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Emotion recognition based on electroencephalography (EEG) signals is a current focus

in brain-computer interface research. However, the classification of EEG is difficult owing

to large amounts of data and high levels of noise. Therefore, it is important to determine

how to effectively extract features that include important information. Regularization, one

of the effective methods for EEG signal processing, can effectively extract important

features from the signal and has potential applications in EEG emotion recognition.

Currently, the most popular regularization technique is Lasso (L1) and Ridge Regression

(L2). In recent years, researchers have proposed many other regularization terms. In

theory, Lq-type regularization has a lower q value, which means that it can be used

to find solutions with better sparsity. L1/2 regularization is of Lq type (0 < q < 1) and

has been shown to have many attractive properties. In this work, we studied the L1/2

penalty in sparse logistic regression for three-classification EEG emotion recognition,

and used a coordinate descent algorithm and a univariate semi-threshold operator

to implement L1/2 penalty logistic regression. The experimental results on simulation

and real data demonstrate that our proposed method is better than other existing

regularization methods. Sparse logistic regression with L1/2 penalty achieves higher

classification accuracy than the conventional L1, Ridge Regression, and Elastic Net

regularization methods, using fewer but more informative EEG signals. This is very

important for high-dimensional small-sample EEG data and can help researchers to

reduce computational complexity and improve computational accuracy. Therefore, we

propose that sparse logistic regression with the L1/2 penalty is an effective technique for

emotion recognition in practical classification problems.

Keywords: EEG, emotion recognition, L1 regularization, Ridge Regression, L1/2 regularization, sparse logistic

regression
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1. INTRODUCTION

Electroencephalography (EEG) is a means of obtaining data
through sensors (Rashid et al., 2018; Uktveris and Jusas,
2018). The brain-computer interface (BCI), also known as
a direct neural interface, is an interdisciplinary cutting-edge
technology that represents a direct link between human or
animal brains (or brain cell cultures) and external devices
(Wolpaw et al., 2000, 2002; Cecotti, 2011; Chaudhary et al.,
2016; Ramadan and Vasilakos, 2017). The role of BCI is to
establish communication between the human brain and external
computers or other intelligent electronic devices (Jin et al.,
2015; Li et al., 2016). Emotional cognition is a very important
part of BCI. Emotional recognition generally refers to the use
of an individual’s physiological or non-physiological signals to
automatically identify their emotional state (Cowie et al., 2001;
Busso et al., 2004). Emotional recognition is an important part
of emotional computing and is of great importance in medicine
and engineering.

Pattern recognition is a crucial step in accurately classifying
or decoding EEG signals in BCI. How to effectively identify
and classify EEG features is still the subject of research. Several
EEG classification algorithms have been proposed, including
logistic regression, support vector machine (Chen et al., 2019),
decision tree (Subasi and Erçelebi, 2005; Polat and Güneş, 2007;
Subasi and Gursoy, 2010), and convolutional neural networks
(Baran-Baloglu et al., 2019; Bernal et al., 2019). These methods
tend to focus on classification, and usually aim to directly
find a possible classification model. The classification process
does not usually involve sparse processing. However, EEG data
tend to be characterized by high dimensions and small sample
sizes. Therefore, these methods are prone to over-fitting or low
precision. There are two main approaches to this problem. The
first is dimension reduction, the main examples of which are
the PCA and LDA methods (Subasi and Gursoy, 2010). These
methods use matrix decomposition to map the original N-
dimensional features into K dimensions, thereby changing the
original values of the data. The second approach is regularization,
currently represented by the L0, Lasso (L1), Ridge Regression,
and Elastic Net methods (Silva et al., 2004; Zou and Hastie, 2005;
Friston et al., 2008; Wang et al., 2015). In theory, the L0 penalty
is the best in the case of sparseness, but this method involves
an NP-hard problem (Schölkopf and Smola, 2001). Therefore,
the Lasso (L1) penalty is most often used. The L1 penalty is
the sum of the absolute values of the elements in the weight
vector w, usually expressed as ||ω||1 (Tibshirani, 1996). The
Ridge Regression is the sum of the squares of the elements
in the weight vector w and the square root, usually expressed
as ||ω||2 (Ng, 2004). The Elastic Net method was proposed to
overcome the respective limitations of L1 and Ridge Regression.
This method combines the L1 penalty and Ridge Regression to
achieve a better effect. Recently, in order to obtain a sparser and
more solvable penalty term, Xu proposed a new L1/2 penalty
and applied it to signal recovery problem (Xu et al., 2012);
the result of the this penalty is more sparse than that of the
L1 penalty and can be solved. It is thus preferable in theory
(Xu et al., 2010).

In the field of multi-category EEG emotion recognition, sparse
logistic regression models based on regularization have achieved
excellent results in EEG signal emotion recognition in recent
years. For example, Ryali et al. (2010) proposed a novel method
based on logistic regression using a combination of L1 and Ridge
Regression that could more accurately discriminate brain regions
across multiple conditions or groups (Ryali et al., 2010). Hussein
et al. (2018) proposed a feature learning method based on L1-
penalized robust regression, which could recognize the most
prominent features pertinent to epileptic seizures in EEG spectra
(Hussein et al., 2018). Conroy and Sajda (2012) used Ridge
Regression to improve EEG classification results (Conroy and
Sajda, 2012). Inspired by the above methods, we studied sparse
logistic regression models with the L1/2 penalty, with a particular
focus on applications in EEG sentiment classification. The L1/2
penalty can be penalized as representatives of (0 < q < 1)
and has many attractive features, such as unbiasedness, sparsity,
and oracle attributes (Xu et al., 2010). Current logistic regression
models using the L1/2 penalty have achieved excellent results in
biological fields, such as genetic screening (Liang et al., 2013; Liu
et al., 2014; Huang et al., 2016).

In this work, we develop a coordinate reduction algorithm
for L1/2 regularization in a sparse logistic regression framework
and build a three-classification sparse regularization logistic
regression model for EEG sentiment data (Figure 1). This
method is suitable for use with large EEG datasets with a
low sample size. Tests were performed using a simulation
dataset and a real dataset (SEED and DEAP). An experimental
comparison with sparse logistic regression using the L1 penalty,
Ridge Regression, and Elastic Net penalty points was used to
validate the L1/2 penalty logistic regression method proposed
in this paper.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. Simulation Dataset
We used the Python method sklearn.dataset.make_classification
to generate a random simulation three-classification dataset,
with a sample number of 1,200 and a characteristic of 1,000.
Each class is composed of a number of gaussian clusters each
located around the vertices of a hypercube in a subspace
of dimension 3. For each cluster, informative features are
drawn independently from N(0, 1) (Equation 1) and then
randomly linearly combined within each cluster in order to
add covariance. The clusters are then placed on the vertices
of the hypercube. And we added useless features drawn at
random to this dataset use parameters n_redundant = 2 and
n_repeated = 2 to add two redundant features to the information
feature and repeated it twice. We selected 80% of the samples
as the training dataset and used the remaining 20% as the
verification dataset.

f (x) =
1

√
2π

e(−
x2

2 ) (1)
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FIGURE 1 | Flow chart of sparse logistic regression based on L1/2 penalty. First, we divide a three-category dataset (such as SEED) into three two-category datasets

(the upper part). Next, the green part represents training a classifier based on L1/2 penalty logistic regression for each binary classification dataset. Each classifier will

reduce the sample dimension from N to M after sparsification. For each input EEG data, we will get three binary classification results. Through summary analysis, the

final three classification results are obtained.

2.1.2. SEED Dataset
Experiments were conducted using a public emotion EEG dataset
called SEED, which uses film fragments as emotion-inducing
materials and includes three categories of emotion: positive,
neutral, and negative. In each experiment, the participants will
watch movie clips of different emotional states. Each clip will
be played for about 4 min. In the experiment, three types of
movie clips will be played. Each type of movie clips contains
five movies, and in total 15 movies. These movie clips are all
from Chinese movies. There is a 5 s prompt before each short
film is shown, with 45 s of feedback time after playback, and
15 s of rest after watching. A total of 15 subjects (seven males,
eight females, mean age 23.27 years old, the standard deviation
of 2.37) participated in the experiment, and all subjects had
normal visual, auditory, and emotional states. The EEG signal,
while the subject was watching the movie, was recorded through
the electrode cap and the sampling frequency was 1,000 Hz.
The experiment used the international 10–20 system and a
62-channel electrode cap. Each volunteer participated in three
experiments, and each experiment was separated by about 1
week. Therefore, a total of 15 × 15 × 3 = 675 data samples is
formed. Then 200 Hz down-sampling and a bandpass frequency
filter from 0 to 75 Hz was applied to obtain a preprocessed EEG
dataset. For more information on this dataset, please refer to the
website http://bcmi.sjtu.edu.cn/∼seed/index.html. Before using

this dataset, we used the PCA method to preprocess the data and
to reduce the dimension from 11,470 to 528 in the beta band,
and from 57350 to 528 in the combined band (keep 95% variance
information), in order to reduce the computational complexity
and time complexity (according to the results of running the PCA
model based on the SEED dataset, the variance ratio of the first
PC is only 30.1%, the variance ratio of the second PC is 9.2%,
the variance ratio of the third PC is only 4.9%, and the sum of the
variance ratios of the three largest contributing PCs is only 44.2%,
which is much<95% variance ratio required in this paper. In this
situation, program results show that we need 528 PCs to achieve
a 95% variance ratio).

2.1.2.1. Beta band dataset

The SEED EEG dataset contained five EEG bands. The main
frequency range of the five bands was 14–30 Hz. The frequency
range of the beta brain wave is 14–30 Hz. When the brain is in
a conscious condition, the mind is in a state of tension, and the
individual is very sensitive to their surroundings, so the energy
intensity of the beta wave will be higher than the others. The
attention is focused on the external environment in a scattered
manner, and the brain is prone to fatigue. Most people are in
this state during the day. Previous studies have shown that the
main role of the beta band is to reflect emotions and cognition
(Ahmed and Basori, 2013; Jabbic et al., 2015). Therefore, we chose
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beta brain waves for experimental analysis. The beta brain wave
frequency band of the SEED dataset contained 660 samples.

2.1.2.2. Combined band dataset

In order to verify the performance of our method, we also tested
it using the EEG dataset for the total frequency band. The EEG
signal is decomposed into five frequency bands according to
EEG rhythm, comprising delta (1–3 Hz), theta (4–7 Hz), alpha
(8–13 Hz), beta (14–30 Hz), and gamma (31–50 Hz) bands.
These five frequency band signals were combined to form a
new combined frequency band dataset (Lin et al., 2010; Nie
et al., 2011). Therefore, six EEG datasets representing different
frequency bands were obtained. Finally, four classification
methods, namely sparse logistic regression with L1/2 penalty,
sparse logistic regression with L1 penalty, Ridge Regression, and
Elastic Net, were tested and verified using the above datasets.
In the experiments, 660 samples were randomly assigned to the
mutually exclusive training set (80%) and the remainder formed
the verification set (20%).

2.1.3. DEAP Dataset
The dataset named DEAPA Database for Emotion Analysis
Using Physiological Signals (Koelstra et al., 2012) can be found
at the website http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.
The DEAP dataset consists of two parts; first the ratings from an
online self-assessment where 120 1-min extracts of music videos
were each rated by 14–16 volunteers based on arousal, valence
and dominance; second, the participant ratings, physiological
recordings and face video of an experiment where 32 volunteers
watched a subset of 40 of the above music videos. EEG and
physiological signals were recorded, and each participant also
rated the videos as above. For 22 participants frontal face video
was also recorded. At the end of each video, participants are
required to fill out a self-assessment (SAM) form to score from 1
to 9. Arousal ranges from inactive (1) to active (9). Valence ranges
from unpleasant (1) to pleasant (9). The rating range of liking and
dominance is also between 1 and 9, which means helpless and a
weak feeling (1) to an empowered feeling (9). The DEAP dataset
includes 32-channel EEG signals, and peripheral physiological
signals, such as GSR signals, EOG signals, EMG signals, PPG
signals, Temp, and Status. All data was down-sampled to 128 Hz,
where the EEG signal data became a 60 s test signal and a 3 s
baseline. A zero-phase bandpass filter of 4–45 Hz was applied.
In this paper, the 32-channel EEG was divided into two classes
according to arousal, Positive (more than 6) and Negative (Low
4). For the DEAP dataset, we only used data from combined
frequency bands for experiments.

2.1.4. Cross-Validation
To ensure the accuracy of the results, a 5-fold cross-validation
method was used in all the experiments. The 5-fold cross-
validation first divides all the data into five sub-samples. One
of the sub-samples is repeatedly selected as the test set, and the
other four samples are used for training, repeated five times in
total and the average of five times and its error range is selected.
In addition to using 5-fold cross-validation, all experiments in

this paper also performed 100 repeated experiments to obtain its
averages and errors.

2.2. Methods
This paper constructs a three-category L1/2 penalty logistic
regression method. The main focus of this work was the
general ternary classification problem. A ternary classifier was
built, consisting of three small two classifiers, each of which
was identical in construction. This model produced three two-
classifier results, which could be summarized to give the ternary
classification output, as shown in Figure 1. We first summarize
a three-category dataset into three two-category datasets, and
then establish three two-category L1/2 penalty logistic regression
methods. According to the results of each two-classifier, the
final three-classification result is obtained. The construction
method of the L1/2 penalty logistic regression method for the two
classifications is as follows.

2.2.1. Sparse Logistic Regression With L1/2 Penalty
Here, we describe the construction of a sparse two-class logistic
regression method based on the L1/2 penalty. Suppose we
have n samples, where D = (X1, y1), (X2, y2), ..., (Xn, yn),Xi =
(xi1, xi2, ..., xip) is the ith input mode, and the dimension is p; yi
is the corresponding variable, with a value of 0 or 1: yi = 0
represents the ith sample in category 1, and yi = 1 represents
the ith sample in category 2. Vector Xi includes the p features
of the ith samples (for all p EEG signals), and xij represents the
EEG signal value of j in the ith sample. Defining the classifier as
f (x) = ex/(1 + ex) allows y to be correctly predicted using the
class label y for any input x.

The logistic regression is expressed as:

P(yi = 1|Xi) = f (X′
iβ) =

exp(X′
iβ)

1+ exp(X′
iβ)

(2)

where β = (β0,β1, ...,βp) is the estimated coefficient, and note is
the intercept. The log likelihood is

l(β|D) = −
n∑

i=1

{yilog[f (X′
iβ)]+ (1− yilog[1− f (X′

iβ)])}. (3)

We obtain β by minimizing the log likelihood. In high-
dimensional applications with p >> n, directly solving the
logical model given in Equation (3) is ill-posed and may lead to
over-fitting. Therefore, it is necessary to apply a regularization
method to solve the over-fitting problem. When adding a
regularization term to Equation (3), the sparse logistic regression
can be modeled as:

β = argmin{l(β|D)+ λ

p∑

j=1

P(βi)}, (4)

where λ > 0 is an adjusting parameter and P(β) is a
regularization item. The most popular regularization technique
is Lasso (L1) (Tibshirani, 1996), which uses the regularization
term P(β) =

∑
|β|. In recent years, many Lq-type

regularization terms have been proposed, including SCAD
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(Shailubhai et al., 2000), Elastic Net (Maglietta et al., 2007), and
MC+ (Wiese et al., 2007).

In theory, Lq-type regularization P(β) =
∑

|β|q with a
lower q value will result in a better solution with more sparsity,
such as signal recovery problem and genetic selection (Xu et al.,
2010, 2012; Liang et al., 2013). However, when q is very close to
zero, convergence may be difficult. Therefore, Xu et al. (2010)
further explored the nature of Lq(0 < q < 1) regularization
and revealed the importance and effects of L1/2 regularization.
They proposed that when 1

2 < q < 1, L1/2 regularization
produces themost sparse results, with relatively easy convergence
compared with L1 regularization. At 0 < q < 1

2 , there is
no significant difference in the performance of the Lq penalty.
Furthermore, solving L1/2 normalization is much simpler than
solving L0 normalization. Therefore, L1/2 regularization can be
used as a representative of Lq(0 < q < 1) regularization. In this
paper, we apply the L1/2 penalty to the logistic regression model.
A sparse logistic regression model based on the L1/2 penalty has
the following form:

β1/2 = argmin{l(β|D)+ λ

p∑

j=1

|βj|
1
2 }. (5)

L1/2 regularization has been shown to have many attractive
features, including unbiasedness, sparsity, and oracle features (Xu
et al., 2010, 2012; Liang et al., 2013). Theoretical and experimental
analyses show that regularization is a competitive approach.
Our work in this paper also reveals the effectiveness of L1/2
regularization in solving non-linear logistic regression problems
with a small number of predictive features (EEG signals).

2.2.2. Coordinated Descent Algorithm for L1/2 Penalty

Logistic Regression
The coordinate descent algorithm (Friedman et al., 2007, 2010)
is a “single-at-time” method. Its basic steps can be described as
follows: for each coefficient, the remaining elements are partially
fixed relative to the optimization objective function βj(j =
1, 2, ..., p) in the nearest updated value.

Before introducing the coordinate reduction algorithm for
non-linear logistic regularization, we first consider the linear
regularization case. Assuming that dataset D has n samples, D =
(X1, y1), (X2, y2), ..., (Xn, yn), where Xi = (xi1, xi2, ..., xip) is the ith
input variable, the dimension is p, and yi is the corresponding
response variable. Variables are standardized:

∑n
i=1 xij

2 = 1
and

∑n
i=1 yi = 0. Therefore, the linear regression of the

regularization term can be expressed as:

R(β) = argmin{
1

n

n∑

i=1

(yi − X′β)2 + λ

p∑

j=1

P(βj)}, (6)

where P(β) is the regularization term. The coordinate descent
algorithm can be used to solve βj, and the other βk 6=j (k 6= j
represents the parameters that remain after jth the element is
removed) are fixed. According to the idea of coordinate descent

algorithm, only one variable is optimized at each time and other
variables are fixed. The function can be expressed as

F(β) =
1

n
(yi −

∑

k 6=j

xikβk + xijβj)
2 + λ

∑

k 6=j

P(βk)+ λP(βj). (7)

The first derivative βj can be estimated as:

∂R

∂βj
=

n∑

i=1

(−xij(yi −
∑

k 6=j

xikβk − xijβj))+ λP(βj)
′ = 0. (8)

Defining ỹi
(j) =

∑
k 6=j xikβk as the partial residual for fittingβj

and ωj =
∑n

i=1 xij(yi − ỹi
(j)), the univariate soft thresholding

operator of the coordinate descent algorithm (Busso et al., 2004)
for L1 regularization (Lasso) can be defined as:

βj = S(ωj, λ) =





ωj + λ if ωj < −λ

ωj − λ if ωj > λ

0 if |ωj| < λ

. (9)

Similarly, for L0 regularization, the threshold operator of the
coordinate descent algorithm can be defined as:

βj = Half (ωj, λ) = ωI(|ωj| > λ), (10)

where I is the indicator function. This formula is equivalent to
the hard thresholding operator (Silva et al., 2004).

According to Equations (9) and (10), different penalties
are associated with different threshold operators. Therefore,
Xu et al. (2012) proposed a semi-threshold operator to solve
the L1/2 regularization of linear regression models, using an
iterative algorithm that can be considered a multivariate half-
threshold method. In this paper, we present a univariate half-
threshold operator for the coordinate reduction algorithm for
L1/2 regularization. Based on Equation (8), the gradient of L1/2
regularization at βj can be expressed as:

∂R

∂βj
= βj − ωj + λ

sign(βj)

4
√
|βj|

= 0, (11)

where βj > 0 and
√
|βj| = µ,βj = µ2. When βj > 0, the

equation (11) can be redefined as:

µ3 − ωjµ +
λ

4
= 0. (12)

A univariate half-threshold operator can be expressed as:

βj = Half (ωj, λ) =

{
2
3ωj(1+ cos(

2(π−φλ(ωj))

3 )) if |ωj| > 3
4 (λ)

2
3

0 otherwise,

(13)
where φλ(ω) satisfies:

cos(φλ(ω)) =
λ

8
(
|ω|
3
)−

2
3 .
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The L1/2 regularized coordinate reduction algorithm reuses
the univariate half-threshold operator. This coordinate descent
algorithm for regularization can be extended to sparse logistic
regression models. Based on the objective function of sparse
logistic regression (Equation 4), a Taylor series expansion of l(β)
has the following formula:

L(β , λ) ≈
1

2n

n∑

i=1

(Zi − Xiβ)
′Wi(Zi − Xiβ)+

p∑

j=1

P(βj), (14)

where Zi = Xiβ̃ + Yi−f (Xiβ̃)

f (Xiβ̃)(1−f (Xiβ̃))
is an estimated response,

Wi = f (Xiβ̃)(1 − f (Xiβ̃)) is a weight, and f (xiβ̃) = exp(Xiβ̃)

(1+exp(Xiβ̃))

is a value evaluated using the current parameters. Redefining the
partial residual for fitting the current β̃ as:

Z̃i
(j) =

n∑

i=1

Wi(Z̃i −
∑

k 6=j

xikβ̃k), (15)

n∑

i=1

xij(Zi − Z̃i
(j)
), (16)

we can directly apply the coordinate descent algorithm with the
L1/2 penalty for sparse logistic regression.

3. RESULTS

Sparse logistic regression with the L1/2, L1 penalties, and Ridge
Regression and the Elastic Net method were tested using the
simulated dataset and the real dataset. Four evaluation methods
were used to evaluate the performance of the proposed model.
A confusion matrix was used to compare the results between
the various methods. This is a situation analysis table that
summarizes the prediction results of a classification model in
machine learning. The records in the dataset are summarized in
matrix form according to the real category and the classification
criteria predicted by the classification model. The rows of the
matrix represent the true values, and the columns represent the
predicted values. The computational accuracy of the proposed
method was also used as a measure of quality, where the accuracy
is defined as the ratio of the number of samples correctly
classified by the classifier to the total number of samples in
the test dataset. However, accuracy is not always effective for

performance evaluation, especially if the number of samples
with different labels are not exactly equal. Therefore, we also
analyzed precision and recall for further comparison of the three
two-classifiers. Here, precision refers to the proportion of all
predicted true positives in positive classes, and recall refers to
the proportion of positives found in all positive classes. All
experiments used 5-fold cross-validation to ensure the stability
of the proposed model.

3.1. Analysis of Simulation Dataset
We used sparse logistic regression with the L1/2, L1 penalties,
and Ridge Regression and Elastic Net for experiments and
comparisons.Table 1 shows the accuracy and recall results for the
three categories and four methods using the simulation dataset.

As shown in Table 1, in terms of precision, the sparse logistic
regression method with the L1/2 penalty proposed in this paper
was superior to the other methods in all three categories. For
neutral emotion, the precision of the proposedmethodwas 100%,
which was 2, 2, and 8% higher than those of the Elastic Net
method, sparse logistic regression with L1 penalty, and Ridge
Regression, respectively. For positive emotion, the precision of
the proposed method was 99%, which was 5, 2, and 15% higher
than those of the Elastic Net method, sparse logistic regression
with L1 penalty, and Ridge Regression, respectively. For negative
emotion, the precision of the proposed method was 100%, which
was 2, 2, and 37% higher than those of the Elastic Net method,
sparse logistic regression with L1 penalty, and Ridge Regression,
respectively. In terms of recall rate and precision rate, the results
for sparse logistic regression with L1/2 penalty were better than
those of the other three methods for positive emotion, negative
emotion, and neutral emotion. For neutral emotion, the recall
rate of the proposed method was 100%, which was 1, 1, and
16% higher than those of the Elastic Net method, sparse logistic
regression with L1 penalty, and Ridge Regression, respectively.
For positive emotion, the recall rate of the proposed method
was 100%, which was 15% higher than that of the sparse logistic
regression method with Ridge Regression, and the same as those
of the Elastic Net method and sparse logistic regression with L1
penalty. For negative emotion, the recall rate of the proposed
method was 98%, which was 10, 6, and 29% higher than those of
the Elastic Net method, sparse logistic regression with L1 penalty,
and Ridge Regression, respectively. Overall, the experimental
results show that sparse logistic regression with the L1/2 penalty
is superior to the three existing regularization methods.

TABLE 1 | Precision and recall results for sparse logistic regression with L1/2 and L1 penalties, Ridge Regression and Elastic Net.

Method
Neutral Positive Negative

Precision Recall Precision Recall Precision Recall

L1/2 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02

L1 0.98 ± 0.006 0.99 ± 0.02 0.97 ± 0.01 1.00 ± 0.01 0.98 ± 0.02 0.92 ± 0.03

Ridge Regression 0.92 ± 0.01 0.84 ± 0.02 0.84 ± 0.09 0.85 ± 0.08 0.63 ± 0.01 0.69 ± 0.03

Elastic Net 0.98 ± 0.01 0.99 ± 0.01 0.94 ± 0.02 1.00 ± 0.00 0.98 ± 0.02 0.88 ± 0.01

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the criteria for judging the quality of the method. Numbers indicate the best of the four results.
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Figure 2 shows the confusionmatrix for generating prediction
results using sparse logistic regression with the L1/2 and L1
penalties for simulation datasets. As shown in Figure 2, the
accuracy of the sparse logistic regression method with L1/2
penalty was 99.6%, and The results of the proposed method
were significantly better than those obtained using sparse
logistic regression with L1 penalty or Ridge Regression, or the
Elastic Net method (Supplementary Figure 1). In the simulated
dataset, there is only one label that was predicted incorrectly,
using the sparse logistic regression method with L1/2 penalty.
However, there are six labels that were predicted incorrectly
using the sparse logistic regression method with L1 penalty.
Thus, sparse logistic regression with the L1/2 penalty had the
highest classification accuracy and the best effects, indicating
the superiority of this method in terms of accuracy for the
classification of datasets. Next, we tested our method using a real
EEG emotion dataset.

3.2. Analysis of Beta Band Dataset
Sparse logistic regression with the L1/2, L1 penalties, and Ridge
Regression and Elastic Net were used for all experiments and
comparisons. Table 2 shows the accuracy and recall for the three
categories using the four methods for this dataset.

As shown in Table 2, in terms of precision, the sparse logistic
regression method with L1/2 penalty proposed in this paper
was superior to other methods in all three categories. For
neutral emotion, the precision of the proposed method was 80%,

which was 4, 6, and 7% higher than those of the Elastic Net
method, and sparse logistic regression with L1 penalty and Ridge
Regression, respectively. For positive emotion, the precision
of the proposed method was 74%, which was 3, 7, and 5%
higher than those of the Elastic Net method, and sparse logistic
regression with L1 penalty and Ridge Regression, respectively.
For negative emotion, the precision of the proposed method
was 77%, which was 13, 5, and 10% higher than those of the
Elastic Net method, and sparse logistic regression with L1 penalty
and Ridge Regression, respectively. In terms of recall rate and
precision rate, the results of the sparse logistic regression method
with L1/2 penalty were better than those of the other three
methods for positive emotion, negative emotion, and category
3. For neutral emotion, the recall rate of the proposed method
was 70%, which was 4 and 2% higher than those of Elastic
Net method and sparse logistic regression with L1 penalty,
respectively, and the same as that of Ridge Regression. For
positive emotion, the recall rate of the proposed method was
81%, which was 14, 9, and 14% higher than those of the Elastic
Net method, and sparse logistic regression with L1 penalty and
Ridge Regression, respectively. For negative emotion, the recall
rate of the proposed method was 81%, which was 5, 7, and 10%
higher than those of the Elastic Net method, and sparse logistic
regression with L1 penalty and Ridge Regression, respectively.
Overall, the experimental results show that the sparse logistic
regression method with L1/2 penalty is superior to the three
existing regularization methods.

FIGURE 2 | The confusion matrix using simulation dataset. (A) Confusion matrix for generating prediction results using sparse logistic regression with L1/2 penalty,

(B) Confusion matrix for generating prediction results using sparse logistic regression with L1 penalty.

TABLE 2 | Precision and recall results for sparse logistic regression with L1/2 and L1 penalties, Ridge Regression and Elastic Net for the beta band dataset.

Method
Neutral Positive Negative

Precision Recall Precision Recall Precision Recall

L1/2 0.80 ± 0.01 0.71 ± 0.01 0.74 ± 0.02 0.81 ± 0.03 0.77 ± 0.02 0.81 ± 0.04

L1 0.74 ± 0.01 0.68 ± 0.02 0.67 ± 0.01 0.72 ± 0.03 0.72 ± 0.02 0.74 ± 0.03

Ridge Regression 0.73 ± 0.03 0.70 ± 0.04 0.69 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.71 ± 0.02

Elastic Net 0.76 ± 0.01 0.66 ± 0.04 0.71 ± 0.01 0.67 ± 0.01 0.64 ± 0.04 0.76 ± 0.02

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the criteria for judging the quality of the method. Numbers indicate the best of the four results.
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Supplementary Figure 2 shows an accuracy box plot for the
different methods obtained using 5-fold cross-validation. It can
be seen from the box plot that the results for the sparse logistic
regression method with L1/2 penalty were significantly better
than those of the other three methods.

Figure 3 shows the confusionmatrix for generating prediction
results using sparse logistic regression with the L1/2 and L1
penalties for the two datasets. As shown in Figure 3, the
accuracy of sparse logistic regression with L1/2 penalty was
77.3%, and the results obtained with the proposed method were
significantly better than those for sparse logistic regression with
the L1 penalty or Ridge Regression or the Elastic Net method
(Supplementary Figure 3). In the SEED Beta band dataset, there
were 30 labels that were predicted incorrectly using the sparse
logistic regression method with L1/2 penalty with the main
errors concentrated in the Neutrals class. However, compared
with the sparse logistic regression method with L1/2 penalty, the
number of incorrect labels is 5 fewer. It can be concluded that
sparse logistic regression with the L1/2 penalty has the highest
classification accuracy and the best effects, indicating that this
method is more accurate for the classification of datasets.

In order to verify the sparsity of the L1/2 penalty logistic
regression in EEG sentiment dataset. This paper counts the
number of data points retained after different Sparse methods are
run. As can be seen from the Table 3, in the SEED-band data set,
the L1/2 penalty retains the least number of points. In the three
binary classifiers, only 125 data points are retained, while the L1
method retains 252, 199, and 271 data points, respectively. Ridge
regression and Elastic Net retained all data points. This verifies
that in the EEG sentiment dataset, the L1/2 penalty used in this
paper has the best sparsity.

3.3. Analysis of Combined Band Dataset
As shown in Table 4, in terms of precision, the sparse logistic
regression method with L1/2 penalty proposed in this paper was
superior to the other methods in all three categories. For neutral

emotion, the precision of the proposed method was 85%, which
was 4, 3, and 2% higher than those of the Elastic Net method,
sparse logistic regression with L1 penalty, and Ridge Regression,
respectively. For positive emotion, the precision of the proposed
method was 90%, which was 2% higher than that of sparse logistic
regression with L1 penalty or Ridge Regression, and the same as
that of Elastic Net method. For negative emotion, the precision of
the proposed method was 86%, which was 8 and 11% higher than
those of the Elastic Net method and Ridge Regression, and the
same as that of sparse logistic regression with L1 penalty. In terms
of recall rate and accuracy rate, the results of the sparse logistic
regression method with L1/2 penalty were better than those of the
other three methods for positive emotion, negative emotion, and
category 3. For neutral emotion, the recall rate of the proposed
method was 87%, which was 2 and 4% higher than those of
the Elastic Net method and sparse logistic regression with L1
penalty, respectively, and the same as that of Ridge Regression.
For positive emotion, the recall rate of the proposed method was
88%, which was 7% higher than that of the Elastic Net method,
and the same as those of the sparse logistic regression methods
with L1 penalty and Ridge Regression. The greatest differences
between methods were seen in the negative emotion category,

TABLE 3 | The results of Number of points retained after sparsification by the

sparse Logistic regressions with L1/2, L1 penalties, Ridge Regression, and Elastic

Net in beta band dataset.

Method Classifier 1 Classifier 2 Classifier 3

L1/2 125 125 125

L1 252 199 271

Ridge Regression 410 410 410

Elastic Net 410 410 410

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the

criteria for judging the quality of the method. Numbers indicate the best of the four results.

FIGURE 3 | The confusion matrix using beta band dataset. (A) Confusion matrix for generating prediction results using sparse logistic regression with L1/2 penalty,

(B) Confusion matrix for generating prediction results using sparse logistic regression with L1 penalty.
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where the recall rate of the proposed method was 86%, which
was 3, 7, and 7% higher than those of the Elastic Net method, and
the sparse logistic regression methods with L1 penalty and Ridge
Regression, respectively. The experimental results show that the
sparse logistic regression method with L1/2 penalty is superior to
the three existing regularization methods.

Supplementary Figure 4 shows an accuracy box plot for the
different methods obtained from the 5-fold cross-validation. It
can be seen from the box plot that better results were obtained
with sparse logistic regression with the L1/2 penalty than with the
L1 penalty or Ridge Regression, or with the Elastic Net method.
The fluctuation range for sparse logistic regression with the L1/2
penalty was not large, demonstrating that the proposed method
is more stable than the others. Thus, even in the worst case, it is
superior to the other methods.

Figure 4 shows the confusionmatrix for generating prediction
results using sparse logistic regression with the L1/2 and L1
penalties for the two datasets. As shown in Figure 4, the accuracy
of the sparse logistic regression method with L1/2 penalty was
87.1%, and the results obtained with the proposed method were
significantly better than those for sparse logistic regression with
the L1 penalty or Ridge Regression, or the Elastic Net method
(Supplementary Figure 5). In the SEED combined band dataset,
there are 30 labels that were predicted incorrectly using the
sparse logistic regression method with L1/2 penalty with the main
errors concentrated in the Negatives class. However, compared

with the sparse logistic regression method with L1/2 penalty,
the number of incorrect labels is four fewer. Thus, it can be
concluded that sparse logistic regression with the L1/2 penalty
was the most accurate method for classification of the EEG
emotion recognition dataset.

In the SEED-combine dataset, similar conclusions are
obtained in this paper. As can be seen from the Table 5, the
L1/2 penalty retained only 111, 111, and 140 data points in the
three binary classifiers, while the L1 method retained 214, 163,
and 22 data points, respectively. Ridge regression and Elastic Net
retained all data points. The L1/2 penalty retained the fewest data
points but gave the best results. It shows that the L1/2 penalty used
in this paper has excellent sparsity in EEG sentiment data.

3.4. Analysis of DEAP Dataset
As can be seen from Table 6, in the SEED dataset, the logistic
regression based on the L1/2 penalty proposed in this paper
obtained the best results. In terms of the average accuracy, the
result of the logistic regression method based on L1/2 penalty
reached 71%. Compared to the Ridge Regression and Elastic Net
methods, it has improved by 1%. Compared to L1 penalty, it
is increased by 3%. In terms of standard deviation, the logistic
regression of L1/2 penalty has the smallest fluctuation, showing
excellent stability.

Supplementary Figure 6 shows an accuracy box plot for the
different methods obtained using 5-fold cross-validation. It can

TABLE 4 | Precision and recall results for sparse logistic regression with L1/2 and L1 penalties, Ridge Regression and Elastic Net in the combined band dataset.

Method
Neutral Positive Negative

Precision Recall Precision Recall Precision Recall

L1/2 0.86 ± 0.01 0.87 ± 0.01 0.90 ± 0.05 0.88 ± 0.02 0.86 ± 0.03 0.86 ± 0.03

L1 0.82 ± 0.04 0.79 ± 0.06 0.88 ± 0.01 0.88 ± 0.01 0.86 ± 0.07 0.79 ± 0.01

Ridge Regression 0.83 ± 0.01 0.87 ± 0.01 0.88 ± 0.04 0.88 ± 0.01 0.75 ± 0.05 0.79 ± 0.01

Elastic Net 0.81 ± 0.02 0.83 ± 0.02 0.90 ± 0.02 0.81 ± 0.05 0.78 ± 0.01 0.83 ± 0.03

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the criteria for judging the quality of the method. Numbers indicate the best of the four results.

FIGURE 4 | The Confusion matrix using combined band dataset. (A) Confusion matrix for generating prediction results using sparse logistic regression with L1/2

penalty, (B) Confusion matrix for generating prediction results using sparse logistic regression with L1 penalty.
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TABLE 5 | The results of Number of points retained after sparsification by the

sparse Logistic regressions with L1/2, L1 penalties, Ridge Regression, and Elastic

Net in combined band dataset.

Method Classifier 1 Classifier 2 Classifier 3

L1/2 111 111 140

L1 214 163 226

Ridge Regression 323 323 323

Elastic Net 323 323 323

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the

criteria for judging the quality of the method. Numbers indicate the best of the four results.

be seen from the box plot that the results for the sparse logistic
regression method with L1/2 penalty were significantly better
than those of the other three methods.

Table 7 shows the number of loci retained by different
methods after calculation. Among them, the L1/2 penalty
performed very well, retaining only 301 sites, compared to the
1,537 sites retained by the L1 penalty. The L1/2 penalty retained
80.4% of the sites, but the final result was better than the L1
penalty. Experimental results show that the L1/2 penalty has the
best sparsity in the EEG dataset, L1 has poor sparsity, and Ridge
Regression and Elastic Net do not have sparsity.

4. DISCUSSION

In EEG sentiment classification, only a small portion of the
EEG signal strongly indicates the individual’s emotional state.
Therefore, feature selection methods play an important role. In
this paper, we propose a sparse logistic regression model based
on the L1/2 penalty and develop the corresponding coordinate
descent algorithm as a new EEG feature selection method. The
proposed method uses a new univariate half threshold to update
the estimated coefficients. In typical regularization methods, the
sparsity of the L0 penalty is theoretically the best; however, this
method is difficult to solve, making it less practical. The L1
penalty and Ridge Regression are theoretically mature and are
commonly used. However, neither has good enough sparsity.
There are regularizers that are sparser than the L1 penalty, such
as L1/2 (Xu et al., 2010, 2012). Our results suggest that for EEG
emotion datasets, higher sparsity leads to finding features from
the EEG signal that are more relevant and have better predictive
power for emotion classification.

The L1/2 penalty has been used with very good results in
many fields, including image processing and genetic data (Liang
et al., 2013; Liu et al., 2014; Huang et al., 2016). This method
is very suitable for small-sample, high-dimensional data, such
as emotion-based EEG datasets. The existing public datasets
typically contain small samples with high dimensions and high
levels of noise. If all EEG signals are included in the calculations,
the algorithm will have high computational complexity and
be prone to overfitting. Therefore, in this work, we used the
L1/2 penalty combined with logistic regression and proposed
a new three-class sparse logistic regression model. The results
demonstrate that the logistic regressionmethod based on the L1/2
penalty performs better than other regularization methods. That

TABLE 6 | The results of accuracy, precision and recall by the sparse Logistic

regressions with L1/2, L1 penalties, Ridge Regression, and Elastic Net in DEAP

dataset.

Method
Positive Negative

Accuracy

Precision Recall Precision Recall

L1/2 0.76 ± 0.02 0.79 ± 0.02 0.65 ± 0.03 0.67 ± 0.02 0.73 ± 0.01

L1 0.73 ± 0.03 0.75 ± 0.03 0.60 ± 0.06 0.58 ± 0.02 0.68 ± 0.03

Ridge

Regression

0.73 ± 0.02 0.71 ± 0.06 0.62 ± 0.03 0.62 ± 0.03 0.70 ± 0.013

Elastic Net 0.73 ± 0.02 0.71 ± 0.06 0.63 ± 0.03 0.65 ± 0.05 0.70 ± 0.012

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the

criteria for judging the quality of the method. Numbers indicate the best of the four results.

TABLE 7 | The results of Number of points retained after sparsification by the

sparse Logistic regressions with L1/2, L1 penalties, Ridge Regression, and Elastic

Net in DEAP dataset.

Method Classifier 1

L1/2 301

L1 1,537

Ridge Regression 2,082

Elastic Net 2,082

Neutral, Positive and Negative are Emotional categories. Precision and Recall are are the

criteria for judging the quality of the method. Numbers indicate the best of the four results.

is, the sparseness of the L1/2 penalty in the EEG emotional dataset
was better than those of the L1 penalty and Ridge Regression.
Simulation and real data experiments showed that sparse logistic
regression with the L1/2 penalty achieved higher classification
accuracy than the conventional L1, Ridge Regression, and Elastic
Net regularization methods. Therefore, sparse logistic regression
with L1/2 penalty is an effective technique for EEG sentiment
classification. To verify the sparsity of the L1/2 penalty logistic
regression in EEG sentiment dataset, we count the first five
EEG Positions retained by the L1/2 penalty in two datasets
(Supplementary Tables 1, 2). Based on data from brainmaster
magazine (company) and existing articles (Larsen et al., 2000;
Jordan et al., 2001; Lin et al., 2010; Zheng and Lu, 2015). In SEED
dataset, all electrode points, including FP1, F8, FPZ, FT8, and FP2
are related to Experiencing/processing emotion. In the DEAP
dataset, among them FC5, FC6, CP6, and PO4 Positions are
related to Experiencing/processing emotion. The AF3 Position
is related to Fear response. Combining the L1/2 penalty in the
experiment, yielded the least points of all methods. This shows
that the L1/2 penalty has good sparsity for EEG sentiment data.
It may also mean that the AF3 Position and EEG processing
emotion are highly correlated. In this work, we only combined
the L1/2 penalty with the logistic regression method and did not
consider combinations including the latest brain networks or
deep learning methods (Bernal et al., 2019). Therefore, further
work is needed. However, we believe that our proposed approach
complements existing sparse methods for EEG emotional data
classification well (Wang et al., 2019), which will help researchers
to better analyze such data.
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