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WISDoM (Wishart Distributed Matrices) is a framework for the quantification of deviation

of symmetric positive-definite matrices associated with experimental samples, such

as covariance or correlation matrices, from expected ones governed by the Wishart

distribution. WISDoM can be applied to tasks of supervised learning, like classification,

in particular when such matrices are generated by data of different dimensionality (e.g.,

time series with same number of variables but different time sampling). We show the

application of the method in two different scenarios. The first is the ranking of features

associated with electro encephalogram (EEG) data with a time series design, providing a

theoretically sound approach for this type of studies. The second is the classification

of autistic subjects of the Autism Brain Imaging Data Exchange study using brain

connectivity measurements.

Keywords: supervised learning, time series, null model, feature selection, classification, Wishart distribution,

uneven sampling

1. INTRODUCTION

High-dimensionality time-structured data are extremely common in fields such as finance,
biophysics, and biomedical data. Very often, experimental limitations lead to uneven sampling
(i.e., a different number of time points in terms of frequency or duration) (Bazzani et al.,
2010) and this poses problems for many types of analysis (e.g., sample classification). As a
consequence, clipping or padding techniques are applied, altering the underlying temporal
structure. In recent years, studies on such data have seen an increasing popularity in a wide
range of fields, from functional magnetic resonance imaging (fMRI) (Van Den Heuvel and Pol,
2010; Azarmi et al., 2019; Yan et al., 2019) to time series exploration for critical transition
prediction in clinical scenarios (Cuesta-Frau et al., 2019; Ghalati et al., 2019). The common goal
of this type of research is to develop models and algorithms capable of reaching the highest
possible classification and prediction performances, for diagnostic and real-time applications,
while unveiling underlying information about a system. Reproducibility and generalization issues
of commonly applied methods are in part caused by ad-hoc preprocessing of data, due to the
lack of simple null models, often substituted by reshuffling-based null models. We introduce
a method based on the statistical distribution of symmetric positive-definite matrices (i.e.,
covariance and correlation matrices) extracted from data, using the Wishart distribution as a
null model, as a possible way to overcome some of the aforementioned issues. Properties of
distribution of random symmetric positive-definite matrices have proven to be useful in fields
such as condensed matter, especially in the study of disordered systems (Crisanti et al., 1994;
Zhu et al., 2009). The WISDoM method exploits the properties of the Wishart distribution
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in order to compute limit distributions for the classes of samples
in a classification problem, and a log-likelihood based score is
defined for the single variables to quantify their relevance in the
classification task.

2. METHODS

2.1. The Wishart Distribution
The Wishart distribution Wp(n,6) is a probability distribution
of random non-negative-definite p × p matrices that is used to
model random covariance matrices.

The parameter n is the number of degrees of freedom (e.g., the
number of points in the time series), and 6 is a non-negative-
definite symmetric p× pmatrix (with p the number of variables,
or features, of the time series) called the scale matrix.

Definition. Let X1...Xn be Np(0,6) distributed vectors,
forming a data matrix p × n, X = [X1...Xn]. The distribution
of a p × p, M = XX′ = 6n

i=1XiX
′
i random matrix is a Wishart

distribution (Hardle and Simar, 2003).
We have then by definition:

M ∼ Wp(n,6) ∼ 6n
i=1XiX

′
i Xi ∼ Np(0,6) (1)

so thatM ∼ Wp(n,6) is the distribution of a sum of n rank-one
matrices defined by independent normal Xi ∈ Rp with E(X) = 0
and Cov(X) = 6.

In particular, it holds for the present case:

E(M) = nE(XiX
′
i) = nCov(Xi) = n6 (2)

2.2. PDF Computation for Invertible 6

In general, any X ∼ N(µ,6) can be represented as

X = µ + AZ, Z ∼ N(0, Ip) (3)

so that

6 = Cov(X) = ACov(Z)A′ = AA′ (4)

The easiest way to find A in terms of 6 is the LU-decomposition,
which finds a unique lower diagonal matrix A with Aii > 0 such
that AA′ = 6.

Then by Equations (1) and (4), with µ = 0 we have:

Wp(n,6) ∼

n∑

i=1

(AZi)(AZi)
′ ∼ A(

n∑

i=1

ZiZ
′
i)A

′ ∼ AWp(n)A
′ (5)

where Zi ∼ N(0, Ip) andWp(n) = Wp(Ip, n).
Assuming that n ≥ p and 6 is invertible, the density of the

random p× pmatrixM in 1 can be written as

f (M, n,6) =
1

2
np
2 Ŵp(

n
2 ) | 6 |

n
2

| M |
n−p−1

2 exp[−
1

2
tr(6−1M)]

(6)

so that f (M, n,6) = 0 unlessM is symmetric and positive-definite
(Anderson et al., 2012).

Note that in Equation (6), we define Ŵp(α) as the generalized
gamma function:

Ŵp(α) = π
p(p−1)

4

p∏

i=1

Ŵ(
2α + 1− i

2
) (7)

2.3. Estimation of the Wishart Parameters
From Empirical Covariance
We justify the use of the Wishart distribution under the
assumption of multivariate Gaussian distributed data scenarios.
This kind of assumption is generally good for a wide range
of problems. With an adequate sample size, distributions with
non-divergent second-order moment converge to a Gaussian
distribution, due to central limit theorem, and the estimation
of the covariance matrix still yields. In addition, preprocessing
strategies (such as Box–Cox or logarithmic transform) can
be applied to non-Gauss distributed data. As far as non-
stationarity in time series data are concerned, which could
affect the assumptions required for our approach, these issues
can be addressed by applying common global or detrending
strategies (such as LOESS). Furthermore, the use of the average
covariance matrix (obtained from all the elements of one class)
to compute the scale matrix for the class estimated distribution
will be proven to be a good approximation of a complete
Bayesian model.

This is done by considering that the Wishart Distribution is
the conjugate prior of a multivariate Gaussian distribution, such
as the gamma distribution for the univariate Gaussian case. By
considering a Gaussian model with known mean µ, so that the
free parameter is the variance σ 2, as in Liu and Wasserman
(2014), the likelihood function is defined as follows:

p(X1...Xn | σ 2) ∝ (σ 2)−
n
2 exp(−

1

2σ 2
n(X − µ)2), (8)

(X − µ)2 =
1

n

n∑

i=1

(Xi − µ)2 (9)

The conjugate prior is an inverse Gamma distribution. Recall that
θ has an inverse gamma distribution with parameters (α,β) when
1
θ
∼ Gamma(α,β).
The density then takes the form

πα,β (θ) ∝ θ−(α+1)e−
β
θ (10)

Using this prior, the posterior distribution of σ 2 is given by

p(σ 2 | X1...Xn) ∼ InvGamma(α +
n

2
,β +

n

2
(X − µ)2) (11)

In the multidimensional setting, the inverse Wishart takes the
place of the inverse gamma. It has already been stated that the
Wishart distribution is a distribution over symmetric positive
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semi-definite d × d matrices W. A more compact form of the
density is given by

πν0 ,S0 (W) ∝| W |
(ν0−d−1)

2 exp(−
1

2
trace(S−1

0 W)), (12)

| W |= det(W) (13)

where the parameters are the degrees of freedom ν0 and the
positive-definite scale matrix S0.

If W−1 ∼ Wishart(ν0, S0), we can then state that W has an
Inverse Wishart Distribution, whose density has the form

πν0 ,S0 (W) ∝| W |−
(ν0+d+1)

2 exp(−
1

2
trace(S0W

−1)), (14)

Let X1...Xn beN(0,6) distributed observed data. Then an inverse
Wishart prior multiplying the likelihood p(X1...Xn | 6) yields

p(X1...Xn | 6)πν0 ,S0 (6) ∝ (15)

| 6 |−
n
2 exp(−

n

2
tr(S6−1) | 6 |−

(ν0+d+1)
2 exp(−

1

2
tr(S06

−1))

(16)

=| 6 |−
(ν0+d+n+1)

2 exp(−
1

2
tr((nS+ S0)6

−1)) (17)

where S is the empirical covariance:

S =
1

n

n∑

i=1

XiX
T
i (18)

Thus, an a posteriori distribution with the form

p(6 | X1...Xn) ∼ InvWishart(ν0 + n, nS+ S0) (19)

is obtained.
Similarly, it can be stated that for the inverse covariance

(precision) matrix 6−1 the conjugate prior is a Wishart
distribution.

2.4. Classwise Estimated Distribution
The core idea of the WISDoM method is to represent each
element undergoing classification as a covariance matrix of its
features. Nominally, each element can be characterized by the
covariance matrix extracted by the repeated observations of the
vector of its features, for example derived by a time series. The
aim is to use the free parameters of the Wishart distribution (the
scale matrix S0 and the number n of the degrees of freedom,
as shown in 6) to compute an estimation of the distribution
for a certain class of elements, and then assign a single element
to a given class by computing a log-likelihood between the
element being analyzed and each class. Furthermore, a score
can be assigned to each feature by estimating the variation in
terms of log-likelihood, due to its removal from the feature
set. If the removal of a feature causes significant increase (or
decrease) in the log-likelihood, it can be stated that such feature is

highly representative of the system analyzed. Thus, the WISDoM
approach allows not only to assign a given element to a class,
but also to identify the features with the highest relevance in the
classification process.

Covariancematrices are a good choice for a distancemetrics in
a classification task, both for the way they represent a system and
for the property that the average of a set of covariance matrices
is a covariance matrix itself. If each element of a given class C is
represented by a covariance matrix6 of its features, beingNC the
number of the elements belonging to class C, this property allows
us to estimate a distribution for the class by choosing

S0 = 6̂C =
1

NC

NC∑

i=1

6i (20)

The other necessary parameter for the estimation is the number
of degrees of freedom n. Assume that an Xi = (x1, ..., xp) vector of
p features is associated with each element i of a given class, while
having n observations for this vector. The covariance matrix 6i

computed over the n observations will represent the interactions
between the features of element i. The number of degrees of
freedom n of the Wishart distribution is then given by the
number of times Xi is observed.

Let us give an example tied to functional MR brain imaging.
An image of patient i’s brain is acquired; as usual these images
are divided in a certain number p of zones (voxel, pixel, etc.),
each zone being sampled n times over a given time interval in
order to observe a certain type of brain activity and functionality.
In this example, the features contained in vector Xi = (x1, .., xp)
associated with patient i are indeed the zones chosen to divide
the brain image, each zone having been sampled n times during
an acquisition interval. The p × p correlation matrix 6i is
then representative of the functional correlation between the p
brain areas. Repeating this procedure for the NC patients of a
known class C (i.e., a diagnostic group) and computing the 6̂C

scale matrix for the class will allow us to estimate a Wishart
distribution for that class and draw samples from it.

2.5. Log-Likelihood Ratio Score
After defining how to represent classes distribution, WISDoM
allows to compute the log-likelihood of each element to belong
to one of the classes. Moreover, WISDoM allows to compute
the variation of log-likelihood ratio scores due to the removal
of features, singularly or in groups, thus estimating how
much the classification performance changes. Uninformative (or
less informative) features can thus be pruned, allowing for a
dimensionality reduction of the initial feature set. The whole
process can be seen as a feature transformation, mapping the
covariance matrix 6i of subject i to a score vector formed by the
change in log-likelihood for each feature.

2.5.1. Complete Matrix Score
TheWISDoMClassifier relies upon computing the log-likelihood
of a matrix 6i with respect to the Wishart distribution estimated
for a classC using 6̂C as the scale matrix. If a problem concerning
two given classes CA and CB is taken into account, the score
assigned to each 6i can be defined as follows:
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scorei = logPW(6i | n, 6̂A)− logPW(6i | n, 6̂B) (21)

where 6̂A,B are the scale matrices computed for the classes A,B,
respectively, and logPW(6i | n, 6̂A,B) is the logarithm of the
probability of 6i belonging to the Wishart distribution estimated
for one of the two classes A,B.

2.5.2. Single Feature Score
WISDoM allows to obtain information about the features
used for classification by reducing the matrix A to its principal
submatrices (see Supplemental Materials). An important
property for the principal submatrices of a symmetric positive
definite matrix is that any (n − k) × (n − k) partition is also
symmetric and positive definite.

By removing one feature from the dataset, calculating the
WISDoM scores, and iterating this process over all the features
(i.e., analyzing all the (p − 1) × (p − 1) principal submatrices
of 6i and 6̂C) the method can assign a score to each feature,
representing its relevance in the decision for 6i to be assigned
to one class or another. Let 6j be a principal submatrix of order
(p − 1) of the matrix 6 computed on the observation of Xi =

(x1, ..., xp) for subject i, obtained by the deletion of the jth row

and the jth column. Similarly, let 6̂Cj be a principal submatrix of

order (p − 1) of the matrix 6̂C computed for the class C. The
score assigned to each feature of Xi = (x1, ..., xp) is then given by
Equation (23).

Scorej(C) = 1logPWj(C) = (22)

logPW(6, n | 6̂C, n)− logPW(6j, n | 6̂Cj, n) (23)

In a 2-class example, we obtain a score vector as follows:

Ratioj = 1logPWj(C1)− 1logPWj(C2) (24)

A generalization to (p−n) dimensionality reduction can be found
in the Supplementary Materials.

3. RESULTS

3.1. Eye State Detection via EEG
The dataset used was downloaded from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/). This dataset
has been chosen for many reasons: it is openly accessible and
contains records from 14 electrodes with standard headset
placement (Figure 1), thus making the features of our problem
directly linked to brain topology and a published classification
performance benchmark on the dataset exists (Rajesh et al.,
2015). The data consisted of a series of 14,980 time points,
sampled for each one of the 14 electrodes and labeled with a 1
or a 0 to mark whether the eyes of the subject are open or closed
at that time point. The time series has been split into batches
of different length according to eye state changes. In this way, a
correlationmatrix can be extracted for each batch (the “elements”
for this classification problem), while the length of each batch is
used for computing the degrees of freedom of each class Wishart

FIGURE 1 | Electrodes position in the headset used for electro

encephalogram (EEG) dataset acquisition.

distribution during training. A total of 140 batches with various
lengths, 70 with eye state 1, and 70 with eye state 0, were obtained.

The representative matrix for each class is computed as the
average (weighted on the length of each batch) of matrices of
the elements belonging to eye state 0 or eye state 1, excluding
the element to be predicted in a Leave One Out fashion in order
to avoid overfitting. By doing this, we verify that the method is
independent from the sampling window chosen when applied
to time series data, with the only constraint that the length of
such window cannot be less than the number of the features of
the system.

After undergoing feature score computation, a stochastic grid
search on a set of classifiers has been performed in order to obtain
the best prediction performance with the transformed features.
All the classification tasks are validated through a 10-fold cross-
validation. Versions and references for all Python packages used
can be found in Supplementary Materials and various other
studies (Jones et al., 2001; Travis, 2006; Hunter, 2007; Perez and
Granger, 2007; McKinney, 2010; Kluyver et al., 2016; Meurer
et al., 2017; Waskom et al., 2017).

We first tried to assess eye state using complete matrix
score, as given in Equation (21). Classifiers reported in Figure 2

were trained and tuned, with the aim of obtaining the best
performance possible. However, in this scenario the resulting
classification performances were poor, reaching an accuracy of
∼ 60% in the best cases. We then proceeded to compute
single feature scoring, as given in Equation (23), obtaining a
feature transformation. As shown in Figure 2, different classifiers
belonging to two main categories (decision trees and linear
classifiers) have been trained on the transformed features. The
best performance has been achieved with a C-support Vector
Machine (Python 3.6 SciKitLearn implementation) resulting in
a 0.85% ROC AUC score and an accuracy score of 84.3%,
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FIGURE 2 | Performance comparison of different classifiers on the WISDoM

electro encephalogram (EEG)-transformed features. The classifiers are

reported as follows: RFC, Random Forest Classifier (Breiman, 2001); DTC,

Decision Tree Classifier (Breiman et al., 1984; Barros Rodrigo et al., 2012);

ADA, ADA Boosting Tree Classifier (Freund and Schapire, 1997; Zhu et al.,

2009); LDA, Linear Discriminant Analysis Classification (McLachlan, 2004);

LogReg, Logistic Regression Classifier (Hsiang-Fu et al., 2011); Perc,

Perceptron Classifier (Freund and Schapire, 1999); SVM, C-Support Vector

Machine (Platt, 1999; Chang and Lin, 2013). All classifiers are SciKitLearn

implementations.

comparable with the benchmark of 83.5% accuracy set by Rajesh
et al. (2015).

To assess which features contain the largest amount of
useful information for prediction, a set of single-feature C-SVM
classification has been performed (Figure 3): a performance of
75% accuracy is obtained by using only the top three ranking
electrodes (Figure 4). Training the classifier with the top three
electrodes yields a local maxima in the landscape performance,
highlighting the importance of the information recorded by these
three electrodes about the state of the whole system.

Furthermore, an analysis of classification performance as a
function of sample size is reported (Figure 5). Equally sized
randomized subsamples of each class are extracted for feature
transformation and SVM classification training. Classification
performance and stability rapidly drop when approaching
subsamples of size comparable with the number of features in the
EEG dataset, highlighting the need of adequate statistics for the
method to be reliable.

3.2. Autism Classification via fMRI
The Autism Brain Imaging Data Exchange (ABIDE) (Di Martino
et al., 2014) is a consortium effort, aggregating fMRI datasets
from individuals with autism spectrum disorders (ASD) and age-
matched typical controls (TC). Data from 17 acquisition sites
were merged using different preprocessing tools and pipelines
(Craddock et al., 2013). Complete information about the dataset

FIGURE 3 | Electro encephalogram (EEG) feature ranking based classification

performance (ROC AUC score). Temporal (T8) and outer frontal (F8, F7)

electrodes seems to convey the most important signals for eye state

prediction.

FIGURE 4 | EEG features performance landscape at an increasing number of

ranked features used for classification. Labels on the X-axis point out which

feature is being added to the previous ones.

is found at http://preprocessed-connectomes-project.org/abide/.
For our classification task, we focused on male subjects of the
“Autism” diagnostic group (AUT): we analyzed a total of 369
TC and 220 AUT subjects, with 200 time points each (number
of degrees of freedom of the Wishart distribution). The chosen
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FIGURE 5 | Evaluation of performance trend on subsamples of electro encephalogram (EEG) dataset. For each subsample, the standard error of a fivefold

cross-validated C-SVM classification is reported.

preprocessing pipeline for the extraction of the average time
series of the regions of interest (ROIs) is the Connectome
Computation System (CCS), with a global signal correction and
the application of a band-pass filter (0.01–0.1 Hz). The 116 ROIs
(features), of which covariance matrices are extracted, are labeled
according to the Automated Anatomical Labeling of the Brain
(AAL2) (Tzourio-Mazoyer et al., 2002).

The representative matrix for each class is computed as the
average of matrices of the elements belonging to class AUT
or TC, excluding the sets of element to be predicted. For this
task, a shuffled 10-fold splitting of the dataset for feature score
computation has been used to avoid overfitting. After undergoing
feature score computation, the parameters of a C-Support Vector
Machine Classifier have been fine tuned in order to obtain the
best prediction performance with the transformed features. All
the classification tasks are validated through a stratified 10-
fold cross-validation in order to minimize the effects of class
imbalance in train and test sets. Versions and references for all
Python packages used can be found in Supplementary Materials

and in Jones et al. (2001), McKinney (2010), Hunter (2007),

Travis (2006), Meurer et al. (2017), Kluyver et al. (2016), Perez
and Granger (2007), and Waskom et al. (2017).

The C-SVM classifier trained on the transformed features
resulted in an accuracy score of 72.1% and an ROC AUC score
of 0.76. Furthermore, we obtained a ROC AUC score of 0.79 and
an accuracy of 73.5% with a fine-tuned Random Forest Classifier.
We also compared the classifiers in Figure 2 training them with
WISDoM transformed features and non-transformed features
(nominally, the elements of the lower triangle of each covariance
matrix). Results in Figure 6 show an overall improvement of
classification performances when using transformed features. As
a comparison, the state of art of classification on the entire ABIDE
dataset is set at 70% accuracy obtained with a deep learning
architecture built by Heinsfeld et al. (2017). This result on the
whole spectrum of autism required the use of various stacked
denoising autoencoders and hidden layers, resulting in a large
time-consuming training routine (∼ 33 h), while WISDoM
obtained satisfying classification performance in much smaller
time (∼ 18min, including feature transformation that is themost
time-consuming step of the pipeline).
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FIGURE 6 | Performance comparison of different classifiers on the WISDoM

transformed features and non-transformed feature in the ABIDE dataset. The

classifiers are reported as follows: RFC, Random Forest Classifier (Breiman,

2001); DTC, Decision Tree Classifier (Breiman et al., 1984; Barros Rodrigo

et al., 2012); ADA, ADA Boosting Tree Classifier (Freund and Schapire, 1997;

Zhu et al., 2009); LDA, Linear Discriminant Analysis Classification (McLachlan,

2004); LogReg, Logistic Regression Classifier (Hsiang-Fu et al., 2011); Perc,

Perceptron Classifier (Freund and Schapire, 1999); SVM, C-Support Vector

Machine (Platt, 1999; Chang and Lin, 2013). All classifiers are SciKitLearn

implementations.

4. DISCUSSION

The WISDoM framework is introduced: a method for modeling
symmetric positive definite matrices, such as covariance and
correlation matrices, used in a wide array of problems. It
can provide a null model for classification purposes in which
each sample is represented as a covariance/correlation matrix,
even if the number of observations (e.g., the length of the
time series) is different from sample to sample. This property
makes the WISDoM method suitable for problems with non-
homogeneous data size, for example time series with uneven
lengths, missing points or irregularly sampled data. Moreover,
we show that a feature transformation based on WISDoM scores
can be used for dimensionality reduction, providing a ranking
for the most important variables in the dataset. While showing
good generalization capabilities with time-series data and non-
homogeneous sampling-related issues, the method is not suitable
when the number of features exceeds the sampling (p > n). This

is a theoretical limit tied to the invertibility of the scale matrix
required to compute the Wishart probability density function. At
present, WISDoM cannot thus be applied to problem involving
the so-called “wide data,” such as gene expression tables, unless
considering corrections such as matrix regularization methods
and hierarchical methods such as power priors (Ibrahim et al.,
2015).

The method has been tested on the EEG eye state prediction
dataset of the open UCI Machine Learning Repository, slightly
improving the previous classification benchmark with little to
no preprocessing, and giving useful insights on the minimum
number and location of electrodes needed to record sufficient
information for the task. Moreover, the method has been
applied to the classification of a subset of the ABIDE
dataset using brain functional connectivity data. We obtained
satisfying classification scores, comparable with the state of art
classification results on the dataset, with very simple classifiers
and without the use of additional time-consuming processing
routines. Furthermore, the Bayesian-like framework of scores-
computation through log-likelihood could allow for a sort
of inline learning by continuously updating the estimation
of each class Wishart distribution. This property makes the
WISDoM method also suitable for real-time learning during
data acquisition.
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