10.1016/j.jbi.2009.08.014
https://doi.org/10.1038/nn.4268
https://doi.org/10.3389/fninf.2016.00048
https://doi.org/10.1101/523035
https://doi.org/10.1038/s41586-019-1787-x
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1016/j.neuron.2016.10.033
https://doi.org/10.1109/CCGrid.2013.9
https://doi.org/10.1101/031658
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	NWB Query Engines: Tools to Search Data Stored in Neurodata Without Borders Format
	1. Introduction
	2. Materials and Methods
	2.1. The HDF5 Data Model
	2.2. The Neurodata Without Borders Format
	2.2.1. Overall Layout
	2.2.2. Representation of Tables
	2.2.2.1. Storing non-homogeneous tabular data
	2.2.2.2. Storing tabular data with non-scalar elements

	2.3. Required Searches
	2.4. Existing Search Tools for HDF5
	2.5. Scope and Requirements

	3. Results
	3.1. NWB Query Engine Tools
	3.2. Query Grammar
	3.3. NWB Query Engine
	3.3.1. Architecture
	3.3.2. Operation and Limitations

	3.4. search_NWB
	3.4.1. Enhancements to Query Grammar
	3.4.2. Implementation

	3.5. nwbindexer
	3.5.1. build_index.py
	3.5.2. SQLite Database Schema
	3.5.3. Storing Values
	3.5.4. query_index.py

	3.6. Performance
	3.7. Web Interface
	3.8. User Guide

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

