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One major challenge in medical imaging analysis is the lack of label and annotation which

usually requires medical knowledge and training. This issue is particularly serious in the

brain image analysis such as the analysis of retinal vasculature, which directly reflects

the vascular condition of Central Nervous System (CNS). In this paper, we present a

novel semi-supervised learning algorithm to boost the performance of random forest

under limited labeled data by exploiting the local structure of unlabeled data. We identify

the key bottleneck of random forest to be the information gain calculation and replace

it with a graph-embedded entropy which is more reliable for insufficient labeled data

scenario. By properly modifying the training process of standard random forest, our

algorithm significantly improves the performance while preserving the virtue of random

forest such as low computational burden and robustness over over-fitting. Our method

has shown a superior performance on both medical imaging analysis and machine

learning benchmarks.

Keywords: vessel segmentation, semi-supervised learning, manifold learning, central nervous system (CNS),

retinal image

1. INTRODUCTION

Machine learning has been widely applied to analyze medical images such as an image of the
brain. For example, the automatic segmentation of brain tumor (Soltaninejad et al., 2018) could
help predict Patient Survival from MRI data. However, traditional methods usually require a large
number of diagnosed examples. Collecting raw data during routine screening is possible butmaking
annotations and diagnoses for them is costly and time-consuming for medical experts. To deal with
this challenge, we propose a novel graph-embedded semi-supervised algorithm that makes use of
the unlabeled data to boost the performance of the random forest. We specifically evaluate the
proposed method on both a neuronal image and the retinal image analysis that is highly related to
diabetic retinopathy (DR) (Niu et al., 2019) and Alzheimer’s Disease (AD) (Liao et al., 2018), and
make the following specific contributions:
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1. We empirically validate that the performance bottleneck of
random forest under limited training samples is the biased
information gain calculation.

2. We propose a new semi-supervised entropy calculation by
incorporating local structure of unlabeled data.

3. We propose a novel semi-supervised random forest
which shows advantage performance of the state-of-
the-art in both medical imaging analysis and machine
learning benchmarks.

Among various supervised algorithms, random forest or random
decision trees (Breiman et al., 1984; Criminisi et al., 2012) are one
of the state-of-the-art machine learning algorithms for medical
imaging applications. Despite its robustness and efficiency, its
performance relies heavily on sufficiently labeled training data.
However, annotating a large amount of medical data is time-
consuming and requires domain knowledge. To alleviate the
challenge of having enough labeled data, a class of learning
methods named semi-supervised learning (SSL) (Joachims, 1999;
Zhu et al., 2003; Belkin and Niyogi, 2004; Zhou et al., 2004;
Chapelle et al., 2006; Zhu, 2006) were proposed to leverage
unlabeled data to improve the performance. Leistner et al. (2009)
proposed a semi-supervised random forest which maximizes
the data margin via deterministic annealing (DA). Liu et al.
(2015) showed that the splitting strategy appears to be the
bottleneck of performance in a random forest. The authors
estimate the unlabeled data through kernel density estimation
(KDE) on the projected subspace, and when constructing the
internal node, they progressively refine the splitting function with
the acquired labels through KDE until it converges. Without
explicit affinity relation, CoForest (Li and Zhou, 2007) iteratively
guesses the unlabeled data with the rest of the trees in the forest
and then uses the new labeled data to refine the tree. Semi-
supervised based super-pixel (Gu et al., 2017) has proved to
be effective in the segmentation of both a retinal image and a
neuronal image.

Following the research line of a previous semi-supervised
random forest (RF), we identify that RF’s performance
bottleneck, under insufficient data, is the biased information
gain calculation when selecting an optimal splitting parameter
(shown as blue in Figure 1). Therefore, as illustrated in red
in Figure 1, we slightly modified the training procedure of
RF to relieve this bias. We replace the original information
gain with our novel graph-embedded entropy which exploits
the data structure of unlabeled data. Specifically, we first
use both labeled and unlabeled data to construct a graph
whose weights measure local similarity among data and
then minimize a loss function that sums the supervised loss
over labeled data and a graph Laplacian regularization term.
From the optimal solution, we can get label information of
unlabeled data which is utilized to estimate a more accurate
information gain for node splitting. Since a major part of
training and the whole testing remains unchanged, our graph-
embedded random forest could significantly improve the
performance without losing the virtue of a standard random
forest such as low computational burden and robustness
over over-fitting.

2. ANALYSIS OF PERFORMANCE
BOTTLENECK

Let us first review the construction of the random forest (Breiman
et al., 1984) to figure out why random forest fails under limited
training data. A random forest is an ensemble of decision trees:
{t1, t2, ..., tT}, of which an individual tree is independently trained
and tested.

Training Procedure: Each decision tree t, as illustrated in
Figure 1, learns to classify a training sample x ∈ X to the
corresponding label y by recursively branching it to the left or
right child until reaching a leaf node. In particular, each node
is associated with a binary split function h(xi,w, τ ), e.g., oblique
linear split function

h(xi,w, τ ) = [〈w, xi〉 < τ ], (1)

where [.] is an indicative function and τ is a scaler threshold.
w ∈ Rd serves as a feature weight parameter that projects the
high dimension data x ∈ Rd to a one dimensional subspace.

Given a candidate splitting function h(x,wj, τj), its splitting
quality is measured by information gain G(wj, τj). In practice,
given the training data X and their labels Y , the construction
of the splitting node, as illustrated in the left side of Figure 1,
comprises the following three stages:

Algorithm 1 : Training of node splitting.

1: Randomly generates a set of feature subspace candidates {wj}
2: For each wj, find the optimal τ ∗j = arg max

τ

G(wj, τ ,X,Y)

that best splits the data.
3: Among all {wj, τ ∗j }, pick the one with largest information

gain: j∗ = arg max
j

G(wj, τ ∗j ,X,Y)

Through the above stages, each split node is associated with a
splitting function h(x,w, τ ) that best splits the training data.

Testing Procedure: When testing data x, the trained random
forest predicts the probability of its label by averaging the
ensemble prediction as p̂(y|x) =

∑

t pt(y|x), where pt(y|x)
denotes the empirical label distribution of the training samples
that reach leaf note of tree t.

2.1. Performance Bottleneck Under
Insufficient Data
According to the study of Liu et al. (2015), insufficient training
data would impact the performance of RF in three ways (Liu et al.,
2015): (1) limited forest depth; (2) inaccurate predictionmodel of
leaf nodes; (3) sub-optimal splitting strategy. Among them, Liu
et al. (2015) identified that (1) is inevitable, and (2) is solvable
with their proposed strategy. In this paper, we further improve
the method by tackling (3).

We claim that the performance bottleneck of random forest is
its sub-optimal splitting strategy in Algorithm 1. To empirically
support this claim, we build three random forests, similar to Liu
et al. (2015), for comparison: the first one, the Control is trained
with a small size of a training set S1 as control; the second one, the

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 601829

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Gu et al. Semi-Supervised Learning in Medical Images

FIGURE 1 | Difference between our method and standard random forest. Noting that the performance bottleneck (shown in blue) is the biased information gain

G(τj ,wj ,Xl ,Yl ) calculation based on limited labeled data Xl ,Yl in Stage 3, we replace G(.) with our novel graph-embedded Gm(.,Xu) which considers unlabeled data Xu
(shown in red).

FIGURE 2 | Empirical validation of performance Bottleneck.

Perfect Stage 3 is constructed with the same training set S1 but
its node splitting uses a large training set S2 to select the optimal
parameter in stage 3 of Algorithm 1, to simulate the case that
random forest selects the optimal parameter of stage 3 with full
information; the third one, the Perfect Splitting is constructed
with S1 while S2 was used for both Stage 2 and 3 of Algorithm 1.

Following the protocol of Liu et al. (2015), each random forest
comprises 100 trees and the same entropy gain is adopted as the
splitting criterion. We evaluate three random forests on Madelon
(Guyon et al., 2004), a widely used machine learning benchmark.
As shown in Figure 2, Perfect Stage 3, which only uses the
full information to select the best parameter set, significantly
improves the performance compared to the control group.
Interestingly, the Perfect Splitting one, which utilizes the full
information for both optimal parameter proposing (Stage 2)

and optimal parameter decision (Stage 3), only makes a subtle
improvement compared to Perfect Stage 3.

From Figure 2, we found that Stage 3, optimal parameter
selection, is the performance bottleneck of the splitting node
construction, which is also the keystone of random forest
construction (Liu et al., 2015). When deciding the optimal
parameter, random forest often fails to find the best one as its
information gain calculation g(w, τ ) is biased under insufficient
training data. Interestingly, insufficient data has a smaller
effect on the Stage 2, parameter proposal. Motivated by this
observation, we propose a new information calculation which
exploits unlabeled data to make a better parameter selection in
Stage 3 of Algorithm 1.

3. GRAPH-EMBEDDED REPRESENTATION
OF INFORMATION GAIN

In the previous section, we show that gain estimation appears to
be the performance bottleneck of random forests. Empirically, we
show that more label information helps to obtain more accurate
gain estimation. This encourages us to consider the possibility of
mining label information from unlabeled data through structural
connections between labeled and unlabeled data. In particular,
we perform a graph-based semi-supervised learning to get label
information of unlabeled data, and compute information gain
from both labeled and unlabeled data. To achieve a better gain
estimation, we embed all data into a graph. Moreover, we assume
the underlying structure of all data form amanifold, and compute
data similarity based on the assumption.

Let l and u be the number of labeled and unlabeled
instances, respectively. Let Xl = [x1, · · · , xl]⊤ ∈ R

d×l be
the matrix of feature vectors of labeled instances, and Xu =
[xl+1, · · · , xl+u]

⊤ ∈ R
d×u be the matrix of unlabeled instances.

To accommodate label information, we define a label matrix
Y ∈ R

(l+u)×K (assuming there are K class labels available), with
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each entry Yik containing 1 provided the i-th data belongs to Xl
and is labeled with class k, and 0 otherwise. Besides, we define Yl
as a submatrix of Y corresponding to the labeled data, yi ∈ R

K as
the i-th row of Y corresponding to xl, and yl ∈ R

l as the vector of
class labels for Xl.

Based on both labeled and unlabeled instances, our purpose
is to learn a mapping f :Rd → R

K and predict the label
of instance x as k∗ : = argmaxk fk(x). Many semi-supervised
learning algorithms use the following regularized framework

l
∑

i=1

loss(yi, f (xi))+ λ

l+u
∑

i,j=l+1,i6=j

s(xi, xj)‖f (xi)− f (xj)‖22,

where loss() is a loss function and s(xi, xj) is a similarity function.
In this paper, we apply the idea of graph embedding to learn f .We
construct a graph G = (V ,E,W), where each node in V denotes
a training instance and W ∈ R

(l+u)×(l+u) denotes a symmetric
weight matrix. W is computed as follows: for each point find
t nearest neighbors, and Wij = exp(−‖xi − xj‖22/σ 2) if (xi, xj)
are neighbors, 0 otherwise. Such construction of graph implicitly
assumes that all data resides on some manifold and exploits
local structure. Based on the graph embedding, we propose
to minimize

L({fi}) =
1

2





l+u
∑

i=1

‖fi − yi‖22 + λ

l+u
∑

i,j=1

Wij‖
fi√
Dii

−
fj

√

Djj
‖22



 ,

(2)
where D is a diagonal matrix with its Dii equal to the sum of the
i-th row of W. Let F∗ = [f ∗1 , · · · , f ∗l+u] = argmin

{fi}
L({fi}) be the

optimal solution, it has been shown in Zhou et al. (2004) that

F∗ = ((1+ λ)I − λD−1/2WD−1/2)−1Y . (3)

Based on the learned functions F∗, we can predict the label
information of Xu and then utilize such information to estimate
more accurate information gain. Specifically, we let ŷu denotes
the predicted label of Xu, and for node S we compute Gini index
Gm(S) =

∑K
k=1 pk(1− pk), where

pk =
1

|S| (
∑

xi∈S,1≤i≤l

1{(yl)i=k} +
∑

xi∈S,l+1≤i≤l+u

1{(ŷu)i=k})

is the proportion of data from class k. Note that we utilize
information from both labeled and unlabeled data to compute
the Gini index. For each node, we estimate information gain as

Gm(w, τ ,Xl,Yl,Xu) = Gm(S)−
(

|Sl|Gm(Sl)+ |Su|Gm(Su)
)

/|S|,
(4)

where Sl and Su are left and right child nodes, respectively.

4. CONSTRUCTION OF SEMI-SUPERVISED
RANDOM FOREST

In our framework, we preserve the major structure of the
standard random forest where the testing stage is exactly the same
as the standard one. As illustrated in the right part of Figure 1,
we only make a small modification in stage 3 of Algorithm
1 where the splitting efficiency is now evaluated by our novel
graph-embedded based information gain Gm(τj,wj,Xl,Yl,Xu)
from Equation (4). Specifically, we leave stage 2 unchanged that
the threshold τ of each subspace candidate w is still based on
standard information gain such as the Gini index. Now with
a set of parameter candidates w, τ , the stage 3 calculates the
corresponding manifold based information score ĝ(w, τ ) instead
and select the optimal one through max

wj ,τj
ĝ(wj, τj).

FIGURE 3 | Exemplar estimation of vessel on the DRIVE dataset with 800 labeled samples. From left to right: Input images; Ground-truth; Estimation of our method;

Estimation of Standard RF; Estimation of Optimal RF.
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5. EXPERIMENTS

We evaluate our method on both 2D, and 3D brain related
medical image segmentation tasks as well as two machine
learning benchmarks.

The retinal vessel, a part of the Central Nervous System (CNS),
directly reflects the vascular condition of CNS. The accurate
segmentation of vessels is important for this analysis. Much
progress has been made based on either random forest (Gu
et al., 2017) or deep learning (Liu et al., 2019). The DRIVE
dataset (Staal et al., 2004) is a widely used 2D retinal vessel
segmentation dataset that comprises of 20 training images and
20 testing ones. Each image is a 768 × 584 color image along
with manual segmentation. For the image, we extract two types
of widely used features: 1, local patch x1 ∈ R15×15×3 of target.
2, x2 ∈ R4×7×3 Gabor wavelets (Soares et al., 2006). We also
investigate the single neuron segmentation in a brain image.
BigNeuron project1 (Peng et al., 2015) is a 3D neuronal dataset

1https://www.alleninstitute.org/bigneuron/about/

with ground truth annotation from experts. For BigNeuron data,
we manually picked 13 images among which a random 10 were
used for training while the rest were left for testing, because
this dataset is designed for tracing rather than segmentation.
For example, some annotation is visibly thinner than the actual
neuron. Furthermore, the image may contain multiple neurons
but only one is properly annotated. For both datasets, we
randomly collected 40,000 (20,000 positive and 20,000 negative)
samples from the training and testing sets, respectively. For 3D
data, our feature is x1 ∈ R15×15×7 local cube similar to the setting
of Gu et al. (2017).

Apart from the medical imaging, we also demonstrate the
generality of our method on two binary machine learning
benchmark, IJCNN1 (Prokhorov, 2001) and Madelon (Guyon
et al., 2004), in Libsvm Repository (Chang and Lin, 2011).

During the evaluation, we randomly selected a certain number
n of labeled samples from the whole training set while leaving
the rest unlabeled. Standard Random Forest (RF) is trained with
n labeled training data only. Our method and RobustNode (Liu
et al., 2015) are trained with both labeled data and unlabeled

FIGURE 4 | Classification accuracy vs. number of labeled samples.
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TABLE 1 | Classification accuracy (represented in percentage %) on different

dataset.

Drive Big neuron IJCNN1 Madelon

Our method 79.42 74.16 89.36 59.57

Standard RF 60.90 70.93 79.89 51.33

Robust node RF 63.79 70.99 78.92 50.53

Optimal RF 85.53 75.55 91.29 67.10

We show the accuracy on the training sample of 400 (DRIVE), 1,500 (Big Neuron), 300

(IJCNN1), and 400 (Madelon).

data. For reference, we also compared it with Optimal RF which
is trained with labeled data as a standard RF. However, its node
splitting is supervised with the whole training samples and their
label. Optimal RF indicates the upper bound for all of semi-
supervised learning algorithms.

5.1. Medical Imaging Segmentation
First, we illustrate the visual performance of segmentation in
Figure 3. The estimated score is the possibility of the vessel
given by the individual method. Our algorithm has consistently
improved the estimation compared to the standard RF.

5.2. Quantitative Analysis
We also report the classification accuracy with respect to the
number of labeled data in Figure 4, Table 1. We compared
our method with alternatives on both medical imaging
segmentation and machine learning benchmarks. Figure 4

shows that our algorithm significantly outperformed alternative
methods. Specifically, in the DRIVE dataset, our algorithm
approaches the upper bound at 1,000 labeled samples. In the
IJCNN1 dataset, our method quickly approaches the optimal one
while the alternatives take 400 samples to approach.

6. CONCLUSION

In this paper, we propose a novel semi-supervised random forest
to tackle the challenging problem of the lacking annotation
in the analysis of medical imaging such as a brain image.
Observing that the bottleneck of the standard random forest
is the biased information gain estimation, we replaced it
with a novel graph-embedded entropy which incorporates
information from both labeled and unlabeled data. Empirical
results show that our information gain is more reliable than
the one used in traditional random forest under insufficient
labeled data. By slightly modifying the training process of the
standard random forest, our algorithm significantly improves
the performance while preserving the virtue of the random
forest. Our method has shown a superior performance with
very limited data in both brain imaging analysis and machine
learning benchmarks.
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