
ORIGINAL RESEARCH
published: 13 January 2021

doi: 10.3389/fninf.2020.542169

Frontiers in Neuroinformatics | www.frontiersin.org 1 January 2021 | Volume 14 | Article 542169

Edited by:

David A. Gutman,

Emory University, United States

Reviewed by:

Graham J. Galloway,

University of Queensland, Australia

Ashwin Vishwanathan,

Princeton University, United States

*Correspondence:

Yuxin Li

liyuxin@xaut.edu.cn

Anan Li

aali@hust.edu.cn

Received: 11 March 2020

Accepted: 11 December 2020

Published: 13 January 2021

Citation:

Li Y, Li A, Li J, Zhou H, Cao T, Wang H

and Wang K (2021) webTDat: A

Web-Based, Real-Time, 3D

Visualization Framework for

Mesoscopic Whole-Brain Images.

Front. Neuroinform. 14:542169.

doi: 10.3389/fninf.2020.542169

webTDat: A Web-Based, Real-Time,
3D Visualization Framework for
Mesoscopic Whole-Brain Images

Yuxin Li 1,2*, Anan Li 3,4,5*, Junhuai Li 1,2, Hongfang Zhou 1,2, Ting Cao 1,2, Huaijun Wang 1,2 and

Kan Wang 1,2

1 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China, 2 Shaanxi Key Laboratory of

Network Computing and Security Technology, Xi’an, China, 3Wuhan National Laboratory for Optoelectronics, Britton Chance

Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China, 4MoE Key Laboratory for

Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China,
5HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China

The popularity of mesoscopic whole-brain imaging techniques has increased

dramatically, but these techniques generate teravoxel-sized volumetric image data.

Visualizing or interacting with these massive data is both necessary and essential in

the bioimage analysis pipeline; however, due to their size, researchers have difficulty

using typical computers to process them. The existing solutions do not consider

applying web visualization and three-dimensional (3D) volume rendering methods

simultaneously to reduce the number of data copy operations and provide a better way

to visualize 3D structures in bioimage data. Here, we propose webTDat, an open-source,

web-based, real-time 3D visualization framework for mesoscopic-scale whole-brain

imaging datasets. webTDat uses an advanced rendering visualization method designed

with an innovative data storage format and parallel rendering algorithms. webTDat

loads the primary information in the image first and then decides whether it needs

to load the secondary information in the image. By performing validation on TB-scale

whole-brain datasets, webTDat achieves real-time performance during web visualization.

The webTDat framework also provides a rich interface for annotation, making it a useful

tool for visualizing mesoscopic whole-brain imaging data.

Keywords: visualization, 3D volume, terabyte images, software framework, whole-brain imaging

INTRODUCTION

The brain is one of the most complex organs in nature. Due to the large number of neurons in
the brain and the complex structural connections between them, mapping a brain-wide network
at mesoscopic resolution is critical for revealing brain function mechanisms (Lichtman and Denk,
2011; Koch and Reid, 2012). With the development of transgenic technology, neuronal tracers,
and optical imaging, mesoscopic-scale whole-brain imaging has become a vital imaging technology
for obtaining high-resolution brain connectivity information throughout the entire brain (Osten
and Margrie, 2013; Mitra, 2014). These technologies include micro-optical sectioning tomography
(MOST) (Li et al., 2010; Gong et al., 2016), serial two-photon tomography (STP) (Ragan et al.,
2012; Economon et al., 2016), and light-sheet microscopy (LSM) (Niedworok et al., 2012), which
can rapidly scan a complete mouse brain at submicrometric resolution in three dimensions or

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.542169
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.542169&domain=pdf&date_stamp=2021-01-13
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liyuxin@xaut.edu.cn
mailto:aali@hust.edu.cn
https://doi.org/10.3389/fninf.2020.542169
https://www.frontiersin.org/articles/10.3389/fninf.2020.542169/full

Li et al. webTDat

multiple dimensions. However, such scans comprise more than
10 TB of image data (Li et al., 2019), making them too large to
be processed by typical computers. The large size of mesoscopic
whole-brain data has posed a significant challenge to efficient
visualization of and interaction with these datasets (Helmstaedter
and Mitra, 2012), which are basic and essential tasks in the
bioimage analysis pipeline (Peng, 2008; Walter et al., 2010;
Meijering et al., 2016).

In recent years, many excellent large-scale image visualization
methods have emerged in the field of bioimage informatics.
The basic strategy for visualizing large-scale images is to use
a multiresolution technique and image dicing. Such operations
divide the data into many small blocks and store multiple
copies of data at different resolutions. Subsequently, based on
the resolution of the rendering window (screen), the image
blocks with an appropriate resolution are loaded for visualization.
According to the different data presentation methods, these
methods can be classified into three categories: two-dimensional
(2D) cross-sectional views, tri-planar (including arbitrary cross-
sectional) views, and 3D visualizations. To construct 2D cross-
sectional views, the early proposed methods mostly used 2D
cross-sectional software such as CATMAID (Saalfeld et al., 2009)
and Zoomify (Zoomify Inc, California, US). These methods
process each 2D tomography image in a 3D image stack
separately and then display them in 2D. These methods are
similar to Image/Fiji, a widely used image analysis tool. By
switching among different layers along one dimension, the
complete 3D image can be browsed. Each two-dimensional
tomography image is stored as a quadtree. Low-resolution
images are displayed when viewing large-range images and
high-resolution images are displayed when viewing small-range
images, similar to Google Maps. The tri-planar view is an
extension of the 2D cross-sectional view that displays all the XY,
XZ, and ZY cross-sectional planes simultaneously. The typical
methods include SSECRETT (Jeong et al., 2010), M-DIP (Lin
et al., 2013), KNOSSOS (webKNOSSOS) (Helmstaedter et al.,
2011; Boergens et al., 2017), BigDataViewer (Pietzsch et al.,
2015), Neuroglancer (https://github.com/google/neuroglancer),
etc. These methods select a region of interest (ROI) from the
data and then visualize it in multiple 2D cross-section views
(tri-view or arbitrary 2D cross-section view). However, these
cross-sectional view-based methods are not intuitive enough to
observe or understand the 3D information in the volumetric
image (Long et al., 2012; Bria et al., 2016). Therefore, in recent
years, various 3D-based massive image visualization methods
have been proposed, including Terafly (Bria et al., 2016), Amira-
XLVolume (FEI, Mérignac Cedex, France), Imaris-IMS (Oxford
Instruments plc, Abingdon, UK) and our previous work, TDat
(Li et al., 2017). These methods are based on specific image
formats similar to an octree, allowing 3D ROIs to be selected
directly from the massive data and rendered, providing a better
visualization approach.

However, due to the massive data volumes, storing the data
in local computers for processing, analysis, and visualization
means thatmakingmany data copies so that researchers can work
collaboratively difficult. Consequently, processing and visualizing
the data stored on the server side through the network has

become a developing trend in this field. With the development
of 5G and cloud computing technology, which will be applied in
the field of bioimage informatics, the need for web visualization
of large-scale image data has become increasingly important and
necessary. Because 3D visualization uses larger data than does 2D
visualization, transferring and visualizing such high volumes of
data via the Internet is time-consuming. This situation means
that only a few 2D-based visualization methods can realistically
be applied on the web. In fact, most of the above 3D-based
visualization methods are limited to only local computers.
Consequently, the existing solutions cannot solve the bottleneck
imposed by the need for massive 3D volume transmissions over
limited network bandwidth.

To address this problem, we developedwebTDat, a web-based,
real-time 3D interactive visualization framework for mesoscopic-
scale whole-brain imaging datasets. webTDat adopts a fine-
grained data storage format that separates images by pixel bit
depth. This approach reduces the granularity during data accesses
and reduces the total size of the data needed for visualization by
up to 70% (half-bit mode). webTDat also includes a method to
dynamically render image pixel bits that achieves an excellent
response time (less than 400ms); this approach preferentially
renders the image’s primary information and returns the
semifinished image to users for interactive visualization.
Simultaneously, the image is continuously refreshed in the
background. webTDat includes a set of easy-to-handle interactive
logical operations. For example, simple mouse drag-and-click
operations can be used to accurately navigate through themassive
data. The webTDat framework not only provides interactive
visualization functions but also offers a rich interface for
annotation.Moreover, webTDat can be applied to almost all types
of mesoscopic whole-brain imaging data.

MATERIALS AND METHODS

Architecture
webTDat uses a conventional client-server (C/S) architecture for
data storage and retrieval. The raw image data are converted
to a fine-grained hierarchical data format stored in many 3D
files called bitBlocks. Each bitBlock contains only one bit-plane
of the information of the corresponding block. Each dataset
also includes metadata that describe other necessary information
about the data, such as the dataset size, the original data
resolution, file format, bit depth, level size, and file location.
Both the image data and the metadata are stored on the server-
side (the webTDat server). A client (webTDat viewer) first loads
the metadata and then requests and visualizes the image data
interactively. The server transmits bitBlocks to the client through
the network protocol; the bitBlocks are merged into a volume of
interest (VOI) for rendering and interactions on the client side.

Bit-Plane Separated Fine-Grained Data
Format
A multiresolution pyramid or octree is often used for large-
scale volume data storage. The whole volume is subsampled
recursively to create a hierarchy of resolutions. Each volume with
a different resolution is split into fixed-size 3D blocks. When

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2021 | Volume 14 | Article 542169

https://github.com/google/neuroglancer
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

data are being accessed or visualized, only a small number of
3D blocks need to be read at a suitable resolution level. Based
on this conventional hierarchical structure and our previous
work on TDat, we designed a bit-plane (bit-level)-separated, fine-
grained data format to enablemore efficient data access. webTDat
splits each 3D block into smaller files (bitBlocks) based on pixel
bit depth.

The main data transformation processes are as follows
(Figure 1): (1) Resolution downsampling: The raw volume is
downsampled by 2× recursively in the x, y, and z directions
to obtain volumes with different resolutions; this process is
conducted iteratively until the size of the lowest-resolution
volume is <128(x) × 128(y) × 128(z). (2) Dicing: For all
resolutions, each volume is split into nonoverlapping 3D blocks,
each with a fixed size of 128 × 128 × 128 voxels. (3) Pixel bit-
plane splitting: Each block is divided into different files according
to pixel bit depth. The gray value of each pixel is split into
multiple (eight or 16) binary values. The binary values on the
same bit-plane belonging to different pixels are merged into a
binary sequence. Each sequence contains the information of one
block for a single bit-plane. Every eight bits in the sequence are
stored into one byte (note that the values of these bytes have no
actual meaning). LZW lossless compression is used to form the
final encoded file (suffix of. tif), which is called a bitBlock. This
bit-plane separated storage method does not increase the data
volume: it simply reorganizes the pixel value bits in each block
into multiple files. Taking an 8-bit image volume as an example,
each block is split into eight bitBlocks that store eight gray levels.

Thus, the information quantity from the highest bit to the
lowest in the image is gradually reduced. Images split along bit-
planes can be used to render high-bit information preferentially
when visualized. The low-bit information is rendered later or not
at all, which reduces the amount of data that need to be loaded to
form an effective visualization.

A bitBlock file is named b.tif based on the bit-plane it contains;
thus, b represents a specific bit-plane and is indexed from high to
low. All bitBlocks are organized in a hierarchy of nested folders
composed of four levels (Figure 2), defined as follows:

res: this folder level contains datasets with different
resolutions, each of which is stored in a folder named levelr_data,
where r = 1 denotes the original resolution, and the resolution
corresponding to r + 1 is a 2× downsampling of the resolution
corresponding to r.

z: this folder level contains bitBlocks with the same z(depth)
position. Each group of bitBlocks is stored in a folder named zi,
where i refers to the index of bitBlocks in the z-direction.

y: this folder level contains bitBlocks at the same y (height)
position. Each group of bitBlocks is stored in a folder named yj,
where j refers to the index of bitBlocks in the y direction.

x: this folder level contains bitBlocks with the same x (width)
position. Each group of bitBlocks is stored in a folder named xk,
where k refers to the index of bitBlocks in the x direction.

Using this hierarchical folder structure each bitBlock has a
uniquely indexed address (URL).

A reformatting tool, webTDat reformatter, converts an
original dataset into the webTDat data format. The webTDat
reformatter adopts the same FPR data reformatting method as

TDat but adds the functionality for generating bitBlocks to FPR
(Li et al., 2017).

Dynamic Rendering of Image Pixel Bits
Web visualization requires transmitting image data from the
server to the client through the network. Compared with 2D
data, transmitting 3D volume data requires more bandwidth
and consumes more time, which increases the response time
during visualization. Therefore, based on the bit-plane-separated,
fine-grained data format, we propose a dynamic rendering of
image pixel bits technology, which improves the response time
of interactions and allows users to browse rapidly during web
visualization. This method prioritizes transmitting the high bit-
plane data. After a bit-plane of data has been transferred, the
client renders the data immediately, displaying it for users
for interaction and visualization. While interacting with the
current data, the data for the other bit-planes are transferred
synchronously to the client, which uses the new data to refresh
the image dynamically (Figure 3).

The process works as follows: two threads on the client side are
used to accomplish data transmission (T thread) and interactive
rendering (R thread), respectively. The T thread downloads
the bitBlocks needed for current visualization requests from
the server. The high bit-plane bitBlocks are transferred first.
When the bitBlocks of the first bit-plane have been completely
transferred, the T thread sends a signal to the R thread, which
decodes the transferred bitBlocks to generate a VOI containing
only one bit-plane and renders it, allowing user interaction to
begin as soon as possible. Then, even while the user is interacting
with the current VOI, the T thread continues to requires and
transfer the bitBlocks for the second bit-plane. After the second
bit-plane transmission is completed, the R thread is notified by
the T thread, and it combines these new bitBlocks with the
current VOI, which is dynamically refreshed and now displays
information for two bit-planes. Similarly, the bitBlocks of the
other bit-planes are transferred and dynamically rendered during
the VOI interaction. Because data rendering consumes little
time, dynamic rendering does not have a significant impact on
data interaction.

webTDat also provides an optional half-bit model that transfer
only half of the bitBlocks (for example, for an 8-bit image, only
the highest four bits of data are transmitted), which effectively
reduce the time and bandwidth consumed by data transmission.
When the image contrast is high, the image display shows no
apparent differences between the half-bit and full-bit models.

Volume Interactions Based on Drag-Click
Operations
Restricted by the resolution and performance of typical computer
displays and interactive devices, it is impossible to interact
directly with terabyte-sized volume images. By analyzing
the requirements of user interactions with mesoscopic-scale
whole-brain datasets during tasks such as neuron tracing,
brain registration, segmentation, and annotation, we devised a
novel volume interaction style based on drag-click operations
(Figure 4). Users can interactively select VOIs from a large-
scale volume through simple computer-mouse actions (drag,

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 1 | Illustration of a bit-plane-separated, fine-grained data format. The original volumetric data are recursively downsampled to generate three datasets with

different resolution levels (for illustrative purposes). Each dataset is first diced into 3D blocks; then, the 3D blocks are split by bit depth, and the split results (bitBlocks)

are stored separately.

FIGURE 2 | Schematic of the webTDat format. We take a set of whole mouse brain data that has been converted to webTDat format as an example. The bitBlocks

are organized as a four-level hierarchy of folders according to their levels and locations in the data space.

scroll, and click operations). webTDat includes two main types
of interactive functions: 3D interactive navigation and 2D
interactive annotation.

The 3D interactive navigation procedures are as follows. First,
the client loads metadata from the server side to determine the
entire dataset’s spatial coordinates. The client then loads the

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 3 | An illustration of dynamic image rendering. The squares of different colors represent the processes of data transmission, rendering, and interactive

visualization. Our proposed method transmits the data for each bit-plane individually to achieve a short response time. In contrast, the conventional methods must

transfer all the data before interactive visualization can begin.

entire dataset at low resolution from the server and renders it
to provide a 3D overview for users. A 3D rubber-band box is
supplied for selection and navigation during data interaction in
the interactive window. The region inside the navigation window
is the VOI that needs to be loaded. The size and position of the
3D box can be changed using drag-and-drop operations. Finally,
the client sends a request to the server to transmit the bitBlocks
corresponding to the VOI. The VOI is gradually dynamically
rendered from high-to-low bit-planes, as discussed above. The
resolution level R of a VOI is determined by the size of the
navigation window and calculated as follows:

R =

[

log2
(xmax − xmin) ×

(

ymax − ymin

)

× (zmax − zmin)

1024× 1024×M

]

(1)

where xmin, xmax, ymin, ymax, zmin, zmax represent the maximum
andminimum values in the x, y, and z directions of the navigation
window, respectively. M represents the upper limit of the size
of VOI that can be loaded each time (units: MB). The default
setting is 20, ensuring that the process will not load more than
20 MBvoxel at a time.

Two D interactive annotation: After the VOI has been
rendered on the client side, it can be displayed in a 2D
model. webTDat provides two kinds of 2D visualization models:
maximum intensity projection (MIP) mode and slice mode.
The MIP mode projects the 3D VOI to 2D planes (X-Y, Y-Z,
and X-Z planes). The users can control the thickness of the
projection. The slice mode shows three orthogonal slices for the
current VOI. The position of the projection and the slice can
be switched by moving the mouse wheel. In the 2D interaction
model, webTDat provides an interface for data annotation. Three
types of vector structure data are used to save annotation results:

point, line (tube), and 2D closed-contour surface. The annotation
interface can be activated by clicking the mouse button. Users can
add annotations either manually or automatically based on the
webTDat annotation interface while webTDat completes the data
I/O and rendering tasks.

Implementation
The webTDat framework is mainly written in C++ and
uses CMake for cross-platform deployment. Some open-source
libraries are used; these mainly include Qt5 for the GUI,
VTK for the rendering and interaction engine, libTIFF and
OpenCV for image processing, and Nginx for the HTTP server.
The software framework is publicly available on GitHub for
noncommercial use.

Source of Datasets and Computing
Environment
Two mesoscopic-scale whole-brain imaging datasets were used
in this work. Dataset1 is a Thy1-EGFP M-line transgenic
mouse whose whole brain was imaged using a two-photon
fluorescence Micro-Optical Sectioning Tomography system (2p-
fMOST) (Zheng et al., 2013). The voxel resolution is 0.32
× 0.32 × 2µm, the voxel size is 13,913 × 18,000 × 5115,
and the raw data size is 1.17 TB. The original animal study
was reviewed and approved by the Institutional Animal Ethics
Committee of Huazhong University of Science and Technology,
and detailed acquisition information can be found in the article.
Dataset2 constitutes the complete cerebellum of an L7-GFP
mouse acquired by confocal light sheet microscopy (CLSM). The
voxel resolution is 0.8 × 0.8 × 1µm, the voxel size is 3,662 ×

8,249 × 3,646, and the raw data size is 102.6 GB. The raw data
are publicly available fromHarvardDataverse (Silvestri, 2015a,b),

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 4 | Interaction style workflow of webTDat. The entire dataset can be

browsed by continuously selecting VOIs. The VOIs are set in 3D and annotated

in 2D. VOIs and their annotated results can be visualized in 3D or 2D.

and detailed information can be found in the article (Silvestri
et al., 2015).

The computing configuration used in this study was a
computer equipped with an i9-9900k CPU with 64 GB of RAM
and a GTX1060 GPU with 6 GB of RAM as well as a 6 TB
HDD. This computer was is used to generate the data format
and provide client-side services. The server was configured with
an i5-4570 CPU, 8 GB of RAM, an 8 TB HDD and a 100 Mbps
Ethernet connection.

RESULTS

Performance of the Bit-Plane Separated
Data Format
We analyzed the effect of the bit-plane separated data format
based on image rendering quality and the size of the data encoded
by different bit-planes (Figure 5). The results showed that this
format achieves an excellent performance with the described

fine-grained data division, and it proved suitable for network
transmission and visualization.

We converted Dataset1 into the webTDat format and
then selected two VOIs with different resolution levels for
visualization (Figure 5A). The time consumption required for
conversion is shown in Table 1. The data at different bit-planes
are read from high to low and combined to display the VOIs at
different bit depths. When only one bit-plane (the highest bit-
plane) of data was read and visualized, only the rough contours
in the image were displayed. However, as the number of bit-
planes of data read increased, the visualization effect became
increasingly sharp, and the detail visible in the image became
more abundant. After the data of 4 bit planes were read, as the
number of visualized bit planes increased, the visualization effect
changed little. We selected a 2D slice from the VOI in Figure 5A

(level 1), drew a radial line on the slice image and plotted the gray
values along this line at different bit depths (Figure 5B). When
the bit depth of the image exceeded 4 bits, the gray values changed
very little.

In addition, we also counted the file size of each bit-plane
after Dataset1 was converted into webTDat format (Figure 5C).
The highest four bit-planes occupied less than 30% of the storage
space but stored the dataset’s primary information. In contrast,
the lowest four bit-planes occupiedmore than 70% of the size and
stored details of the dataset; however, they had little impact on
the visualized data. Therefore, users can reduce the rendering bit
depths according to the desired data quality to reduce the amount
of data required for visualization.

We note that the image quality of Dataset1 is good, with
high image contrast. Therefore, the data in the lowest four bit-
planes have little influence on the image’s visualization effect.
If contrast, when an image has low contrast, the information
stored in the low four bit-planes of the image will significantly
affect the image quality. Some comprehensive image processing
algorithms could be applied to improve the contrast of the dataset
during image preprocessing. The main point here is to show that
webTDat separates images into bit-planes, forming the basis of
the visualization approach described above.

Benchmarks for Data Reformatting
We recorded various performance parameters when converting
Dataset1 to webTDat format and compared these parameters
with similar results from TDat (Table 1). Compared with TDat,
webTDat decreases the block size from 5123 voxels to 1283

voxels, and split each block into bitBlocks for storage. As a result,
webTDat supports more resolution levels and comprises more
files (three orders of magnitude higher) than does TDat. Because
of the large number of files, the lossless compression efficiency
of webTDat was slightly lower, and its conversion takes longer
than that of TDat. However, webTDat offers reduced memory
consumption during reformatting because the block size is
reduced compared with TDat. Although webTDat is slower than
TDat, it can process ∼1 terabyte of data per day on a common
computer. Moreover, webTDat’s reformatting performance is still
highly efficient compared to other similar software (Li et al.,
2017). webTDat adopts the same FPR algorithm as TDat for data
reformatting. This algorithm could be extended to more efficient

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 5 | Effect of the bit-plane-separated data format. (A) The rendering quality of two VOIs at different bit depths. The depth of the displayed VOIs increases

gradually from left to right. (B) The intensity profile of the 2D slice along the red dotted line at different bit depths. The slice was selected from the level 1 VOI above. A

plot profile of Fiji acquired the numerical value. (C) The file size of each bit-plane of Dataset1. The first four bit planes are shown together.

TABLE 1 | Comparison of data reformatting performance between webTDat and TDat.

The number of levels The number of files Total file size Time consumption Memory consumption

TDat 7 11,578 561 GB 7.86 h 3.5 GB

webTDat 9 5,635,504 718 GB 24.56 h 300 MB

computing platforms to achieve higher performance, such as
workstations and computer clusters.

The Performance of Dynamic Rendering
We tested the performance of data loading during visualization.
The results showed that the dynamic image rendering method
adopted by webTDat effectively reduces the response time during
the visualization process (Figure 6). We visualized three different
VOIs randomly selected from Dataset1, which was converted
to webTDat format. The sizes of the VOIs are 1003, 2003, and
5003 voxels, respectively. We counted the time consumption of
loading these VOIs during visualization (Figure 6A).

In contrast, we converted the same dataset into TDat format
and counted the time consumption required to load the same
VOI with TDat. Since the original TDat block size (5123 voxels)
is inconsistent with webTDat (1283 voxels), we also set the TDat
block size to 1283 pixels (called TDat128) and then compared
it with webTDat. Because TDat does not read data through the
network, the dataset was stored locally during the test. webTDat
has a short response time when loading data. For the 1003-
and 2003-voxel VOI sizes, webTDat consumed less than 200ms
to load the highest bit-plane data and render the results. In

contrast, TDat require reading all data at full-bit depth before
rendering the VOIs; thus, its response time exceeded 1 s. Because
the sizes of webTDat blocks are smaller than those of TDat, the
required data can be loaded at a finer granularity when rendering
VOIs, which reduces the amount of redundant data loaded while
reading. Interestingly, even when webTDat loaded all the bit
planes (eight bits) of data, its time consumption was still less than
that of TDat. For the 5003-voxel size VOI, webTDat required only
1.5 s to load the highest bit-plane data, while TDat consumed
more than 7 s to load the data. Although TDat128 and webTDat
have the same block granularity, the load speed of webTDat
is faster than that of the original TDat. Even TDat128 must
still load all the bit planes when rendering VOIs; consequently,
the response time of webTDat was still significantly lower than
that of TDat128 (Figure 6A). While TDat128 loaded all 8 bit-
planes data, webTDat could loaded 6-7 bit-planes data, which was
sufficient to display most of the information.

We also tested the time consumption of webTDat when

loading data through the network compared to loading data

through the local network (Figures 6C–E). The sizes of VOIs
were the same 1003, 2003, and 5003 voxels. Loading the data

through the network took slightly more time than loading

Frontiers in Neuroinformatics | www.frontiersin.org 7 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 6 | Time consumption to render VOIs from the webTDat dataset: (A) Time consumption to render VOIs at three fixed sizes with webTDat compared to the

time consumption required by the original TDat (TDat512) and TDat128. The webTDat results are displayed according to different bit depths. The different colors

represent different ROI sizes. This benchmark was conducted in a stand-alone environment. (B) Time consumption to render VOIs of random size by webTDat. The

results are displayed according to different bit depths. (C–E) Comparison of VOI rendering times between local and networked environments. The VOI sizes are 1003,

2003, and 5003 pixels. All the benchmarks were repeated more than 20 times for each ROI size, and the average runtime was calculated. The numerical data can be

found in the Supplementary Table.

through the local network. Simultaneously, the sizes of the high
bit-plane files were small, resulting in less network transmission
time consumption; therefore, the response times did not change
substantially. However, the sizes of the low bit-plane files
are larger; thus, with more bit-plane data to load, the time
consumption increased significantly.

In the tests described above, we tested the time consumption
during visualization by loading fixed-size VOIs. However,
in practice, webTDat does not load large-scale data during
visualization; instead, it calculates the resolution level at which
to load data automatically based on the size of the interaction
window, which determines the voxel sizes of the VOIs. We used
the interaction window to randomly select VOIs with different
sizes at diverse locations to simulate realistic usage conditions
and counted the time consumption needed to visualize these
VOIs. The results showed that the data response time during
visualization was less than 400ms and that the time to load all
bit-planes of data was <2 s (Figure 6B).

Interactive Visualization for Large-Scale
Volumes
webTDat allows users to browse mesoscopic whole-brain data
interactively with simple computer-mouse actions. We used
webTDat to perform interactive visualizations of Dataset1
(Figure 7). First, the rough (low resolution) whole-brain data

gives users an outline. Then, by sliding the interactive window,
the VOI scope is gradually narrowed, and the resolutions of
the loaded VOIs improved. The interactive window can be used
to select VOIs from the entire data space or to slide along a
structure of interest in the volume. Users could browse the VOIs
by switching modes, which include the 3D, MIP, and slice modes
(see the Supplementary Movie).

Support for Remote Data Annotation and
LSM Data
webTDat provides interactive data visualization capabilities and
offers rich interfaces for data annotation, which are integrated
into the webTDat viewer. We demonstrated the effect of data
annotation on Dataset1 (Figure 8). The annotation function
is activated by buttons in the visualization panel (Figure 8A).
Three types of annotation modes are provided, corresponding
to “point,” “line,” and “surface.” The first two modes must be
activated inMIPmode, while the “surface” mode can be activated
in slice mode. Figure 8B shows some sample annotation results
of the cell body (somas) of neurons in VOI; these somas were
stored as “point” structures. Figure 8C shows the annotation
results of neuron fibers, where the annotation results were saved
as “line” structures. Figure 8D shows how “surface” structures
can be used to store annotation results for the brain contour
in slice mode. A binary mask of the current slice could be

Frontiers in Neuroinformatics | www.frontiersin.org 8 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 7 | The webTDat interface when interactively browsing whole-brain data. The interactive window can be slid throughout the entire data space to select VOIs,

which can be displayed in 3D or 2D modes.

generated automatically by outlining the brain contour. webTDat
also provides various I/O capabilities for the annotation results,
which can be read, written, and visualized in webTDat viewer
(Figure 8E).

webTDat can also be used to visualize datasets generated by
other imaging systems, especially those generated by whole-brain
optical microscopy. Figure 8 shows a visualization of mouse
cerebellum data generated by CLSM (Dataset2). The raw data
were reformatted into webTDat format and stored on the server;
then, the data could be browsed in a variety of ways through
the webTDat viewer from any location (Figure 9). The webTDat
framework can be used to visualize any 3D biological image, and
its advanced rendering and visualization methods can be applied
to almost any type of image.

DISCUSSION

This study proposed webTDat, a web-based, real-time 3D
interactive visualization framework for large-scale volume
images. Although webTDat still uses the octree and the C/S
architecture, this study makes innovations based on those

two methods to remove the bottleneck between the need to
transmit large-scale data and the limited bandwidth available
for network-based visualization. We designed a bit-plane-
separated, fine-grained storage structure to separate images
by pixel bit depth based on the octree. In this way, the
data can be read with finer granularity during visualization,
and the amount of data required for visualization is reduced.
Based on the C/S architecture, a dynamic image rendering
scheme is adopted to allow users to interact with the data
while it is being transmitted from the server to the client.
This approach reduces the time required for data loading
during visualization and responds first with the data most
needed for interaction. The webTDat client provides rich
visualization and interaction functions for data browsing as well
as interfaces for data annotation. The webTDat system can easily
be expanded and used to process massive data generated by
various imaging systems.

The bit-separated storage format used by webTDat can be
used not only for dynamic data rendering for visualizations but
also for image registration and image segmentation purposes.
For example, the primary information stored in a high bit-
plane of the image could be processed first, and then the

Frontiers in Neuroinformatics | www.frontiersin.org 9 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

FIGURE 8 | The webTDat interface for data annotation: (A) The control panel for activating the annotation functions; (B) Annotation of somas in “point” mode in the

MIP view; (C) Annotation of neuron fibers in “line” mode in the MIP view; (D) Annotation of brain contour in “surface” mode in the slice view; (E) Visualizations of the

three types of annotation results, namely, soma, neuron, and brain contour.

FIGURE 9 | Visualization of whole mouse cerebellum: (A) 3D visualization of the whole dataset with low resolution and Purkinje cells; (B) 3D visualization of a VOI

selected from the interactive window in (A); (C) MIP and slice modes displaying the VOI.

low bit-planes of the image could be processed gradually.
Alternatively, the low-resolution data could be processed first,
and the high-resolution data could be processed iteratively.
This approach allows the same data format to satisfy the

needs of different image processing tasks and improve data
utilization efficiency.

Although webTDat has tremendous advantages for large-scale
volume visualizations, it still has some shortcomings that need

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2021 | Volume 14 | Article 542169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

to be noted. On one hand, the final bitBlock files cannot be
stored with lossy compression because bitBlocks store different
bit planes of pixels in separate files. The same bit-plane in
eight pixels forms a byte in one bitBlock file; therefore, the
value of each byte in the bitBlock is not directly related to the
gray value of a pixel. Consequently, using lossy compression
on bitBlocks can change the byte values, which will affect some
bits in the pixels. If these bits are the image’s high bit planes,
the image’s gray value can change substantially. Therefore, the
final encoded files must be stored using lossless compression,
which limits the compression rate of the final encoded file.
However, webTDat adopted the C/S architecture, which requires
keeping only one copy of the dataset. In addition, before the
original data are converted to webTDat format, the data can be
preprocessed and denoised to smooth the gray value changes
between adjacent pixels. This operation can reduce the size of
the final encoded file. On the other hand, webTDat uses a small
block size, and each block is stored in multiple files. This splits
one dataset into an enormous number of mostly small files.
If the dataset is extremely large, the resulting large number of
small files can place considerable pressure on the server’s file
system. When designing the webTDat format, we investigated
the best block size and compared it with many similar tools to
determine the proper size. In practice, we found that terabyte-
scale data does not suffer from this problem. However, if
the data are more massive, the problem could be improved
using more efficient file indexing (e.g., a database system) or
by improving the system’s hardware performance (e.g., using
an SSD).

Based on TDat, webTDat achieves the ability to
visualize large-scale volume data. webTDat inherits many
of the advantages of TDat and further improves TDat’s
functionality. webTDat viewers could be altered to support the
visualization of TDat datasets with only a few modifications.
We believe that webTDat can be as powerful a tool as TDat for
neuroscience researchers.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request
to the corresponding author. The code is available on GitHub
(https://github.com/visionlyx/webTDat).

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional
Animal Ethics Committee of Huazhong University of Science
and Technology.

AUTHOR CONTRIBUTIONS

YL designed the method. YL, JL, and TC developed the software.
YL and AL wrote the article. AL provided the datasets. HZ, HW,
and KW tested software. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was supported by the Fund of Doctoral Start-
up of Xi’an University of Technology (No. 112-451118007),
the National Natural Science Foundation of China (Grant
No. 61890954).

ACKNOWLEDGMENTS

We thank Hui Gong for constructive suggestions, Yu Liu for
discussed the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2020.542169/full#supplementary-material

REFERENCES

Boergens, K. M., Berning, M., Bocklisch, T., Braunlein, D., Drawitsch, F.,

Frohnhofen, J., et al. (2017). webKnossos: efficient online 3D data annotation

for connectomics. Nat. Methods 14, 691–694. doi: 10.1038/nmeth.4331

Bria, A., Iannello, G., Onofri, L., and Peng, H. (2016). TeraFly: real-time three-

dimensional visualization and annotation of terabytes of multidimensional

volumetric images. Nat. Methods 13, 192–194. doi: 10.1038/nmeth.3767

Economon, M. N., Clack, N. G., Levis, L. D., Gerfen, C. R., Svoboda, K., Myers,

E. W., et al. (2016). A platform for brain-wide imaging and reconstruction of

individual neurons. Elife 5:e10566. doi: 10.7554/eLife.10566

Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-

throughput dual-colour precision imaging for brain-wide connectome with

cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7:12142.

doi: 10.1038/ncomms12142

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy

neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14,

1081–1088. doi: 10.1038/nn.2868

Helmstaedter, M., and Mitra, P. P. (2012). Computational methods and

challenges for large-scale circuit mapping. Curr. Opin. Neurobiol. 22, 162–169.

doi: 10.1016/j.conb.2011.11.010

Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., et al.

(2010). Ssecrett and NeuroTrace: interactive visualization and analysis tools

for large-scale neuroscience data sets. IEEE Comp. Graph. Appl. 30, 58–70.

doi: 10.1109/MCG.2010.56

Koch, C., and Reid, R. C. (2012). Neuroscience: observatories of the mind. Nature

483, 397–398. doi: 10.1038/483397a

Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., et al. (2010).

Micro-optical sectioning tomography to obtain a high-resolution atlas

of the mouse brain. Science 330, 1404–1408. doi: 10.1126/science.

1191776

Li, A., Guan, Y., Gong, H., and Luo, Q. (2019). Challenges of processing and

analyzing big data in mesoscopic whole-brain imaging. Genom. Proteom.

Bioinform. 17, 337–343. doi: 10.1016/j.gpb.2019.10.001

Li, Y., Gong, H., Yang, X., Yuan, J., Jiang, T., Li, X., et al. (2017). TDat: an efficient

platform for processing petabyte-scale whole-brain volumetric images. Front.

Neural Circuits 11:51. doi: 10.3389/fncir.2017.00051

Lichtman, J.W., and Denk,W. (2011). The big and the small: challenges of imaging

the brain’s circuits. Science 334, 618–623. doi: 10.1126/science.1209168

Lin, M. K., Nicolini, O., Waxenegger, H., Galloway, G. J., Ullmann,

J. F. P., and Janke, A. L. (2013). Interpretation of medical

imaging data with a mobile application: a mobile digital imaging

Frontiers in Neuroinformatics | www.frontiersin.org 11 January 2021 | Volume 14 | Article 542169

https://github.com/visionlyx/webTDat
https://www.frontiersin.org/articles/10.3389/fninf.2020.542169/full#supplementary-material
https://doi.org/10.1038/nmeth.4331
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.7554/eLife.10566
https://doi.org/10.1038/ncomms12142
https://doi.org/10.1038/nn.2868
https://doi.org/10.1016/j.conb.2011.11.010
https://doi.org/10.1109/MCG.2010.56
https://doi.org/10.1038/483397a
https://doi.org/10.1126/science.1191776
https://doi.org/10.1016/j.gpb.2019.10.001
https://doi.org/10.3389/fncir.2017.00051
https://doi.org/10.1126/science.1209168
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Li et al. webTDat

processing environment. Front. Neurol. 4:85. doi: 10.3389/fneur.2013.0

0085

Long, F., Zhou, J., and Peng, H. (2012). Visualization and analysis

of 3D microscopic images. PLoS Comput. Biol. 8:e1002519.

doi: 10.1371/journal.pcbi.1002519

Meijering, E., Carpenter, A. E., Peng, H. C., Hamprecht, F. A., and Olivo-Marin,

J. C. (2016). Imagining the future of bioimage analysis. Nat. Biotechnol. 34,

1250–1255. doi: 10.1038/nbt.3722

Mitra, P. P. (2014). The circuit architecture of whole brains at the mesoscopic scale.

Neuron 83, 1273–1283. doi: 10.1016/j.neuron.2014.08.055

Niedworok, C. J., Schwarz, I., Ledderose, J., Giese, G., Conzelmann, K. K.,

and Schwarz, M. K. (2012). Charting monosynaptic connectivity maps

by two-color light-sheet fluorescence microscopy. Cell Rep. 2, 1375–1386.

doi: 10.1016/j.celrep.2012.10.008

Osten, P., and Margrie, T. W. (2013). Mapping brain circuitry with a light

microscope. Nat. Methods 10, 515–523. doi: 10.1038/nmeth.2477

Peng, H. (2008). Bioimage informatics: a new area of engineering biology.

Bioinformatics 24, 1827–1836. doi: 10.1093/bioinformatics/btn346

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:

visualization and processing for large image data sets. Nat. Methods 12,

481–483. doi: 10.1038/nmeth.3392

Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J.,

et al. (2012). Serial two-photon tomography for automated ex vivomouse brain

imaging. Nat. Methods 9, 255–258. doi: 10.1038/nmeth.1854

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID:

collaborative annotation toolkit for massive amounts of image data.

Bioinformatics 25, 1984–1986. doi: 10.1093/bioinformatics/btp266

Silvestri, L. (2015a). Purkinje Cells Point Cloud, V2. Harvard Dataverse.

doi: 10.7910/DVN/HXMX7C

Silvestri, L. (2015b). Raw Stitched Images, V1. Harvard Dataverse.

doi: 10.7910/DVN/YQQESV

Silvestri, L., Paciscopi, M., Soda, P., Biamonte, F., Iannello, G., Frasconi, P.,

et al. (2015). Quantitative neuroanatomy of all Purkinje cells with light sheet

microscopy and high-throughput image analysis. Front. Neuroanatomy 9:68.

doi: 10.3389/fnana.2015.00068

Walter, T., Shattuck, D. W., Baldock, R., Bastin, M. E., Carpenter, A. E., Duce, S.,

et al. (2010). Visualization of image data from cells to organisms. Nat. Methods

7, S26–S41. doi: 10.1038/nmeth0610-479a

Zheng, T., Yang, Z., Li, A., Lv, X., Zhou, Z., Wang, X., et al. (2013).

Visualization of brain circuits using two-photon fluorescence micro-optical

sectioning tomography. Optics Express 21, 9839–9850. doi: 10.1364/OE.21.

009839

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Li, Li, Li, Zhou, Cao, Wang and Wang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 January 2021 | Volume 14 | Article 542169

https://doi.org/10.3389/fneur.2013.00085
https://doi.org/10.1371/journal.pcbi.1002519
https://doi.org/10.1038/nbt.3722
https://doi.org/10.1016/j.neuron.2014.08.055
https://doi.org/10.1016/j.celrep.2012.10.008
https://doi.org/10.1038/nmeth.2477
https://doi.org/10.1093/bioinformatics/btn346
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.1854
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.7910/DVN/HXMX7C
https://doi.org/10.7910/DVN/YQQESV
https://doi.org/10.3389/fnana.2015.00068
https://doi.org/10.1038/nmeth0610-479a
https://doi.org/10.1364/OE.21.009839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	webTDat: A Web-Based, Real-Time, 3D Visualization Framework for Mesoscopic Whole-Brain Images
	Introduction
	Materials and Methods
	Architecture
	Bit-Plane Separated Fine-Grained Data Format
	Dynamic Rendering of Image Pixel Bits
	Volume Interactions Based on Drag-Click Operations
	Implementation
	Source of Datasets and Computing Environment

	Results
	Performance of the Bit-Plane Separated Data Format
	Benchmarks for Data Reformatting
	The Performance of Dynamic Rendering
	Interactive Visualization for Large-Scale Volumes
	Support for Remote Data Annotation and LSM Data

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

