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As multielectrode array technology increases in popularity, accessible analytical tools
become necessary. Simultaneous recordings from multiple neurons may produce
huge amounts of information. Traditional tools based on classical statistics are either
insufficient to analyze multiple spike trains or sophisticated and expensive in computing
terms. In this communication, we put to the test the idea that AI algorithms may be
useful to gather information about the effective connectivity of neurons in local nuclei at
a relatively low computing cost. To this end, we decided to explore the capacity of the
algorithm C5.0 to retrieve information from a large series of spike trains obtained from a
simulated neuronal circuit with a known structure. Combinatory, iterative and recursive
processes using C5.0 were built to examine possibilities of increasing the performance
of a direct application of the algorithm. Furthermore, we tested the applicability of
these processes to a reduced dataset obtained from original biological recordings with
unknown connectivity. This was obtained in house from a mouse in vitro preparation of
the spinal cord. Results show that this algorithm can retrieve neurons monosynaptically
connected to the target in simulated datasets within a single run. Iterative and recursive
processes can identify monosynaptic neurons and disynaptic neurons under favorable
conditions. Application of these processes to the biological dataset gives clues to
identify neurons monosynaptically connected to the target. We conclude that the work
presented provides substantial proof of concept for the potential use of AI algorithms to
the study of effective connectivity.

Keywords: AI algorithm, effective connectivity, multielectrode recordings, spinal cord circuits, machine learning,
C5.0

INTRODUCTION

The understanding of neuronal circuits within the nervous system has become a major focus
of interest in current neurobiology. The advent of novel techniques, such as those enabling the
monitoring of neuronal activity across populations of neurons, is opening the door to circuit
analysis. Depending on the biological preparation used, electrode matrixes may record action
potentials from dozens to thousands of neurons producing huge amounts of data. Usually
these recordings are obtained under blind conditions and the structural and functional relation
between the recorded neurons is unknown or insufficiently described. As more laboratories
use multielectrode recordings, the issue of reconstructing the effective connectivity between
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the different units recorded is becoming a focus of major interest
in neurobiology. Effective connectivity refers to the influence
that one neural system exerts over another (Friston, 2011). At
the level of single neurons, it involves the analysis of temporal
causality between different activations of neurons in a network
(Andalibi et al., 2016).

The common approach to the study of effective connectivity
is the use of inferential procedures based on statistical tools.
These include methods based on cross-correlation analysis, useful
only for pairs of spike trains, methods based on maximum
likelihood and generalized linear models, which are sophisticated
and expensive in computer terms (Masud and Borisyuk, 2011;
Andalibi et al., 2016).

Here we set out to test the hypothesis that standard algorithms
of machine learning or artificial intelligence could be used to
analyze large datasets from electrophysiological recordings and
produce relevant information on the temporal relations between
the spike trains of neurons leading to a better understanding
of their effective connectivity. These procedures are capable to
deal with large numbers of spike trains with a relative economy
of computer time.

For the present work, we have followed the lines of
development suggested by the methodology CRISP-DM
(Chapman et al., 2000; Shearer et al., 2000). One of the main
aspects of this methodology is the modeling step. Since our
priority was to gain insight on the workings of neuronal
circuits we chose the C5.0 algorithm (Kuhn and Johnson,
2013) evolved from the C4.5 (Quinlan, 1993). This algorithm
is based in decision trees and it can generate rules and reason
for its decisions. Rules are expressed in intelligible terms for
humans and define the path from the root to the leave. This later
characteristic we thought could be helpful to understand the
circuits under analysis although we did not focus on this issue
for the present work. Furthermore, the algorithm can produce a
ranking of neurons based on their relevance to the firing of the
target. Some alternatives, like Artificial Neural Networks (ANN)
or Deep Learning (LeCun et al., 2015), can be oriented to obtain
higher successful percentages in metrics at the risk of losing the
interpretability that C5.0 offers.

To achieve our goal we have used different datasets. Several
of them were obtained from an artificially built circuit consisting
of 80 neurons by selecting spike trains form subsets of neurons.
Since the structural connectivity of the circuit was known, we
used these datasets to evaluate the precision of the predictions
made by the algorithm under different conditions.

An additional dataset was obtained from an
electrophysiological experiment consisting of 13 well isolated
neurons plus the natural target of the system, a primary afferent.
This dataset was used to explore whether or not the procedures
elaborated could be applied to biological problem circuits to
obtain clues about effective connectivity.

Our laboratory is focusing its activity on the study of neuronal
circuits located in the spinal cord, which are responsible for
the generation of antidromic firing (backfiring) in primary
sensory afferents. Backfiring in nociceptive afferents is related
to the maintenance of inflammation leading to pain and
allodynia and it is a phenomenon of physio-pathological

relevance (Willis, 1999; Cervero et al., 2003). The neurons
causing primary afferent depolarization and backfiring are
located in the superficial laminae of the spinal cord. They
are GABAergic neurons (Willis, 2006) but the basic aspects
of the circuit controlling them are largely unknown. For the
experiment presented here, we have used a spinal cord slice
preparation form mice pups in which backfiring of primary
afferents occurs spontaneously. With this preparation, we can
obtain simultaneous recordings from afferents and of dorsal horn
neurons to generate datasets containing the precise timing of
action potentials in all these elements.

MATERIALS AND METHODS

In this section, we describe how simulated and biological data
were obtained, prepared, and processed.

Simulated Data
To obtain the simulated neural data we used a spiking
cortical network model developed by Izhikevich (2006) later
modified by Ito et al. (2011). We have adapted this model
reducing the number of neurons and scaling down (to 5) the
number of connections per neuron while keeping the ratio of
inhibitory/excitatory neurons, the connectivity restrictions for
inhibitory neurons as well as a fixed delay for inhibitory synapses.

Using the model, we created a large circuit containing 80
neurons and chose one excitatory neuron as our target. This
large circuit consisted of two unconnected circuits of 40 neurons
each (30 excitatory and 10 inhibitory). This was done to ensure
availability of spike trains unrelated to the behavior of the target
neuron as expected from blind biological recordings.

Synaptic parameters for excitatory neurons were defined as
follows:

- The synaptic delay was a random time between 1 and 5 ms.
- The synaptic strength was a variable parameter according

to spike timing dependent plasticity, as explained in the
original description of the model (Izhikevich, 2006).

- The maximal synaptic strength was limited as in the
original circuit. Under our conditions, at least two
excitatory inputs have to occur simultaneously to
cause a discharge in the postsynaptic cell, as in the
original model circuit.

In the Izhikevich model, spontaneous activity of the circuit
is sustained by an external excitatory input delivered at random
times to a set of neurons that can be defined. By defining which
neurons of the circuit receive this external input we can make
the target neuron’s activity more or less predictable based on the
behavior of the neurons that are directly connected to it. Thus, we
defined three different levels of uncertainty:

- In the situation with higher degree of uncertainty every
neuron in the circuit received this random external input,
so that some of the spikes of the target cannot be predicted
by the circuit activity.
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- Preventing the target neuron from receiving this external
input, we made it entirely dependent on the presynaptic
units, achieving a medium degree of uncertainty.

- The lowest degree of uncertainty was obtained when
we also removed the external input from neurons
monosynaptically connected to our target.

For each of these scenarios, “maximal synaptic strength” and
“external input strength” were adjusted to maintain the firing
frequency in the target within a comparable range.

The MATLAB code used for simulations is attached as
Supplementary Material (Simulation_code.m).

Acquisition of Biological Data
Experimental data were obtained from an in vitro experiment
using a neonate mice spinal cord slice obtained as previously
described (Lucas-Romero et al., 2018). Briefly, the lumbar
segments of the spinal cord were dissected from anesthetized
animals (urethane 2 g/Kg i.p.) and kept in cold sucrose-
substituted artificial cerebrospinal fluid (ACSF). Meninges were
removed in a cold plate, and the L4 dorsal root was gently
teased in order to obtain thin rootlets. Then, a single horizontal
slice of 400 µm containing the dorsal horn and attached dorsal
roots was sectioned (Sectioning Systems 1500, Vibratome). The
slice was transferred to a recording chamber and maintained at
22± 1◦C with oxygenated ACSF (composition in mM: NaCl 127,
KCl 1.9, KH2PO4 1.5, MgSO4 1.3, CaCl2 2, NaHCO3 22, and
glucose 10, pH 7.4).

Extracellular recordings from dorsal horn neurons were
obtained with a 32-channel multielectrode array (MEA, Buzsaki
32-A32 from NeuroNexus). Recordings from dorsal rootlets were
obtained by placing a single rootlet into a tight fitting glass
suction electrode. Back-propagating action potentials in dorsal
rootlets were recorded in AC mode. Signals from the 33 channels
were processed by an Intan amplifier (RHS2000 Stimulating-
Recording System, Intan Technologies).

Recordings were digitized and stored for offline analysis using
hardware and software from Cambridge Electronic Designs.
Spike sorting was performed with a semi-automatic procedure
with the aid of principal components analysis using Spike
2 software under supervision of a trained researcher (see
Supplementary Figure 1). In this way, we obtained simultaneous
spike trains from a set of dorsal horn neurons and several primary
afferents of which one was selected as target. The experiments
recorded unperturbed spontaneous activity in absence of external
stimulation (Lucas-Romero et al., 2018).

Data Preparation
Time of occurrence of action potentials from the different spike
trains were extracted, kept in separate channels and stored in
CSV files for posterior analysis. The first part of this analysis
consisted in the definition of different types of intervals. When
a spike was detected in the target we recorded its time stamp
and defined a positive interval. Then, we search for spikes of
individual neurons in the preceding 50 ms.

The remaining temporal space was divided in 50 ms intervals
and the last millisecond of the interval was considered its

FIGURE 1 | Example of a positive interval. The firing of the target unit is
represented by the red line, while the spikes of two different dorsal horn
neurons are plotted in green and yellow, respectively. The 50 ms interval
preceding the firing of the afferent was divided in 10 ms subintervals named
from A to E. The interval represented in the figure corresponds to that of the
first row in Table 1.

timestamp. These were defined as negative intervals (absence of
spike in target). The same procedure was followed for simulated
and biological data.

For each interval the firing or absence of firing of the target was
recorded as 1/0. Then, the firing of each neuron was categorized
and labeled as A if it occurred within 10 ms from the time stamp
and as B if it occurred between 10 and 20 ms from the time
stamp. C, D, and E labels were applied to spikes occurring at
the successive 10 ms subintervals (see Figure 1 for clarification).
When no spikes occurred, the label 0 was assigned. If two spikes
occurred in the same subinterval, a double code was applied. An
example of categorization of several intervals is shown in Table 1.

Modeling, Validation and Tuning
For this proof of concept, we chose the algorithm C5.0 which
belongs to the decision trees family. As previously stated, this
model offers a traceability of decision making that a priori we
considered important. Kuhn and Johnson (2013) discuss the
main theoretical framework and characteristics of the algorithm

TABLE 1 | Defining categories.

Time (s) U1 U2 U3 U4 U5 R

23.456 0 A BBD 0 0 1

23.450 0 A ABD 0 0 0

48.550 A 0 C E AB 0

103.566 0 0 0 0 0 1

109.300 0 0 0 0 0 0

Rows represent five different intervals defined by their time stamps shown in first
column. Columns U1 to U5 display the behavior of each of five dorsal horn neurons
or units at each interval. The last column (R) shows the firing of the afferent. Two
intervals were positive (R = 1, the afferent fires) and three were negative (R = 0,
the afferent does not fire). A–E label the occurrence of spikes at the corresponding
subintervals. Two identical letters represent the occurrence of two spikes in the
same interval. The absence of spikes is labeled by 0. The interval casuistry is
represented: firing in dorsal horn neurons and primary afferents (row 1), firing in
neurons but not in afferents (rows 2 and 3), firing in afferents but not in neurons (row
4), and neither type of element fires (row 5). The first row is represented graphically
in Figure 1.
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in depth. In comparison to its predecessor C4.5 (Quinlan, 1993),
the new algorithm includes upgrades such as the use of a cost-
sensitive matrix or boosting.

There is no universal rule to define the percentages of cases
assigned to training and validation. Here we follow previous work
and Pareto’s Principle (Pareto, 1896; Dunford et al., 2014; Serrano
et al., 2017) and use 80% of positives for training and 20% for
validation. A larger percentage in validation may lose too much
information needed for learning, but a smaller percentage may
give an improper confidence because of the variability associated
to a small amount of cases.

Since we have very few positives in comparison with a
large number of negatives, our data sets are clearly unbalanced
(Drummond and Holte, 2003; Weiss et al., 2007) and therefore
our first model prototypes using all data did not fit correctly.
In order to enable a proper training of the model, we used
random undersampling and cost-sensitive matrix. We tested
several undersampling ratios from 1:200 to 1:1 (1:200, 1:100, 1:50,
1:25, 1:10, 1:4, 1:3, 1:2, 1:1). We chose 1:4, which means that the
number of negative cases was four times the number of positives.
With this undersampling ratio, we obtained the best estimation
of firing in the target reducing overfitting differences between
training and validation in comparison to other ratios.

We also assigned a value of 3.5 for false negatives (FN) and
1 for false positives (FP) in order to build up the cost-sensitive
matrix. This value was fixed after testing several values in order
to weight false negatives in the cost matrix after having fixed the
undersamplig ratio to 1:4.

The “trials” parameter was set to a value of 1. Again, we
used several values for this variable and decided on 1 because it
gives more clear results. A comparison between 1 and 5 trials is
shown in results.

Following these procedures, four different sets of data can be
defined as follows:

- Complete dataset: set of data containing all positive and
all negative cases.

- Snap data: Subset containing all positive intervals and a
proportion of negatives (1:4).

- Training data: Subset containing the 80% of snap data.
- Validation data: Subset containing the remaining

(20%) of snap data.

Rules were obtained by the C5.0 algorithm from the training
subset and tested in the validation, snap and complete datasets.
We present and discuss the results obtained in the complete
dataset, which represents the more realistic sample of the
real phenomenon.

In order to increase analysis exactitude and to ensure a
true randomness on election of negative intervals (Arcuri and
Briand, 2011), we trained the model 30 times with different
sets of negative intervals to build different snap data sets.
Data partitioning in training and validation datasets was also
randomized. In order to ensure replicability of results, we set a
specific random seed which is disclosed in the code repository
where we made available all the code used for the present
study (see below).

Metrics
In order to summarize the performance of the algorithm we used
metrics extracted from the confusion matrix (Ting, 2017). For the
“Results” section we used the convention presented in Table 2 for
true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).

The metrics used in this study were as follows:

- Precision: Proportion of Predicted Positives cases that are
Real Positives (Powers, 2011).
• Precision = TP

FP+TP
- Recall or Sensibility: Proportion of Real Positive cases that

are Predicted Positives (Powers, 2011).
• Recall = TP

FN+TP
- Matthews Correlation Coefficient (MCC): It is a general

performance evaluation score ranging from −1 to +1
(Matthews, 1975) which takes into account the ratio of
all values included in the confusion matrix, especially on
unbalanced datasets (Chicco, 2017).
•MCC = TP∗TN−FP∗FN√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

Metrics can be obtained using all cases or subsets of cases
as described in the previous section. Further, metrics can be
obtained for single neurons or any desired group of neurons
extracted from the neuronal sample as we describe below.
To simplify description of results we use only MCC values
referred to complete sets of cases to judge the predictive value
of a neuron or a group of neurons over the behavior of
the target.

Workflows
With the model adjusted as discussed, we first analyzed the
datasets for the neuronal samples under consideration and
obtained the identification of neurons used to build rules as well
as the associated metrics. By running this procedure 30 times
with different seeds, we obtained an idea of the variability of our
main metrics due to random election of negative cases in the
training subset.

We also obtained individual metrics for each neuron training
a model per neuron as feature and the target neuron as class.

In order to find subgroups of neurons with better
metrics than those of individual neurons or the entire
neuronal sample we tested three different procedures
(Guyon and Elisseeff, 2003):

- Combinatory: We trained one model for each possible
subgroup of neurons created from our complete neuronal
sample. The number of models is given by the combination
without repetition of n neurons taken in groups of r

TABLE 2 | Conventions.

Predicted\Actual 0 1

0 TN FN

1 FP TP

TN, True Negative; TP, True Positive; FN, False Negative; FP, False Positive.
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neurons, where r is a value between 1 and n.

number of possible models =
n∑

r = 1

n!
r! (n− r)!

Since the group with best metrics may change depending
on the seed selected, we ordered all groups by decreasing
MCC value and looked at the frequency with which each
neuron appeared in groups within the first percentile. The
group of neurons identified by this procedure was called
the “relevant group.”

- Iterative processes: We ranked all neurons according to
their individual MCC values and then trained the model
with subsets of neurons so that the less significant neuron
in the rank was removed at each epoch. We developed this
workflow to check if the best metrics were obtained by
groups formed by the neurons with best individual metrics.

- Recursive process: The process starts with an analysis of
the complete neuronal sample and produces two groups
of neurons based on variable importance of each neuron.
Variable importance is a metric automatically generated
by C5.0 which indexes the weight that a neuron has in
the taking of decisions1. The primary group contains all
neurons with variable importance greater than 0, and
the secondary group contains the remaining neurons
(variable importance = 0). Then, the process executes two
new analyses using the neurons from the primary and
secondary groups separately. This process is repeated until
reaching the level of the single neuron. If a given branch of
the analysis could not fit a model, this branch was stopped
while the others were continued. When the model used all
neurons to build rules, we manually placed neurons with
the higher values of variable importance in a group and
those with lower values in another group.

Implementation of the Analysis in a
Computer System
A system built in R, automatized the whole process of analysis.
The code as well as a readme file containing the necessary
explanations, have been made available at https://github.com/
Pedrodpj92/Afferents_learning. The system reads the data from a
CSV file and after questioning the user about the specific analysis
to be run, it completes all the different workflows and returns the
metrics obtained as well as relevant additional information. The
C5.0 algorithm was obtained from https://github.com/topepo/
C5.0 and used into our program.

All analysis and processes can be performed in a commercial
desk top computer.

RESULTS

First, we used a simulated spiking cortical network model
previously published, validated and used in other functional
connectivity studies (Izhikevich, 2006; Ito et al., 2011). Several
datasets obtained from the simulated circuit served to study

1https://topepo.github.io/C5.0/reference/C5imp.html

how the choice of neurons selected for analysis impacted on the
performance of the algorithm.

At each subsection we report results from the analysis of
extracellular recordings obtained in a biological experiment.
Since the structure of the biological circuit is unknown, there is
no possibility to check on the validity of the predictions made.
The intention of this analysis was to see whether the algorithm
could fit a model to the biological data in spite of the variability
associated to complex biological circuits.

Circuits and General Metrics
The main simulated data set was obtained by including spike
trains from all the 80 neurons or units (U1–U80) that form
the main circuit as explained in methods. Since the simulated
circuit does not have an explicit target, we chose an excitatory
neuron (U2) as target. Further, since blind electrophysiological
recordings may be obtained from neurons unrelated to the
target, 40 neurons (U41–U80) were disconnected from the
target although connected among themselves, forming a “parallel
circuit.” In this way, two independent networks formed our
80-neuron circuit (see Figure 2).

The connectivity map shown in Figure 2 presents the structure
of the circuit in detail. There are six excitatory neurons involved
in monosynaptic connections with the target U2. These neurons
are U3, U4, U6, U11, U25, and U30. The list of excitatory
neurons connected disynaptically with the reference unit is wider
including 24 neurons. Some monosynaptic neurons also form
disynaptic links with U2.

While keeping constant the structure of the circuit, we
made different simulations changing the conditions of external
excitatory random input received by the neurons of the circuit;
therefore generating different conditions of uncertainty (see
“Materials and Methods”). Simulations lasted for 1000 s giving
rise to∼20000 intervals.

A first run of C5.0 under conditions of low uncertainty
returned large values of recall and precision leading to an MCC
value of 0.84. The group of neurons used to build rules or
“primary group” returned by the model was formed by seven
neurons (U6, U25, U4, U3, U11, U30, U1; see Supplementary
Tables 1, 2 for confusion matrix and variable importance data).
Remarkably, all monosynaptic neurons were included in this
group. Using 30 different seeds, we obtained a low level of
variability (SEM = 0.014), supporting our undersampling and
data partitioning strategies. Table 3 shows the metrics obtained
for this dataset and its corresponding subsets.

However, as the external input was changed to increase
the level of uncertainty, direct application of C5.0 returned a
larger primary group including all monosynaptic neurons as
well as an increasing number of irrelevant neurons. With the
highest level of uncertainty, the primary group was formed
by 32 neurons.

As a first conclusion from this preliminary study, it seems
that a direct run of C5.0 returns primary groups which are very
dependent on the level of uncertainty. A single run of C5.0 may
be useful only when all or most neurons involved in a circuit are
included in the data set.

During the biological experiment, we isolated 13 dorsal
horn neurons (or units U1–13) and five primary afferents.
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FIGURE 2 | Connectivity map of the large simulated circuit. The sub-circuit in the left contains the target unit (U2 in green) and 39 connected neurons. Red dots and
lines represent neurons monosynaptically connected to U2. Blue dots and lines show disynaptic connections. Dotted lines represent the remaining connections. The
sub-circuit in the right contains the 40 units disconnected from U2. Inhibitory neurons have been hidden for clarity.

TABLE 3 | Analysis of 80-neuron circuit.

Direct – 1 seed Mean – 30 seeds SEM – 30 seeds

SUBSET Precision Recall MCC Precision Recall MCC Precision Recall MCC

Complete 0.715 0.996 0.839 0.578 0.995 0.747 0.021 0.001 0.014

Snap 0.968 0.996 0.978 0.936 0.995 0.956 0.006 0.001 0.004

Training 0.971 1.000 0.982 0.941 0.999 0.961 0.005 0.000 0.003

Validation 0.955 0.982 0.960 0.915 0.981 0.933 0.009 0.003 0.007

Analysis were run with all afferents and we selected as target the
afferent that produced better metrics. Neurons had a mean firing
frequency of 0.9 ± 0.35 Hz (range 0.03–3.88 Hz) and their firing
patterns were classed as irregular simple (10 units), irregular fast
burst (2), and regular simple (1) following criteria previously
reported (Lucas-Romero et al., 2018). The afferent had an
irregular firing pattern with a mean firing frequency of 0.09 Hz.

After gathering a complete dataset with ∼38000 intervals, we
obtain a snap data subset with 175 positive and 700 negative
intervals. The confusion matrix for this dataset is shown in
Supplementary Table 3. Direct application of C5.0 obtained a
primary group formed by nine neurons (U09, U11, U02, U03,
U05, U04, U06, U07, and U13; see Supplementary Table 4 for
variable importance data). For this complete dataset, the MCC
value was 0.16 (see Table 4 for metrics from all subsets). Using
30 different seeds, the SEM obtained was 0.01, suggesting again
unbiased undersampling and data partitioning.

Analysis of Different Sets of Neurons
From the main simulated dataset analyzed in the previous
section, we obtained different subsets by eliminating the spike
trains produced by certain neurons as specified. Then we run
the C5.0 30 times with different seeds to obtain mean MCC
values (±SEM) and repeated the procedure under three levels of

uncertainty as defined in methods. The aim of this test was to
establish how the number of neurons, their degree of connectivity
to the target and the level of uncertainty affected the metrics
obtained. Figure 3 summarizes these results.

The subsets studied were as follows:

- A large dataset containing spike trains from all neurons
except those monosynaptically connected to the target.

- A medium sized dataset containing spike trains from the
39 neurons connected to the target.

- A medium sized dataset containing spike trains from the
40 neurons not connected to the target.

- A reduced dataset containing spike trains from 13
neurons including neurons of all types and degrees of
connectivity with U2.

- A reduced dataset containing spike trains from
13 neurons excluding neurons mono-synaptically
connected to the target.

Results of this test lead to three basic conclusions (see
Figure 3). First, the MCC value is sensitive to the level of
uncertainty generated by external random input (p < 0.0001 in
all comparisons, 2-way ANOVA, Tukey’s multiple comparisons
test). Second, the MCC is sensitive to the number of neurons
included in the dataset. Reduced datasets produced lower metrics.
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TABLE 4 | Analysis of experimental dataset.

Direct – 1 seed Mean – 30 seeds SEM – 30 seeds

SUBSET Precision Recall MCC Precision Recall MCC Precision Recall MCC

Complete 0.062 0.489 0.164 0.083 0.479 0.180 0.010 0.006 0.010

Snap 0.813 0.489 0.567 0.814 0.479 0.558 0.014 0.006 0.004

Training 0.793 0.483 0.552 0.822 0.502 0.577 0.013 0.008 0.003

Validation 0.900 0.514 0.629 0.776 0.383 0.473 0.023 0.013 0.016

FIGURE 3 | MCC values obtained from direct application of C5.0 to different
datasets under different levels of uncertainty as indicated. The mean and SEM
values shown were obtained after 30 runs of the algorithm using different
seeds. Datasets in the horizontal axis as follows: 80, all neurons in large
simulated circuit; 72, as before but spike trains from monosynaptic neurons
removed; 40R, medium circuit with 39 neurons connected to the target plus
target itself; 40NR, 40 neurons disconnected from target; 13, reduced
dataset from 13 neurons forming mono-, di-, or tri-synaptic contacts with U2
plus disconnected neurons; 13NM, same as before with spike trains form
monosynaptic neurons replaced by those of neurons with lower degree of
connectivity; Exp, experimental dataset.

This is consistent with the previous observation since a reduction
of the number of neurons included in the dataset is equivalent
to increasing the level of uncertainty. The third and most
important issue is that MCC is sensitive to the degree of
connectivity of the neurons included in the dataset. When spike
trains from monosynaptic neurons were removed from large or
reduced datasets, the metrics obtained decreased significantly
(p < 0.0001 for all comparisons, 2-way ANOVA, Tukey’s multiple
comparisons test).

Mean MCC and SEM values for the biological dataset
are included in Figure 3. These values are similar to those
obtained for the simulated dataset formed by spike trains from
13 neurons containing monosynaptic neurons, under conditions
of high uncertainty.

Analysis of Individual Neurons
Individual metrics were obtained for the 80 neurons forming
the simulated circuit under different conditions of uncertainty.
Results for MCC values are shown graphically in Figure 4 (values
for precision and recall are included in Supplementary Table 5).

FIGURE 4 | Individual MCC values for neurons contained in the 80-neuron
simulated circuit under low, medium, and high levels of uncertainty. Neuron
types are defined by their connectivity with the target as labeled. The MCC
values for the experimental data (Exp) are included.

The larger MCC values for individual neurons correspond to
neurons monosynaptically connected to U2. Under the most
favorable conditions of uncertainty, these values were between
0.38 and 0.51. However, a monosynaptic neuron had lower values
due to its low firing frequency.

For neurons belonging to the simulated circuit connected
to the target, individual metrics fell considerably when the
uncertainty increased. Neurons disconnected from U2 had low
metrics regardless of the level of external input.

The list of individual metrics for simulated neurons includes
monosynaptic neurons in the first positions.

Metrics for individual neurons were also obtained for the
biological dataset. Detailed data resulting from this analysis
are shown in Table 5 and Figure 4. The neuron with highest
individual MCC was U11 (MCC = 0.232) which fells within the
range of MCC values obtained by monosynaptic neurons of the
simulated circuit under medium conditions of uncertainty.

Analysis Using the Combinatory Process
From the data already reported it is clear that groups of neurons
can have better metrics than those obtained by individual
neurons. Therefore, we decided to search for a “relevant group,”
that is a group formed by the smallest number of neurons that
explains most of the MCC.
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The procedure described in methods was followed to find
the relevant group using only datasets with 13 neurons from
the simulated circuit. The total number of possible groups
per analysis was 8191. Figure 5 shows the frequency with
which each neuron appeared in the first 1% of groups with
better metrics (values of metrics for groups are shown in
Supplementary Table 6).

First, we used the dataset formed by spike trains from 13
neurons, some of them monosynaptically connected to the target.
Using one decision tree as standard, the frequency histograms
obtained under conditions of low and high external input
discriminate clearly the monosynaptic neurons (Figures 5A,B).
Then, we examined the effects of using five decision trees as
shown in Figures 5C,D. Under this condition, monosynaptic
neurons still had larger frequencies than others but disynaptic,
trisynaptic and disconnected neurons started to appear in groups
with good metrics.

Finally, we performed similar analysis using the dataset
with spike trains from 13 neurons of which none was
monosynaptically connected to the target. Results show that
discrimination of di-synaptic neurons was poor, especially under
conditions of high uncertainty (data not shown).

The outcome from these observations is that the capacity to
define a relevant group by the combinatory process relays on
the strength of the effective connections to the target and on the
amount of uncertainty contained on the dataset. In addition, the
use of a single decision tree gives optimum results.

Results for the combinatory analysis applied to the biological
dataset are shown in Figure 5E (complete results are shown
in Supplementary Table 7). The neurons more frequently
appearing in groups within the top 1% of best MCC values were
U11, U5, U8, U3, U2, and U10, considered as the relevant group
for this dataset. The mean MCC for these top performing groups
was 0.321 ± 0.0003. All neurons of the relevant group had a low
firing frequency and their firing preceded that of the afferent.
A representative correlogram of this kind is shown in Figure 5B.
Not included in this relevant group were neurons firing at high
frequencies, neurons that tended to fire after the afferent and
one uncorrelated neuron. Remarkably, neurons with the best

TABLE 5 | Individual metrics for experimental dataset.

Name Precision Recall MCC

U11 0.350 0.157 0.232

U05 0.312 0.163 0.223

U08 0.306 0.107 0.179

U02 0.321 0.101 0.178

U09 0.122 0.253 0.170

U03 0.244 0.112 0.163

U10 0.175 0.101 0.130

U06 0.051 0.101 0.066

U04 0.022 0.230 0.057

U01 0.033 0.079 0.044

U13 0.011 0.326 0.038

U07 0.009 0.157 0.019

U12 0.000 0.000 0.000

individual metrics belong to the relevant group as defined by the
combinatory analysis.

Analysis Using the Iterative Process
The rational for the iterative process laid on the idea that neurons
with better individual metrics, could lead to the generation of
groups with the best metrics. Following the procedure explained
in methods we analyzed the 80-neuron simulated circuit and
Figure 6 summarizes the results of this analysis run under
conditions of low and high levels of uncertainty (Precision and
recall values are shown in Supplementary Tables 8, 9).

Under conditions of low uncertainty, we found that a small
group of five neurons reaches near maximum MCC values
(Figure 6A). This group was formed by all monosynaptic neurons
(except U11 which has a low firing rate under this condition).
Under conditions of high uncertainty, the metrics were much
lower (Figure 6B); however, there is a clear point in the graph at
which the MCC value starts descending. This point corresponds
to the group formed by five monosynaptic neurons. In this
case, U11 was included (since external input increased its firing
frequency) whereas U4 was excluded.

Similarly, a “critical point” was also present in the
graph collecting results from the iterative process applied
to the group of 13 neurons containing spike trains from
monosynaptics (not shown).

Therefore, this method seems to work well at detecting strong
functional links under conditions of low and high uncertainty.

To analyze the biological dataset with the iterative process we
applied the procedure 30 times using different seeds and report
mean ± SEM values. Mean maximum MCC values fell within
the range of 0.17–0.30. MCC values increased as the first neurons
were discarded suggesting that those neurons introduced noise.
The best MCC values were obtained when only neurons U11,
U05, U02, and U08 were used to build rules followed closely
by a group with only three neurons U11, U05, and U02.
It is noteworthy that all these neurons were also detected
by combinatory analysis as belonging to the reference group.
Figure 6C shows graphically the evolution of the iterative process
for this dataset. As in the case of the simulated dataset, there
is a critical point corresponding to the group of four neurons
with maximum MCC. Extended results using this procedure are
shown in Supplementary Table 10.

Analysis by the Recursive Process
As an additional strategy to identify relevant neurons using
limited computational resources, we developed a recursive
process. Following the procedure described in methods for the
recursive process, the 80-neuron simulated circuit was used
for the first run under conditions of low (Figure 7A) and
high uncertainty. Under conditions of low uncertainty, the
monosynaptic neurons were selected in the upper branch (see
Figure 7A). Interestingly, disynaptic neurons were included
in the secondary group at the first node and later collected
in the primary branch. Under conditions of high uncertainty,
monosynaptic neurons were still collected at the principal
branches and the smallest group with a relatively high MCC
included five monosynaptic neurons but three unrelated neurons
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FIGURE 5 | Histograms from combinatory analysis showing the frequency of appearance of each neuron in top 1% groups ordered by MCC value. Results from the
13-neuron simulated circuit containing monosynaptic neurons are shown in (A–D): (A) low uncertainty, one decision tree; (B) high uncertainty, one decision tree; (C)
as in ‘(A)’ with five decision trees; (D) as in ‘B’ with five decision trees. Bar colors, represent the connectivity to the target as labeled. Results obtained with the
biological dataset are shown in (E). All bars are in gray because their connectivity to the target is unknown. The cross-correlogram between a dorsal horn neuron
(U11) and the afferent (as trigger) is shown in (F). Note how the firing in the neuron tends to precede firing in the afferent.

were also included (not shown; numerical data for both
conditions are shown in Supplementary Tables 11, 12).

Results suggest that this procedure used under low conditions
of uncertainty, may be useful to detect effective connectivity from
monosynaptic and disynaptic neurons, especially when large
groups of neurons are analyzed together.

For the biological dataset, the groups with best metrics were
found in the first executions. Most important, some of the
neurons forming the relevant group were included (U02, U11,
U03, and U04), but others (U05 and U8) were not retrieved until
several executions later, in a deep level at a secondary branch of
the first analysis (see Figure 7B). Numerical data are shown in
Supplementary Table 13.

DISCUSSION

The present results show that application of the algorithm C5.0
to the analysis of spike trains can lead to the identification of the
neurons whose firing is highly relevant to the firing of a target
neuron. The method proposed allows finding the information
carried by spike trains of single neurons or groups of neurons,
which is useful to predict the firing of the target. The method
used is quantitative, revealing recall and precision data as well
as combined indexes like MCC, which are important to facilitate
an intuitive understanding of the predictive value of neurons.
Therefore, the method produces data that can be useful to detect
effective connectivity links among neurons (Friston, 2011).
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FIGURE 6 | Graphs in (A) and (B) show results of iterative analysis applied to
the 80 neuron circuit under conditions of low (A) and high (B) uncertainty. In
both cases the critical point is reached when a group formed by the best 5–6
units remain (marked by arrows). Analysis were performed with spike trains
from 59 neurons; the remaining neurons were excluded due to their low
individual metrics. (C) Shows results for the experimental dataset (critical point
marked by arrow). This analysis was run 30 times with different seeds and the
data presented are mean and SEM (see text for details). In this case, the group
with best metrics contained 4 units, all of them included in the relevant group.

We have simplified our metrics to a single value, the Matthews
Correlation Coefficient or MCC (Matthews, 1975). MCC was
sensitive to the degree of connectivity to the target neuron as
well as to the degree of uncertainty contained in the dataset.
Although the use of MCC is considered useful on a regular basis,
it may be necessary to use recall, precision or other metrics under
specific conditions. For example, neurons that fire spontaneously
at a high frequency may obtain a considerable MCC with a high
recall but little precision. Therefore, although the systematic use
of MCC is useful, it requires supervision.

The experiments performed on the simulated dataset,
demonstrate that a single run of C5.0 may detect all the neurons
monosynaptically connected to the target under favorable
conditions of uncertainty, even in complex datasets including

large numbers of spike trains. The degree of uncertainty depends
on a series of factors. As a general rule, the greater the number of
spikes in the target neuron that cannot be explained in terms of
spikes in the other neurons, the greater the uncertainty. Datasets
from real electrophysiological experiments may have relatively
high levels of uncertainty due mainly, but not exclusively, to
the existence of relevant inputs that are hidden to the recording
electrodes and therefore, excluded from the dataset. Further,
some of the recorded spike trains may be engaged in processes
unrelated to the target neuron adding noise to the datasets. Under
conditions of medium or high levels of uncertainty, a single run
of C5.0 is likely to give good clues on effective connectivity since
the primary groups formed contain neurons closely related to the
target although they may contain other less relevant neurons.

As a first conclusion, the present experiments indicate that the
algorithm is useful to detect groups of neurons that condition
the firing of the target; however, the validity of results depends
critically on the level of uncertainty. Since the level of uncertainty
of real electrophysiological datasets is likely to be considerable,
we have explored other processes that may improve the usability
of the algorithm.

First, we obtained individual MCC values for each neuron.
The simulated circuit allowed us to realize that neurons
monosynaptically connected to the target had the greater
individual MCC values. Quantitative differences in MCC values
of neurons with different degrees of connectivity to the target
were considerable under conditions of low and medium levels of
uncertainty but they blurred under high uncertainty. Although
this process may be insufficient when sampling only a few
neurons from a large biological circuit, it is possible to envisage
ways of analysis of individual metrics using clustering tools to
refine the prediction of monosynaptic connectivity even under
high uncertainty conditions.

The results of individual metrics obtained by U11 of the
simulated dataset give an additional clue about the true meaning
of the information captured by the algorithm. This neuron
received similar metrics to other monosynaptic neurons except
for its low MCC under conditions of low uncertainty. As
explained in the “Results” section, this was because U11 fired few
action potentials in the absence of external input and therefore
its influence on the target fell down. Although its structural
connectivity was identical, its effective connectivity decreased due
to low levels of activity.

Another useful contribution of single neuron analysis was to
demonstrate that small groups of neurons could obtain higher
metrics than single neurons. This is the reason that pushed us
to search for a “relevant group,” that is, the smallest group of
neurons that can explain most of the MCC.

To this aim, we designed the combinatory process. This
process is time consuming due to the large number of groups
that require analysis. Having access to large computer facilities
should solve this problem. However, we wanted to perform all our
analysis on a basic desktop available at any laboratory, therefore
we performed it in reduced simulated datasets containing only 13
neurons, the size of our biological dataset.

This analysis showed very good results in the simulated
datasets used. Monosynaptic neurons were clearly isolated
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FIGURE 7 | Graph in (A) shows results of recursive analysis applied to the 80-neuron circuit under low uncertainty. Circle size reflects the number of units contained
in each group. Color scale represents the MCC value obtained according to scales. Note that the units forming best groups were separated in the top branches of
the graph. This analysis required 144 executions of the algorithm. The recursive analysis applied to the experimental dataset is shown in (B).

from the rest regardless of the level of uncertainty. However,
replacement of monosynaptic neurons showed that combinatory
analysis does not identify disynaptic, trisynaptic or disconnected
neurons with sufficient clarity. This is an important observation
and it may suggest that the sensitivity of this combinatory process
is limited to a single synapse.

In addition, we used the combinatory analysis to demonstrate
that the use of a single decision tree leads to better results than
the use of five decision trees because poorly related neurons may
be collected as relevant.

Although the combinatory process may be useful for
the analysis of small datasets, it is not adequate for large
datasets unless a fast computer facility is at hand. For
this reason, we developed an iterative process that produces
graphs containing the result of eliminating one by one the
neurons with worst MCC values as explained. In the graphs
obtained, it is possible to identify a critical point for which
the MCC value reaches a maximum with a relatively small
number of neurons. For the 80-neuron simulated dataset, a
group of neurons monosynaptically connected to the target
obtained maximum MCC values. Of most interest is the fact
that this process has been proved useful under conditions
of high uncertainty. Tested in a 13-neuron dataset with
monosynaptic neurons, results were similar. On these grounds,
we propose that the iterative processes combined with data
from individual neurons may be a good procedure to obtain a
relevant group of neurons without the need to run expensive
combinatory processes.

The recursive analysis may provide useful information as well.
When tested in a large dataset with low level of uncertainty, the
recursive analysis returned a group of monosynaptic neurons
in a first branch and a group of disynaptic neurons in a
secondary branch. This is our first observation indicating that the
algorithm may be used to identify second order neurons under
certain circumstances. Further research will be required in this

direction to refine procedures that increase the sensitivity of the
analytical processes.

The biological dataset analyzed in the “Results” section was
obtained from a set of 13 neurons recorded in the dorsal horn
of the spinal cord plus a primary afferent, which is the natural
target of the circuit. The circuit regulating backfiring of primary
afferents is unknown and likely to contain a number of relevant
differences with the simulated circuit. However, it is remarkable
that the metrics obtained in the different analysis performed with
the biological dataset fell well within the limits of variability
established for the simulated datasets. This suggests that the
algorithm and the different processes developed may be still valid
when analyzing biological circuits of unknown structure.

Using the algorithm we have obtained interesting practical
clues. For example we have found that a direct application of
C5.0 may provide a rapid indication about the potential interest
of a given experiment so as to decide whether it is worth
continuing the analysis. Furthermore, the low metrics obtained
with the biological dataset indicates that the sample of recorded
neurons explains only a part of the behavior of the afferent and
suggests that the biological circuit contains a number of neurons
considerably larger than the set of neurons actually recorded.

Looking at the individual metrics, there are at least seven
neurons with MCC values considerably high and compatible with
the status of monosynaptic connection to the output neuron. The
correlogram shown for U11 in Figure 7 is also compatible with
a monosynaptic contact. At least five or six of those neurons
are included in the relevant group obtained by the combinatory
analysis. Finally, four of those neurons are detected by the
iterative analysis as the major contributors to the firing in the
afferent. The data clearly indicate that our sample included six
neurons with a strong effective connectivity to the output neuron.
Some or all of them could be monosynaptically connected to the
afferent. From these data, we can speculate that the afferent may
receive a large number of monosynaptic inputs from different
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neurons and that several of them are required to coincide in
time to activate the afferent. One first practical output of these
observations is that recordings of larger numbers of neurons
will be required to draw precise effective connectivity maps to
characterize the circuits involved.

We believe that the experiments reported constitute a valid
proof of concept to reinforce the potential use of C5.0 algorithm
to the analysis of spike trains and effective connectivity in
neuronal circuits. In addition, refinement of processes may
facilitate the building of effective connectivity maps for neuronal
circuits. A simple strategy for refinement would be to combine
individual or recursive processes with combinatory analysis.
Other alternative strategies would include the analysis of the rules
created to take decisions or use of different algorithms that may
produce classifications that are more accurate. A more complex
strategy involves a long-term process of interaction between the
use of biological and modeled datasets until models reflect true
biological traits of the studied circuit.
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