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Complex problem solving is a high level cognitive task of the human brain, which has

been studied over the last decade. Tower of London (TOL) is a game that has been

widely used to study complex problem solving. In this paper, we aim to explore the

underlying cognitive network structure among anatomical regions of complex problem

solving and its subtasks, namely planning and execution. A new computational model

for estimating a brain network at each time instant of fMRI recordings is proposed. The

suggested method models the brain network as an Artificial Neural Network, where the

weights correspond to the relationships among the brain anatomic regions. The first

step of the model is preprocessing that manages to decrease the spatial redundancy

while increasing the temporal resolution of the fMRI recordings. Then, dynamic brain

networks are estimated using the preprocessed fMRI signal to train the Artificial Neural

Network. The properties of the estimated brain networks are studied in order to identify

regions of interest, such as hubs and subgroups of densely connected brain regions. The

representation power of the suggested brain network is shown by decoding the planning

and execution subtasks of complex problem solving. Our findings are consistent with the

previous results of experimental psychology. Furthermore, it is observed that there are

more hubs during the planning phase compared to the execution phase, and the clusters

are more strongly connected during planning compared to execution.

Keywords: fMRI, machine learning, brain networks, tower of London (TOL), complex problem solving

1. INTRODUCTION

Complex problem solving is a very crucial ability of the human brain, which covers a large number
of high-level cognitive processes, including strategy formation, coordination, sequencing of mental
functions, and holding information online. These complex high-level cognitive processes make the
inner workings of problem solving a challenging task.

The standard method for neuro-analysis of complex problem solving in the literature is to study
the fMRI data recorded while the subjects play the Tower of London (TOL) game, designed by
Shallice (1982). TOL game consists of three bins having different capacities with colored balls placed
in the bins; the aim is to rearrange the balls from their initial state to a predetermined goal state
while moving one ball at a time and taking into consideration the limited capacity of each bin (as
shown in Figure 1).

TOL game has been primarily employed to study the effect of various properties of complex
problem solving performance in healthy subjects. The predictive power of working memory,
inhibition, and fluid intelligence on TOL performance has been investigated with consideration
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FIGURE 1 | Example tower of London (TOL) puzzle.

of factors such as age, gender, exercise, etc. (Unterrainer et al.,
2004, 2005; Zook et al., 2004, 2006; Boghi et al., 2006; Albert and
Steinberg, 2011; Chang et al., 2011; Desco et al., 2011; Kaller et al.,
2012). Additionally, TOL has been used to investigate the effect
of various clinical disorders on functions associated with the
prefrontal cortex such as planning. For example, the task has been
utilized in neuroimaging studies to identify executive dysfunction
by examining differential cognitive activation patterns in people
suffering from neurological disorders like epilepsy, seizures,
depression, Parkinson’s and schizophrenia (Goethals et al., 2005;
Rasser et al., 2005; Rektorova et al., 2008; MacAllister et al., 2012).

The classic work of Newell and Simon (Newell et al.,
1957; Simon and Newell, 1971) hypothesized three distinct
phases of complex problem solving: construction of problem
representation, elaboration to search for operators to solve the
problem, and execution to implement the solution. Despite
being a well respected theory, there is little to no evidence
from cognitive neuroimaging that supports this hypothesis
directly. Consequently, refinements of the theory, such as
online planning in which elaboration and execution phases
are interspersed, and mechanisms such as schema development
that may suggest qualitative differences between good and
poor problem-solvers, are understood even less. The primary
reason for this state of affairs is that cognitive neuroimaging
in general and fMRI analysis, in particular, tends to ignore
the temporal aspect of how brain activation and network
connectivity evolve during complex cognitive tasks. Further,
much of the existing methods have tended to test theoretical
cognitive models by searching for brain data that fit those
models, rather than using the brain data themselves to inform us
about cognition.

Numerous studies have proposed various computational
models in order to build brain networks from fMRI
measurements, both during cognitive tasks or during resting
state. These studies represent a shift in the literature toward
brain decoding algorithms that are based on the connectivity
patterns in the brain motivated by the findings that these
patterns provide more information about cognitive tasks than
the isolated behavior of individual groups of voxels or anatomical

regions (Lindquist, 2008; Ekman et al., 2012; Shirer et al., 2012;
Richiardi et al., 2013; Onal et al., 2017). Some of these studies
focused on the pairwise relationships between voxels or brain
regions. For example, Pearson correlation has been used in
order to construct undirected functional connectivity graphs at
different frequency resolutions in Richiardi et al. (2011). Also,
pairwise correlations and mutual information have been used
in order to build functional brain networks in various studies
aiming to investigate the network differences between patients
with Schizophrenia or Alzheimer’s disease and healthy subjects
(Lynall et al., 2010; Menon, 2011; Kurmukov et al., 2017). Others
used partial correlation along with constrained linear regression
to generate brain networks in Lee et al. (2011).

In our previous studies, we take advantage of the locality
property of the brain by constructing local mesh networks
around each brain region. Then, we represent the entire brain
network as an ensemble of local meshes. In these studies,
we estimated the Blood-Oxygenation Level Dependent (BOLD)
response of each brain region as a linear combination of
the responses of its "closest" neighboring regions. Then, we
solved the systems of linear equations using various regression
techniques. Our team applied Levinson-Durbin recursion in
order to estimate the edge weights of each local star mesh, where
the nodes are the neighboring regions of the seed brain region
(Fırat et al., 2013; Alchihabi et al., 2018). We also used ridge
regression to estimate edge weights while constructing the local
mesh networks across windows of time series of fMRI recordings
(Onal et al., 2015, 2017).

In this study, we present a novel approach for estimating
dynamic brain networks, which represent the relationship among
the brain anatomic regions at each time instant of the fMRI
recordings. The approach models the relationship among the
anatomical brain regions as an Artificial Neural Network (ANN),
where the edge weights correspond to the arc weights of the
brain network. The idea of modeling the brain network as an
ANN is first introduced in our lab (Kivilcim et al., 2018), where
the model can be constructed to estimate both directed and
undirected brain graphs. In this study, we further extend this
idea to estimate dynamic brain networks. We also explore the
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validity and representation power of the suggested brain network
by analyzing its statistical properties using themethods suggested
in Bassett and Bullmore (2006), Power et al. (2010), Rubinov and
Sporns (2010), and Park and Friston (2013).

Several network measures, such as measures of centrality,
which identify potential hubs and measures of functional
segregation, which detect densely interconnected clusters of
nodes, provide means to analyze both individual components of
brain network and the brain network as a whole. As a result,
these network measures reveal and characterize various aspects
of inter-dynamics of brain regions enabling us to analyze and
compare different brain network snapshots. The properties of
the dynamic brain networks are studied in order to identify the
active anatomical regions during both planning and execution
phases of complex problem solving. Potential hubs and clusters of
densely connected brain regions are identified for both subtasks.
Furthermore, the distinctions and similarities between planning
and execution networks are highlighted. The results identify
both active and inactive hub regions as well as clusters of
densely connected anatomical regions during complex problem-
solving. In addition, results show that there are more potential
hubs during the planning phase compared to the execution
phase. Also, the clusters of densely interconnected regions are
significantly more strongly connected during planning compared
to execution. Finally, we studied the decoding power of the
suggested brain networkmodel by using simplemachine learning
methods to classify two phases of complex problem solving,
namely, planning and execution.

2. TOL EXPERIMENT PROCEDURE

In this section, we introduce the details of the experiment as well
as data collection and preprocessing methods.

2.1. Participants and Stimuli
18 college students aged between 19 and 38 participated in the
experiment after signing informed, written consent documents
approved by the Indiana University Institutional Review Board.
The subjects solved a computerized version of TOL problem; two
configurations were presented at the beginning of each puzzle:
the initial state and the goal state. The subjects were asked to
transform the initial state into the goal state using the minimum
number of moves. However, the subjects were not informed of
the minimum number of moves needed to solve a given puzzle
nor of the existence of multiple solution paths.

2.2. Procedure
Each subject underwent a practice session before entering the
scanning session to acquaint subjects with the TOL problem. The
subjects were given the following instructions: "You will be asked
to solve a series of puzzles. The goal of the puzzle is to make the
’start’ or ’current’ state match the ’goal’ state (They were shown
an example). Try to solve the problems in the minimum number
of moves by planning ahead. Work as quickly and accurately as
possible, but accuracy is more important than speed."

The scanning session consisted of 4 runs, each run included
18 timed puzzles, with a 5-s planning only time slot during

which subjects were not allowed to move the balls. However, they
were allowed to continue planning after the 5 s planning only
time slot if they chose to do so. Following every puzzle, there
was a 12-s rest period where subjects focused on a plus sign in
the center of the screen. Each run was also followed by a 28-s
fixation period.

The planning task is defined from the start of the puzzle
until the subject’s first move. The execution task is defined from
the subject’s first move until the end of the puzzle. During
the experiments, both planning and execution times change
across the subjects, runs and puzzles. The average planning time
instances per puzzle is 5.91 and the average time instances for
execution per puzzle is 5.63 over all puzzles and subjects. The
average total planning time instances per run is 106.35 and the
average total execution time instances per run is 101.28 over
all subjects. Figure 2 shows the total number of planning and
execution instances for each run of all subjects. Each mark on the
horizontal axis refers to a given run of a specific subject. As it can
be observed from Figure 2, the data is quite balanced between
the planning and execution phases (average of 101 planning and
106 execution across the subjects per each run). For this reason,
we did not augment the classes or eliminate some samples in the
dataset for balancing the classes. The details of the dataset are
summarized in Table 1.

2.3. fMRI Data Acquisition and Preliminary
Analysis
The fMRI images were collected using a 3 T Siemens TRIO
scanner with an 8-channel radio frequency coil located in the
Imaging Research Facility at Indiana University. The images were
acquired in 18 5 mm thick oblique axial slices using the following
set of parameters: TR = 1,000 ms, TE = 25 ms, flip angle = 60◦,
voxel size= 3.125 mm×3.125 mm×5 mm with a 1 mm gap.

The statistical parametric mapping toolbox was used
to perform the preliminary data analysis that included:
image correction for slice acquisition timing, resampling,
spatial smoothing, motion correction and normalization to
the Montreal Neurological Institute (MNI) EPI template.
Further details concerning the procedure and data acquisition
can be found in Newman et al. (2009) as we use the same
data/participants in this study. It is also worth noting that we
perform our analysis on all recorded puzzles, not only correctly
solved ones, given that the aim of this study is to investigate the
planning and execution networks in general. In future work,
we aim to study the differences in the planning and execution
networks between good problem-solvers and bad problem-
solvers; in that case, we will make the distinction between
correctly solved puzzles and unsolved puzzles. Furthermore, the
entirety of our analysis is performed on the raw fMRI recordings;
no first-level modeling or regressors are applied; rather, we use
the recorded time series as our raw BOLD response.

In order to investigate the inter-subject variability, we estimate
the mean values and variance of BOLD activation of each brain
anatomic region across all subjects. Figure 3 clearly shows the
relatively low variations of the BOLD activation around the mean
values of brain anatomic regions across 18 subjects.
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FIGURE 2 | The number of planning and execution instances for each run of all subjects. Horizontal axis indicates the subject ID for each run (there are total of 18

subject x4 runs = 72 runs), whereas the vertical axis shows the number of time instances for planning (blue) and execution (orange) per run.

TABLE 1 | Summary of TOL dataset.

# of Subjects 18

# of Runs/subject 4

# of Puzzles/run 18

Avg. Planning instances/puzzle 5.91

Avg. Execution instances/puzzle 5.63

Avg. Planning instances/run 106.35

Avg. Execution instances/run 101.28

Total planning instances for 18 x 4 runs 7,657

Total execution instances for 18 x 4 runs 7,292

Note that the planning instances (7657) and execution instances (7292) are quite

balanced.

3. MODELING DYNAMIC BRAIN NETWORK
AS AN ARTIFICIAL NEURAL NETWORK

Can we model the relationship among the anatomic regions as
an Artificial Neural Network? If so, what is the validity and
representation power of this network to analyze cognitive tasks
such as complex problem solving? In this section, we suggest a
computational model to represent the complex problem solving
task as a dynamic brain network. In the next section, we shall
explore the validity of this network and try to analyze the complex
problem solving task of the human brain.

3.1. Preprocessing of the fMRI Recordings
In order to be able to estimate a dynamic brain network among
the anatomic regions, we need to process the raw fMRI data for

• representation of anatomic regions,
• interpolation in time,
• injecting additive noise,

as explained below.

3.1.1. Representation of Anatomic Regions
Each anatomic region is represented by a time series using voxel
selection and averaging methods. Voxel selection reduces the

dimension of fMRI data (185,000 voxels per brain volume) and
eliminates the irrelevant voxels that do not contribute to the
underlying cognitive process. ANOVA method is used to choose
the most discriminative voxels and to discard the remaining ones
(Cox and Savoy, 2003; Pereira et al., 2009; Afrasiyabi et al., 2016).
The f -value score of each voxel vi is calculated from Equation (1):

f _scorei =
MSB(vi, ylabel)

MSW(vi, ylabel)
, (1)

where ylabel is the label indicating the subtask (Planning or
Execution).MSB(vi, ylabel) is the mean square value between raw
measured BOLD response of voxel i and the label vector ylabel,
which is calculated by Equation (2):

MSB(vi, ylabel) =
SSB(vi, ylabel)

dfbetween
, (2)

SSB(vi, ylabel) is the sum of squares between ylabel and vi, dfbetween
is the number of groups minus one. MSW(vi, ylabel) is the mean
square value within voxel i and the label vector ylabel and it is
calculated by Equation (3):

MSW(vi, ylabel) =
SSW(vi, ylabel)

dfwithin
, (3)

where SSW(vi, ylabel) is the sum of squares within group and
dfwithin is the degree of freedom within (total number of elements
in vi and ylabel minus the number of groups).

We order the voxels according to their f -value scores. Then,
the distribution of f -value scores of all voxels is plotted in order
to determine the number of voxels to retain. Voxel selection is
applied to the voxels of all brain regions except the ones located
in the cerebellum, which we exclude during network extraction.

Each anatomic region is represented by averaging the BOLD
response of the selected voxels, which resides in that region
defined by automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) as shown in Equation (4):

rj =

∑

i∈ζ [j] vi

|ζ [j]|
(4)
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FIGURE 3 | Estimated mean values and variations of BOLD activation of each brain anatomic region, over 18 subjects. Horizontal axis shows the index of anatomic

regions, whereas the vertical axis shows the mean values (blue bars) and variances (black bars) of measured BOLD activation.

where rj is the representative BOLD response of region j, vi is
the raw measured BOLD response of voxel i and ζ [j] is the set
of selected voxels located in region j. The representative BOLD
responses,rj, enables us to investigate the role and contribution of
each region to the planning and execution phases of the problem
solving task.

3.1.2. Interpolation
It is well-known that despite its high spatial resolution, fMRI
signal has very low temporal resolution compared to EEG
signal. In this study, we interpolate the fMRI signal in order
to compensate for this drawback and study the effect of
interpolation for estimating the brain networks and on decoding
the planning and execution phases of TOL game.

In the TOL study, subjects solved a puzzle in at most 15 s
and the sampling rate, TR, is 1,000 ms. Interpolation is used
to increase the temporal resolution by estimating z extra brain
volumes between each two consecutive measured brain volumes.
As a result, the total number of available brain volumes for each
puzzle becomes n + z ∗ (n − 1), where n is the number of
measured brain volumes of a given puzzle. We use the cubic
spline interpolation function rather than linear interpolation
methods in order to prevent edge effects and smoothing out
the spikes between the measured brain volumes (McKinley and
Levine, 1998).

In order to analyze the effect of time interpolation and to
estimate an acceptable number of inserted brain volumes z, we
compare the Fourier Transform of the fMRI signal computed
before and after interpolation so that the frequency content of the
signal is not distorted by interpolation. The original single-sided
amplitude of the signal and the one obtained after interpolation
are compared in order to ensure that interpolation is preserving
the smooth peaks of the data in the frequency domain (Cochran
et al., 1967; Frigo and Johnson, 1998).

3.1.3. Injecting Gaussian Noise
When modeling a deterministic signal by a probabilistic method,
adding noise to the signal decreases the estimation error in most
of the practical applications. The final phase of preprocessing
is adding Gaussian noise to the interpolated time series of the
BOLD response in each anatomical region. For this purpose,

instead of just injecting white noise, a rather informed noise,
colorful Gaussian noise, is added. In order to reflect the
corresponding brain region’s properties, for each sample, the
additive noise sample is generated from a Gaussian distribution
havingmean and variance of that anatomical region. These newly
generated samples not only act like a natural regularizer to
improve the generalization performance of brain decoding but
also help making the Artificial Neural Network more stable when
estimating the edge weights of the brain networks (Matsuoka,
1992; Reed et al., 1992).

Given a representative time series from a particular brain
region, i represents the index of an anatomical region. The
new samples are generated with vector addition of noise while
preserving the signal-to-noise ratio (SNR) as in r̃j = rj+τj, where
τj is a noise vector sampled from N(αnoise µ(rj), βnoise σ 2(rj)),
αnoise and βnoise are the scaling factors which are set empirically,
to optimize the decoding performance.

3.2. Building Dynamic Brain Networks With
Artificial Neural Networks
The above preprocessingmethods yield a relatively high temporal
resolution and smooth time series for each anatomic region
compared to the row fMRI recordings.

In this section, we use the output of the preseprocessing
step to estimate the relationship among the time series of
anatomic regions at each time instance to generate a dynamic
brain network, where the arc weights vary with respect to
time instances.

3.2.1. Partitioning the Time Series Into Fixed Size

Internals and Defining the Brain Network for Each

Window
As the first step, we partition each time series, which represents an
anatomical region, into fixed-size windows. Each window,win(t),
is centered at the measured brain volume at time instance, t. The
size of each window is Win_Size = z + 1 brain volumes, where
z is the number of interpolated brain volumes in each window.
Equation (5) shows the time instances included in each window.
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win(t) =

[

t −
⌊ z

2

⌋

, . . . , t, . . . , t +
⌈ z

2

⌉

]

(5)

We define a dynamic brain network, N(t) = (V ,W(t)), for
each time window win(t), where V is the set of nodes of the
graph corresponding to the brain anatomical regions andW(t) =
{wt,j,i|∀i, j ∈ V} is the directed weighted edges between the nodes
of the graph within time window win(t). The nodes of the graph
represent the AAL-defined brain regions (Tzourio-Mazoyer et al.,
2002), except for the regions located in the cerebellum. The
nodes are then pruned using voxel selection, as some anatomical
regions contribute no voxels at all and get deleted from the set of
nodes of the graph V .

Note that our aim is to label the BOLD responses measured
at each brain volume as it belongs to one of the two phases of
complex problem solving, namely, planning and execution. For
this purpose, we represent each brain volume measured at a time
instant t by a network, which shows the relationship among the
anatomical regions. This dynamic network representation will
allow us to investigate the network properties of planning and
execution subtasks.

Note also that the nodes, V , of the network are fixed to the
active anatomic regions, and our goal is only to estimate the
weights of the edges, W(t), of the brain network, N(t), for each
time instance, t For this purpose we adopt the method suggested
by our team in Kivilcim et al. (2018).

3.2.2. Forming Local Meshes
It is well-known that the human brain operates with two
contradicting principles, namely locality and centrality. Our
suggested network model incorporates these two principals by
defining a set of spatially local meshes then ensembling the local
meshes to form the brain network. This representation not only
avoids to define fully connected brain networks by omitting the
connectivity among irrelevant brain regions but also reduces the
computational complexity.

In order to define local meshes, for each window win(t), we
define the functional neighborhood matrix, �t , for each time
instant t. The entries of �t are binary, either 1 or 0, indicating
if there is a connection between two regions or not. The size of
the matrix isM×M, whereM is the number of brain anatomical
regions. The functional neighborhood matrix contains no self-
connections, thus, �t(i, i) = 0∀i ∈ [1,M]. Recall that the brain
regions are pruned by voxel selection. Thus, the regions which
do not contain any voxels have no in/out connections, and the
corresponding entries in �t are all zero.

The connectivity of each region to the rest of the regions is
determined by using Pearson correlation, as follows: first, for
every region i, we measure the Pearson correlation between its
BOLD response ri,t and the BOLD responses of all the other
remaining regions as shown below:

cor(ri,t , rj,t) =
cov(ri,t , rj,t)

σ (ri,t)σ (rj,t)
, (6)

where ri,t is the BOLD response of region i across time window
win(t), cov(ri,t , rj,t) is the covariance between the corresponding
BOLD responses of regions i and j. σ is the standard deviation
of the BOLD response of a given region. Thus, the higher the
Pearson correlation between two regions the closer they are to
each other in the functional neighborhood system.

Then, we select p of the regions with the highest correlation
scores with region i. Thus, a local mesh for each anatomic
region i is formed by obtaining the neighborhood set ηp[i], which
contains the p closest brain regions to region i. The degree of
neighborhood, p, is determined empirically as will be explained in
the next section. Finally, we define the �t(i, j) as the connectivity
between the regions i and j, using the constructed neighborhood
sets as follows:

�t(i, j) =

{

1, if j ∈ ηp[i]

0, otherwise.
(7)

Note that each anatomical region is connected to its p closest
functional neighbors. This approach forms a star mesh around
each anatomical region.

The ensemble of all of the local meshes creates a brain network
at each time instance. Note, also, that Pearson correlation values
are not used as the weights between two regions. They are just
used to identify the nodes of each local mesh formed around
an anatomical region. The estimated brain network becomes
sparser as p gets smaller. When p is set to the number of
anatomic regions,M, the network becomes fully connected. This
approach of defining the connectivity matrix makes the network
representation sparse for small p-values and constructs a network
that is connected in functionally closest regions, satisfying the
locality property of the human brain.

3.2.3. Estimating the Edge Weights of the Brain

Network
After having determined the edges of the brain graph using the
functional neighborhood matrix �t , all that is left is to estimate
the weights of these edges at each local mesh. At this point,
we could use the Pearson correlation values as edge weights
between two anatomic regions. However, Pearson values are
restricted to measure the connectivity among the pairs only. A
better approach is to consider the multiple relationships among
an anatomic region and all of its neighbors in the local mesh.
In order to estimate the edge weights in a mesh all at once,
we represent the time series of each region i (ri,t) as a linear
combination of its closest p-functional neighbors as shown in
Equation (8):

r̂i,t =
∑

j∈ηp[i]

wt,j,irj,t + ǫi,t . (8)

In Equation (8), r̂i,t is the representative time series of of region i
within the time window win(t), wt,j,i is the estimated edge weight
between node (region) i and node j at time instance t. ηp[i] is the
p-closest functional neighbors of region i.
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Ertugrul et al. (2016) showed that representing the time
series of an anatomic region as a linear combination of its
closest neighbors provides better performance compared to using
pairwise Pearson correlation in brain decoding. They estimated
the arc-weights for each mesh formed around region i for each
time window win(t) by minimizing the mean-squared error loss
function using Ridge regression. In this approach, the mean-
squared error loss function is minimized with respect to wt,j,i,
for each mesh, independent of the other meshes, where the
expectation is taken over the time-instances, in window win(t)
as shown in Equation (9).

E[(ǫi,t)
2] = E[(r̂i,t −

∑

j∈ηp[i]

wt,j,irj,t)
2]+ λ||wt,j,i||

2, (9)

where λ is the L2 regularization parameter whose value is
optimized using cross-validation. L2 regularization is used
in order to improve the generalization of the constructed
mesh networks. Note that the estimated arc-weights, wt,j,i 6=

wt,i,j. Therefore, the ensemble of meshes yields a directed
brain network.

In this study, we define an Artificial Neural Network to
estimate the values of mesh arc-weights for all anatomical regions
jointly in each time window, as proposed in Kivilcim et al.
(2018). In this method, we estimate the mesh arc-weights matrix
W(t) = {wt,j,i|j, i ∈ V} using a feed-forward neural network.
The architecture of this network consists of an input layer and
an output layer, both containingM nodes corresponding to each
anatomic region. The edges of the feed-forward neural network
are constructed using the neighborhood matrix �t . There is an
edge between node i of the output layer and node j from the input
layer, if �t(i, j) = 1.

The loss function of the suggested Artificial Neural Network
is given in Equation (10), where W is the weight matrix of the
entire neural network that corresponds to directed edge weights
of the brain graph andWi is the row of matrixW corresponding
to region i:

Loss(Outputi) = E[(ǫi,t)
2]+ λWT

i Wi

= E[(ri,t −
∑

j∈ηp[i]

wt,j,irj,t)
2]+ λWT

i Wi. (10)

We train the aforementioned Artificial Neural Network in order
to obtain the weights of the brain network at each time instance
t that minimize the loss function by applying a gradient descent
optimization method as shown in Equation (11),

w
(κ)
t,j,i = w

(κ−1)
t,j,i − αlearning

∂E[(ǫi,t)2]

∂wt,j,i
, (11)

where w
(κ)
t,j,i is the weight of the edge from node j to node i at

epoch (iteration) κ , αlearning is the learning rate. The number of

epochs and learning rate used to train the network are optimized
empirically using cross-validation.

Finally, the weights of the above artificial neural network,
computed for each win(t), correspond to the edge weights of
the dynamic brain network, N(t) = (V ,W(t)), at each time
instant t. Thus, we refer to the brain networks using their window
indices in order to obtain a set of dynamic brain networks T =

{N(1),N(2), . . .N(tot_win)}, where N(t) is the brain network
for time window win(t) and tot_win is the total number of
time windows.

3.3. Network Metrics for Analyzing Brain
Networks
In this section, we introduce some measures which we will use to
investigate the network properties of each phase of the complex
problem solving task, namely, planning and execution, using the
estimated dynamic brain functional networks. The connectivity
patterns of anatomical regions are analyzed by the set of
network measures given below. Two separate sets of measures
are used, namely, measures of centrality and segregation. Since
our estimated brain networks are directed, we distinguish the
incoming and outgoing edges in the network while defining
the measures.

Recall that the suggested brain network N(t) = (V ,W(t))
consists of a set of nodes, V , each of which corresponding to one
of the M anatomical regions. W(t) is the dynamic edge weight
matrix with the entries, wi,j, representing the weight of the edge
from node i to node j. For the sake of simplicity, we omit the
time dependency parameter t, since we compute the network
properties at each time instant.

3.3.1. Measures of Centrality
Measures of centrality aim to identify brain regions that play a
central role in the flow of information in the brain network or
nodes that can be identified as hubs. It is commonly measured
using node degree, node strength and node betweenness
centrality, which are defined below.

3.3.1.1. Node Degree
The degree of a node is the total number of its edges as shown in
Equation (12), where degreei is the degree of node i, V is the set
of all nodes in the graph and ai,j is the edge between node i and
node j.

degreei =
∑

j∈V

ai,j, (12)

where ai,j takes value 0 if (wi,j == 0) and takes value 1 otherwise.
In the case of a directed graph, we distinguish two different

metrics: node in-degree degreeini and node out-degree degreeouti
metrics which are shown in Equations (13) and (14), respectively,
where aj,i = 1, if there is a directed edge from node j to node i.

degreeini =
∑

j∈V

aj,i (13)
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degreeouti =
∑

j∈V

ai,j (14)

Node degree is a measure of centrality of the given nodes, where
it aims to quantify the hub brain regions interacting with a large
number of brain regions. Thus, a node with high degree indicates
its central role in the network.

3.3.1.2. Node Strength
Node strength is the sum of the weights of edges connected to
a given node (Equation 15), where wi,j is the weight of the edge
between node i and node j.

strengthi =
∑

j∈V

wi,j (15)

Similar to node degree, node strength, also, distinguishes two
metrics in the case of directed graphs, namely, node in-strength
strengthini and out-strength strengthouti shown in Equations (16)
and (17), respectively, where wj,i is the weight of the edge from
node j to node i.

strengthini =
∑

j∈V

wj,i (16)

strengthouti =
∑

j∈V

wi,j. (17)

Node strength is a node centrality measure that is similar to node
degree, which is used in the case of weighted graphs. Nodes with
large strength values are tightly connected to other nodes in the
network forming hub nodes.

3.3.1.3. Node Betweenness Centrality
Betweenness centrality of node i is the fraction of the shortest
paths in the network that pass through node i as shown in
Equation (18)

betweennessi =
1

(M − 1)(M − 2)

∑

j,k∈V

ρi
j,k

ρj,k
, (18)

where ρj,k is the number of shortest paths between nodes j and

k, ρi
j,k is the number of shortest paths between nodes j and k that

pass through node i, nodes i, j and k are distinct nodes.
Before measuring the betweenness centrality of a node, we

need to change our perspective from connection weight matrix
to connection length matrix since betweenness centrality is
a distance-based metric. In connection weights matrix, larger
weights imply higher correlation and shorter distance while it

is the opposite in the case of length matrix. Connection length
matrix is obtained by inverting the weights of the connection
weight matrix. Then, the algorithm suggested in Brandes (2001)
is employed in order to calculate the node betweenness centrality
for each anatomical region.

Nodes with high betweenness centrality are expected to
participate in many of the shortest paths of the networks. Thus,
taking a crucial role in the information flow of the network.

3.3.2. Measures of Segregation
Measures of segregation aim to quantify the existence of
subgroups within brain networks, where the nodes are densely
interconnected. These subgroups are commonly referred to
as clusters or modules. The existence of such clusters in
functional brain networks is a sign of interdependence among
the nodes forming the cluster. Measures of segregation
include clustering coefficient, transitivity and local efficiency.
While global efficiency is a measure of functional integration
representing how easy it is for information to flow in the network.

3.3.2.1. Clustering Coefficient
The clustering coefficient of a node i is the fraction of triangles
around node i which is calculated by Equation (19) as proposed
in Fagiolo (2007). It is defined as the fraction of the neighbors of
node i that are also neighbors of each other.

Ci =
χi

[(douti + dini )(d
out
i + dini − 1)− 2

∑

j∈V ai,jaj,i]
. (19)

where dini is the in-degree of node i and douti is the out-degree
of node i. χi is the weighted geometric mean of triangles around
node i that is calculated by Equation (20). Recall that aj,i = 1,
if there is a directed edge from node j to node i and aj,i =

0, otherwise.

χi =
1

2

∑

j,h∈V

(wi,jwi,hwj,h)
1/3. (20)

The clustering coefficient of a node is the fraction of triangles
around the node. It is defined as the fraction of the neighbors
of the node that are also the neighbors of each other.

3.3.2.2. Transitivity
Transitivity of a node is similar to its clustering coefficient.
However, transitivity is normalized over all nodes, while cluster
coefficient for each node is normalized independently, which
makes clustering coefficient biased toward nodes with low degree.
Transitivity can be expressed as the ratio of triangles to triplets
in the network. It is calculated by Equation (21), as suggested in
Fagiolo (2007):

Ti =
χi

∑

j∈V [(d
out
j + dinj )(d

out
j + dinj − 1)− 2

∑

h∈V aj,hah,j]

(21)
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FIGURE 4 | Ordered f-scores of voxels for all subjects.

where dinj is the in-degree of node j and doutj is the out-degree

of node j. χi is the weighted geometric mean of triangles around
node i that is calculated by Equation (20). Note that ah,jaj,h = 1,
if there exits an edge in both directions.

3.3.2.3. Global and Local Efficiency
The global efficiency of a brain network is a measure of its
functional integration. It measures the degree of communication
among the anatomical regions. Thus, it is closely related to the
small-world property of a network. Formally speaking, global
efficiency is defined as the average of the inverse shortest path
lengths between all pairs of nodes in the brain network. Equation
(22) shows how to calculate the global efficiency of a brain
network, where ̺w

i,j is the weighted shortest path length between

two distinct nodes i and j (Rubinov and Sporns, 2010).

Eglobal =
1

M

∑

i∈V

∑

j∈V (̺
w
i,j)

−1

M − 1
(22)

On the other hand, the local efficiency of a network is defined
as the global efficiency calculated over the neighborhood of a
single node. The local efficiency is, thus, a measure of segregation
rather than functional integration as it is closely related to
clustering coefficient. While global efficiency is calculated for the
entire network, local efficiency is calculated for each node in the
network (Rubinov and Sporns, 2010).

4. EXPERIMENTS AND RESULTS

In this section, we explore the validity of the suggested
dynamic brain network model and study the network properties
of complex problem solving task on TOL dataset. First, we
analyze the effect of the preprocessing step on the brain
decoding performance of planning and execution phases of
complex problem solving. Then, we investigate the validity
of the dynamic functional brain network model proposed
in this study. Finally, we analyze the network properties of
the constructed functional brain networks for planning and
execution subtasks.

4.1. Voxel Selection
First, we discarded all of the voxels located in the cerebellum
anatomical regions. Then, we calculated the f -score for each
one of the remaining voxels and order the obtained f -scores
of the voxels. Following that, we plotted the ordered f -scores
of the voxels in order to determine the appropriate number
of voxels to retain. Figure 4 shows the ordered f -scores of the
voxels averaged across all subjects. It can be observed from
this figure that a relatively small number of voxels is crucial
for discriminating the subtasks of problem solving while the
remaining voxels do not have significant information concerning
the subtasks of problem solving. Based on the f -score distribution
shown in Figure 4, we kept the 10,000 voxels with the highest
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FIGURE 5 | Distribution of selected voxels across anatomical regions, measured by number of selected voxels (top) and percentage of selected voxels (bottom) from

each anatomical region. A large value in both figures is an indication of relatively high activity in a particular anatomic region. (A) Average number of voxels selected

from each anatomical region across all subjects. (B) Average percentage of voxels selected from each anatomical region across all subjects.

f -scores observing the elbow point, whereas we discarded the
remaining ones.

After selecting 10,000 voxels with the highest f -scores of
each run, we calculated the number of selected voxels contained
in each one of the 90 anatomical regions. We also calculated
the percentage of selected voxels to the total number of voxels
located in each anatomical region. These values of selected voxels
can be considered as measures of participation of an anatomic
region into the complex problem solving task. The Figure 5A

shows the average number of voxels contributed by each region
across all subjects with its corresponding standard deviation,
Figure 5B shows the average percentage of voxels contributed
by each region across all subjects with its corresponding
standard deviation.

It is clear from these figures that a large number of regions
contribute little to no voxels, such as the amygdala, caudate,
heschl gyrus, hippocampus, pallidum, putamen, temporal pole,
superior temporal cortex, thalamus and parahippocampus. A
small number of regions contribute a significantly large number
of voxels (over 300 voxels each) during complex problem solving,
such as occipital, precentral, precuneus and parietal regions.

Furthermore, Figure 5B ensures that there is no bias against
tiny anatomical regions with small number of voxels by
normalizing the number of voxels selected from each region
by its total number of voxels. Figure 5B clearly shows that in
the left prefrontal and inferior occipital regions a significant
percentage of voxels are active during complex problem solving.
Both figures also show high standard deviations across subjects,
which indicates high inter-subject variability.

4.2. Interpolation
After selecting the most discriminative voxels and averaging
their BOLD responses with respect to their corresponding brain
anatomical regions, we employed temporal interpolation to each
representative time series to increase the temporal resolution of
the TOL dataset. As a result, the total number of obtained brain
volumes is equal to n + z ∗ (n − 1) where n is the number of
measured brain volumes of a given puzzle and z is the number of
estimated brain volumes plugged between each pair of measured
brain volumes. The optimal value of z is equal to 8, which is
determined empirically using cross-validation to maximize the
brain decoding performance. Figure 6 shows the interpolated
BOLD response of a randomly selected anatomical region from
the given subjects, where the blue dots represent the measured
BOLD response of the region and the orange dashes are the
interpolated values. It is clear from Figure 6 that the interpolated
points using cubic spline function do not introduce sharp
edges, nor do they smooth out the spikes between measured
brain volumes.

Furthermore, Figure 7 shows the single-sided amplitude
spectrum of a randomly selected anatomical region from a given
subject before interpolation, after interpolation and finally, after
adding Gaussian noise. The figure clearly demonstrates that both
interpolation and injecting Gaussian noise preserve the envelope
of the signal in the frequency domain.

4.3. Gaussian Noise
In order to control the signal-to-noise ratio (SNR), we used cross-
validation to choose the optimal pair of values for αnoise and
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FIGURE 6 | Interpolated BOLD response of a randomly selected anatomic region.

βnoise, the ratios of mean and standard deviation of the added
noise, respectively. As a result, the optimal values obtained are
αnoise = 0.025 and βnoise = 0.075 from the following set of values
αnoise,βnoise ∈ [0.025, 0.05, 0.075, 0.1].

4.4. Brain Decoding With Preprocessed
fMRI Data
We use brain decoding in order to investigate the validity
of our proposed preprocessing steps on the TOL dataset. We
aim to distinguish the two phases of complex problem solving,
namely: planning and execution. At first, we used ANOVA to
select the 10,000 voxels with the highest f -scores. Then we
averaged the selected voxels into their corresponding anatomical
regions defined by Tzourio-Mazoyer et al. (2002). Following that,
we employed temporal interpolation to increase the temporal
resolution of each puzzle by estimating z = 8 brain volumes
between each pair of measured brain volumes. Finally, we added
Gaussian noise in order to regularize the BOLD responses of
each region to improve the generalization performance of the
classifiers. We used k-fold Cross validation for each subject in all
of the experiments introduced in this section, with k = 8. After
we obtained the results, we averaged them across the different
folds, then we calculated the average and standard deviation
across all subjects. We used both supervised and unsupervised
brain decoding methods. A linear support-vector machine
(SVM) (Fan et al., 2008) was used for supervised brain decoding
while k-means clustering was used for unsupervised brain
decoding. The input to the decoders is formed by concatenating
the values of representative time series computed per each time
instant, across the anatomic regions. Considering the fact that
there is a total of 90 anatomic regions, the dimension of the input
vectors is 90. If there are no selected voxels in an anatomic region

after the voxel selection process, the corresponding entry of the
input vector becomes 0.

Table 2 shows the effect of our preprocessing pipeline on
the brain decoding of complex problem solving subtasks. The
first row shows the performances of brain decoding on the raw
dataset without any preprocessing, simply averaging all of the
voxels into their corresponding anatomical regions. While the
second row shows the results of applying voxel selection then
averaging the selected voxels into their anatomical regions. The
third row shows the results of brain decoding after applying
temporal interpolation, while the forth row shows the results after
injecting the data with Gaussian noise.

From the results of the preprocessing experiments, it is
observed that voxel selection improves the brain decoding
performance for both supervised and unsupervised methods
from 60 to 74% and from 63 to 85%, respectively. This can
be attributed to the fact that voxel selection retains only the
most discriminative voxels and trashes the remaining non
informative ones. In addition, voxel selection manages to sparsify
the representation of the data since some brain regions contribute
no voxels at all; thus have no contribution to brain decoding.

The table also shows that temporal interpolation further
improves the supervised brain decoding performance from 74 to
81%; this significant increase is due to increasing the number of
brain volumes, thus, increasing the number of training samples
for the SVM classifier. However, temporal interpolation slightly
reduces the performance of unsupervised methods from 85 to
84%. This result can be partially attributed to the fact that the
additional brain volumes smooth the mixture distribution, thus
reducing the distinction between the two phases of problem
solving, planning and execution. This is due to the method used
to label the estimated brain volumes, where each estimated brain
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FIGURE 7 | Single-Sided amplitude spectrum of a time series of an randomly selected anatomic region.

volume is given the labels of its closest neighboring measured
brain volume.

Finally, the addition of Gaussian noise slightly boosts the
performance of both supervised and unsupervised methods from
81 to 82% and from 84 to 85%, respectively. The table also shows
high standard deviation across subjects, which is consistent with
voxel selection plots, revealing high inter-subject variability.

4.5. Brain Decoding With Dynamic Brain
Networks
In this section, we compare our model for building dynamic
functional brain networks with some of the popular network
methods proposed in the literature in terms of their brain
decoding performance. Brain decoding performance can
be considered as a measure of validity of the proposed
brain networks. High decoding performance indicates that
the constructed brain network has a good representation
power of the underlying cognitive subtasks, namely planning
and execution.

For this purpose, we built the dynamic brain networks, as
explained in the previous sections, after having successfully

TABLE 2 | Decodinge performances of preprocessing pipeline after each step.

Preprocessing SVM k-Means

Raw data 0.60 ± 0.11 0.63 ± 0.09

Voxel selection 0.74 ± 0.12 0.85 ± 0.06

Interpolation 0.81 ± 0.08 0.84 ± 0.06

Noise addition 0.82 ± 0.08 0.85 ± 0.06

Bold is used to indicate the best values obtained across a given column (i.e. the highest

accuracy obtained).

applied the preprocessing pipeline. It is important to remark that
each time instance has either a planning label or an execution
label. While constructing the brain networks, we define a feature
vector for each time instance by using the interpolated time
instances (4 extra instances at each side of a measured instance).
Thus, for each measured time sample, we form 4+4+1= 9
brain volumes to estimate the brain network weights. These
weights represent a network among 90 anatomic regions for each
measured time instance.
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TABLE 3 | Braine decoding performances of proposed dynamic brain network

model compared to the state of the art models, namely, pearson correlation and

ridge regression.

Input to algorithm SVM k-Means

Preprocessed fMRI Data 0.82 ± 0.08 0.85 ± 0.06

Pearson correlation 0.58 ± 0.05 0.57 ± 0.04

Ridge regression 0.56 ± 0.05 0.55 ± 0.02

Dynamic brain networks 0.82 ± 0.10 0.87 ± 0.06

Bold is used to indicate the best values obtained across a given column (i.e. the highest

accuracy obtained).

The optimal values for learning rate αlearning and the number
of epochs were chosen empirically using cross-validation,
obtaining the following values, respectively 1 ∗ 10−8 and 10. As
for p, the number of neighbors used to represent each anatomical
region; we chose p equal to the total number of regions, which
is 90. In this way, a fully-connected brain network is obtained
at each time window. However, the total number of nodes is
less than 90, given that some regions have flat BOLD responses;
therefore, they were pruned along with all their edges from the
brain network.

We also constructed brain networks using Pearson correlation
and ridge regression as proposed in Richiardi et al. (2011),
Onal et al. (2015), Ertugrul et al. (2016), and Onal et al.
(2017), respectively, in order to compare the performance of our
methods with other works in the literature. In the case of Pearson
correlation, the functional brain networks were constructed using
Pearson correlation scores between each pair of brain regions
(Richiardi et al., 2011; Ertugrul et al., 2016). As for the case of
ridge regression, the mesh arc-weight descriptors were estimated
using ridge regression in order to represent each region as a linear
combination of its neighbors (Onal et al., 2015, 2017).

Since our goal is to represent the fMRI data by an
informative dynamic network structure, we used generic
classification/clustering methods with relatively small learning
capacity in order to highlight the representative power of the
constructed brain networks. For this reason, we used simple
classifiers/clustering methods, such as SVM and K-means. It
would be possible to improve the brain decoding performances
by using methods with higher learning capacity, such as
Multi-Layer Perceptrons. In this case, the dynamic network
representation of the Artificial Neural Networks is expected to
obtain much better performances compared to the ones reported
in the paper. However, the reported performances are sufficient
to show that the decoding performance of the dynamic network,
which is 90 x 90= 8,100 edges of the brain network, is compatible
with the fMRI data, although it is much more compact and more
informative than the raw data (185,000 voxels per brain volume).

Themain advantage of representing the fMRI data by dynamic
brain networks is that they are neuroscientifically interpretable
and much more comprehensive compared to the voxel based
representations. The constructed dynamic brain networks allow
us to investigate a large variety of network properties in order
to identify regions of interest, such as hubs and subgroups
of densely connected brain regions with the aim of deriving

neuro-scientifically valid insights into the planning and execution
phases of the complex problem solving task.

Table 3 shows the brain decoding results of the
aforementioned brain network construction methods compared
against the results of multi-voxel pattern analysis (MVPA),
which feeds the preprocessed BOLD response representing a
time instant of all brain regions into a classifier. The first row
shows the brain decoding results of preprocessed fMRI data,
where there is no network representation at all. This data is
obtained by applying voxel selection, interpolation then noise
addition to the raw fMRI data. The first row of Table 3 is the
same as the last row of Table 2.

The second and third rows show the brain decoding
performances of the networks extracted using Pearson
correlation and Ridge regression methods, respectively. The
Pearson Correlation data is generated using the preprocessed
fMRI data, where Pearson correlation is used to generate the
brain networks. The weights of the edges in the constructed
brain networks are the Pearson correlation scores between the
preprocessed BOLD responses of the corresponding anatomic
regions (as shown in Equation 6). The Ridge Regression data
is generated using the preprocessed fMRI data, where Ridge
Regression is used to estimate the weights of the edges in the
constructed brain networks. The weights of the edges in the
constructed brain networks are estimated using Ridge regression
by minimizing the cost function of Equation (9).

The last row shows the brain decoding performances of our
proposed Dynamic Brain Network model.

The edge weights of the Dynamic Brain Network is computed
by training an Artificial Neural Network with the preprocessed
fMRI data. The nodes in the dynamic brain networks represent
the brain anatomic region. The edge links of the brain networks
are determined by using Equation (7). The edge weights are
estimated using Artificial Neural Network as shown in Equations
(10) and (11).

The inputs to SVM and K-Means in the case of Pearson
Correlation, Ridge Regression and Artificial Neural Networks are
the estimated weights of the brain networks. A feature vector of
edge weights, with 90 x 90 = 8,100 dimension, is defined at each
recorded time instance of fMRI data, as a single training/testing
sample. Each feature vector has its corresponding class label, as
Planning or Execution.

Table 3 clearly shows that both Pearson correlation and Ridge
regression fail to construct valid brain networks that are good
representatives of the underlying cognitive tasks. However, our
model managed to get brain decoding results similar or slightly
better than those obtained from MVPA both in the cases of
supervised and unsupervised methods. This can be attributed to
the challenging nature of the TOL dataset; Pearson correlation
does not manage to capture the interdependencies between
the anatomical regions over short time windows. While ridge
regression fails to correctly estimate the mesh arc-weights as
it estimates the arc-weights for each region independently of
the other ones. Our proposed model, with a relatively small
number of epochs, manages to obtain mesh arc-weight values
that capture the activation patterns of anatomical regions and
their relationships.
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It is important to note that, it is possible to obtain higher
brain decoding accuracy using voxel-level MVPA rather than
anatomic-region-level MVPA, and by normalizing the BOLD
response of individual voxels to having 0 mean and 1 standard
deviation. However, we do not employ either of them in our
analysis for the following reasons. Firstly, any analysis at the
voxel-level comes with a very high computational cost, especially
when attempting to build functional brain networks. Also, the
analysis at voxel level does not allow us to perform the study
roles and contributions of brain anatomic region level to the
complex problem solving task, which is the main goal of this
paper. Secondly, normalizing the BOLD responses of individual
voxels prevents us from constructing informative, functional
brain networks as this normalization distorts the information
of relative activation patterns between the voxels and the brain
anatomic region, which is essential in the process of building
functional brain networks.

5. BRAIN NETWORK PROPERTIES

In this section, we aim to analyze the network properties of
the constructed functional brain networks. We investigate the
network properties for each anatomical brain region during both
planning and execution subtasks in order to understand which
regions are most active and which regions work together during
each one of the two subtasks of complex problem solving.

Given that the constructed brain functional networks are both
weighted, directed, fully-connected and contain both negative
and positive weights, we preprocessed the networks before
measuring their network properties. Firstly, we got rid of all
the negative weights by shifting all the mesh arc-weights values
by a positive quantity equal to the absolute value of the largest
negative arc-weight. We then normalized the mesh arc-weights
to ensure that all of the weights are within the range of [0, 1].
Finally, we measured the network properties on the pruned brain
graph, where the brain regions (nodes) contributing no voxels
(have a flat BOLD response) and all of their corresponding arc-
weights (edges) were deleted from the brain graph. Thus, the
networks contained less than 90 regions with their corresponding
edges. We used the brain connectivity toolbox to calculate the
investigated network properties (Rubinov and Sporns, 2010).

In order tomeasure for centrality, the number of neighbors for
each anatomical region (P) was chosen to be equal to 89, which
is equal to the total number of neighbors for any given node as
the total number of brain anatomical regions defined by the AAL
atlas (Tzourio-Mazoyer et al., 2002) after deleting the regions
residing in the cerebellum equals 90. In addition, since we pruned
the nodes that correspond to regions from which no voxels were
selected, our constructed brain networks were weighted directed
fully-connected networks. Therefore, the in-degree, out-degree
and total degree of all nodes in the graph were equal to the total
number of anatomical regions retained after voxel selection.

Therefore, we used node strength and node betweenness
centrality to identify nodes with high centrality, which are
potential hubs in the brain networks controlling the flow of
information in the network. In our proposed model, the node
in-strength of node i is the sum of the mesh arc-weight values,

which is estimated using our proposed neural network method
in order to minimize the reconstruction error of the BOLD
response of anatomical region i using its neighbors. Thus, node
in-strength is not used as part of our network properties analyses;
we rather used node out-strength to measure the centrality of all
anatomicalregions.

As for measures of segregation, quantifying the existence
of subgroups within brain networks is based on densely
interconnected nodes. These subgroups are commonly referred
to as clusters or modules. The existence of such clusters in
functional brain networks is a sign of interdependence among
the nodes forming the cluster. Therefore, clustering coefficient,
transitivity and local efficiency were measured in order to
identify potential clusters with dense interconnections in the
brain networks.

5.1. Planning and Execution Brain
Networks
In this section, we discuss the network properties of the
planning and execution networks. For each aforementioned
network metric, we ranked the brain regions in descending order
according to their score on that network measure for all subjects
across all runs. Then, we retained the 10 anatomical regions with
the highest scores. Following that, we measured the frequency
of occurrence of each brain region among the top 10 regions
across all runs in order to identify the shared regions and patterns
across all subjects for both planning and execution subtasks. The
results of the analysis are shown in tables:Table 4 shows the brain
regions that have high scores for the reported network properties
during planning subtask, and Table 5 shows the brain regions
that have high scores during execution subtask. There are a
number of processes taking place during planning and execution.
Plan generation involves a series of recursive events including
1) problem encoding; 2) decision-making in order to decide
which ball to move and where to move it; 3) mental imagery to
imagine the ball moving, and 4) working memory to maintain
the intermediate steps as well as the move number. During plan
execution, there is 1) retrieval of the steps from memory; 2)
confirming the correct steps are being performed, and 3) the
motor execution of those steps. As the results demonstrate, the
networks for planning and execution are overlapping. These
results are similar to the activation results reported in Newman
et al. (2009) in that the regions that were found to be active during
the task are also regions that are most prominently found with
the highest network measures. These regions include the right
and left middle frontal gyrus, anterior cingulate cortex, precentral
cortex, and superior parietal cortex.

Previous work has suggested that the regions found in the
current study to show high network measures are directly
related to the sub-tasks associated with TOL performance. For
example, both the left and right prefrontal cortex have been
found to be involved in the TOL task, with the two regions
performing distinguishable functions. The right prefrontal cortex
is involved in constructing the plan for solving the TOL problem
while the left prefrontal cortex is involved in supervising the
execution of that plan (Newman et al., 2003, 2009). The anterior
cingulate has been linked to error detection and is particularly
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TABLE 4 | Planning: Anatomical regions with the highest network measures across subjects, regions are painted if they overlap with execution.

Transitivity Local efficiency Clustering Coefficient Betweenness Out-strength

Angular Calcarine Calcarine Cueneus R Cueneus R

Calcarine Cuneus Cuneus Frontal Sup L Frontal Sup L

Cingulum Ant Frontal Mid R Frontal Mid R Fusiform R Fusiform R

Cingulum Mid Frontal Sup Frontal Sup Paracentral Lobule L Paracentral Lobule L

Cuneus Fusiform Fusiform Parietal Sup R Supp Motor Area R

Frontal Inf Oper L Occipital Inf R Occipital Inf R Precuneus L Temporal Inf R

Precentral Parietal Sup R Supp Motor Area R Temporal Mid R

Supp Motor Area R Precentral Temporal Inf R

Temporal Inf R Supp Motor Area R Temporal Mid R

Temporal Inf R

TABLE 5 | Execution: Anatomical regions with the highest network measures across subjects, regions are painted if they overlap with planning.

Transitivity Local efficiency Clustering coefficient Betweenness Out-strength

Angular Calcarine Calcarine Cueneus R Cueneus R

Calcarine Cuneus Cuneus Frontal Sup L Frontal Sup L

Cingulum Ant Frontal Mid R Frontal Mid R Fusiform R Fusiform R

Cingulum Mid Frontal Sup Frontal Sup Paracentral Lobule L Paracentral Lobule L

Cuneus Fusiform Fusiform Parietal Sup R Supp Motor Area R

Frontal Inf Oper L Occipital Inf R Occipital Inf R Precuneus L Temporal Inf R

Precentral Parietal Sup R Supp Motor Area R Temporal Mid R

Supp Motor Area R Precentral Temporal Inf R

Temporal Inf R Supp Motor Area R Temporal Mid R

Temporal Inf R

involved in the TOL when the number of moves is higher,
or the problem difficulty is manipulated. The right superior
parietal cortex and precentral cortex have been linked to visuo-
spatial attention necessary for planning (Newman et al., 2003),
and the left parietal cortex has been linked to visuo-spatial
working memory processing (Newman et al., 2003). The overlap
between the regions with the highest networkmeasures and those
that have been linked to the task is an important feature and
is not due to the voxel selection process. Many regions that
passed threshold were not in the top ranked list of network
measures. For example, the basal ganglia, including the caudate
has been found in previous studies to be involved in TOL
performance (Dagher et al., 1999; Rowe et al., 2001; Beauchamp
et al., 2003; Van den Heuvel et al., 2003; Newman et al., 2009);
however, the region appears to not be an important network hub.
Figures 8A,B visualize the reported brain regions in Tables 4,
5, respectively, using Brain Net Viewer (Xia et al., 2013). In
Figures 8A,B, the color of the node (brain region) implies the
following: red indicates that the region has high transitivity,
clustering coefficient or local efficiency. Green indicates that the
node has high node centrality measured by node out-strength
and node betweenness. As for blue, it shows the nodes that
have high node centrality and is part of a subgroup of densely
interconnected regions.

5.2. Differences Between Planning and
Execution Networks
In this section, we explore the network differences between
planning and execution by calculating the difference between
the network property scores for planning and execution for each
run. To achieve that, we took the difference between the network
property scores for brain anatomical regions during planning
and the network property scores for brain anatomical regions
during execution for each run. Then, we counted the frequency
of times a given anatomical region is more active during planning
than execution and vice-versa in order to identify consistent
patterns of the disagreements between planning brain networks
and execution brain networks across all subjects. Results showed,
generally, that the network measures were higher for planning
than execution. This, too, mirrors the findings from Newman
et al. (2009) in which planning resulted in greater activation
than execution.

Node out-strength is a measure of how connected the node
is to other nodes in the network. Figures 9A,B visualize the
brain regions with higher node out-strength during planning
and during execution, respectively. Planning showed greater
out-strength than execution in the following regions: occipital
regions (calcarine, cuneus), parietal regions (bilateral superior
parietal cortex and precunues), the right superior frontal cortex,
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FIGURE 8 | Regions with the highest network measures for planning brain network (A) and execution brain network (B).
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FIGURE 9 | Anatomical regions with higher node out-strength during planning (Top) and during execution (Bottom). (A) Anatomical regions with higher node

out-strength during planning. (B) Anatomical regions with higher node out-strength during execution.
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FIGURE 10 | Anatomical regions with higher node betweenness during planning (Top) and during execution (Bottom). (A) Anatomical regions with higher node

betweenness during planning. (B) Anatomical regions with higher node betweenness during exection.

Frontiers in Neuroinformatics | www.frontiersin.org 18 December 2021 | Volume 15 | Article 670052

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Alchihabi et al. Brain Networks of Complex Problem Solving

FIGURE 11 | Anatomical regions with higher local efficiency and clustering coefficient (Top) and higher transitivity (Bottom) during planning. (A) Anatomical regions

with higher local efficiency and clustering coefficient during planning. (B) Anatomical regions with higher transitivity during planning.
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and inferior occipito-temporal regions (fusiform and lingual
gyri). The left angular gyrus and bilateral medial superior
frontal cortex showed greater out-strength for execution.
As for node betweenness, Figures 10A,B visualize the brain
regions with higher betweenness during planning and during
execution, respectively. The following brain regions had higher
node betweenness during planning than execution: occipital
regions (calcarine, cuneus, right middle, right superior);
inferior occipito-temporal (fusiform, lingual); parietal (bilateral
superior parietal, left postcentral, precuneus). Bilateral medial
superior frontal had higher node betweenness during execution
than planning.

These results suggest that there is greater information flow
during planning than execution. This matches our expectations.
Planning is more computationally demanding than execution.
Again, during planning, participants must explore the problem
space, which requires generating and manipulating a mental
representation of the problem. The regions that show greater
information flow during planning are all regions involved in
that generation and manipulation, particularly parietal, occipital
and inferior occipito-temporal. On the other hand, execution
requires recall of the plan generated and stored and therefore,
greater information flow from frontal regions related to memory
retrieval is observed.

Clustering coefficient, local efficiency and transitivity are
measures of segregation that aim to identify sub-networks.
Figure 11A visualizes the brain regions with higher local
efficiency and higher clustering coefficient during planning phase
compared to execution phase. While Figure 11B visualizes the
brain regions with higher transitivity during planning than
during execution phase. Each of these measures was larger
for planning than execution, with no regions showing larger
measures for execution.

The regions that showed a higher clustering coefficient in
planning included: the cuneus, left middle occipital cortex,
and right precuneus. Local efficiency was higher in a similar
set of regions (the cuneus, left middle occipital cortex,
and right precuneus). The clustering coefficient and local
efficiency identified a visual-spatial sub-network that is more
strongly connected during planning. Transitivity identified an
overlapping but more extensive set of regions that included:
bilateral angular gyrus, calcarine sulcus, cuneus, bilateral middle
frontal cortex, bilaterial superior frontal cortex, bilateral fusiform
and lingual gyri, bilateral occipital cortex, bilatral superior
parietal cortex, postcentral and precentral cortex, precuneus,
supplementary motor area, right supramarginal gyrus, and right
inferior and middle temporal cortex.

5.3. Global Efficiency
Since global efficiency is measured over the entire brain network,
not for a given node in the network, we measured the global
efficiency for all planning and execution networks within all runs
across subjects. Then, global efficiency of planning is compared
against that of execution. Results show that the majority of
runs had higher global efficiency scores during planning than
execution; 43 out of 72 runs had higher global efficiency
during planning than execution. Furthermore, Table 6 shows

TABLE 6 | Global efficiency.

Run number Planning Execution

1 15 3

2 9 9

3 10 8

4 9 9

the number of runs where global efficiency was higher during
planning and during execution across all subjects for all 4 runs of
each subject. The first column shows the number of subjects that
had a higher global efficiency score during planning than during
execution. The second column shows the number of subjects
that had a higher global efficiency score during execution than
during planning.

Although there was no significant difference in global
efficiency between planning and execution, from the table, it is
clear that the majority of subjects had a higher global efficiency
for planning for the first runs. Some subjects switched from
having higher global efficiency during planning to having higher
global efficiency during execution. A potential explanation for
this change across runs is switching from pre-planning to online
planning or planning intermixed with execution. Although there
is a dedicated planning phase in the current study, that does
not mean that planning is not taking place during execution. In
fact, it has been debated as to whether efficient pre-planning is
possible in the TOL or whether TOL performance is controlled
by online planning (Kafer and Hunter, 1997; Phillips, 1999,
2001; Unterrainer et al., 2004). According to Phillips (1999,
2001), pre-planning the entire sequence is not natural, but that
people instead plan the beginning sequence of moves and then
intersperse planning and execution. If this is the case, then it may
be expected that some participants will switch to online planning.
This intermixing of planning and execution is also likely to
impact the performance of the machine learning algorithms to
detect planning and execution phases.

The relationship between global efficiency and behavioral
performance was examined. Global efficiency was found to be
positively correlated with the mean number of extra moves
(a measure of error) during problem-solving (for execution
r = 0.73, p = 0.0006). Previous studies have shown a
relationship between global efficiency and task performance
(Stanley et al., 2015).

This suggests that the variance in global efficiency is indicative
of individual differences in neural processing and further suggests
that the changes in global efficiency across runs are also likely
indicative of changes in neural processing related to changing
strategy. Further research using a larger sample is necessary to
explore this hypothesis.

6. CONCLUSION

In this paper, we propose a new computational method to
estimate dynamic functional brain networks from the fMRI
signal recorded during a complex problem solving task. Our
model recognizes the two phases of complex problem solving
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with more than 80% accuracy, indicating the representation
power of the suggested dynamic brain network model. We study
the properties of the constructed brain networks during planning
and execution phases in order to identify essential anatomic
regions in the brain networks related to problem solving. We
investigate the potential hubs and densely connected clusters.
Furthermore, we compare the network structure of the estimated
dynamic brain networks for planning and execution tasks.

There are some limitations to the study. Although the
primary aim of this study was to demonstrate the feasibility
of the methods, the sample size is somewhat small, making
the interpretation of the results difficult. Second, a goal of this
method is to identify brain states that are interspersed with each
other. In the current study, planning was expected to occur
both prior to execution as well as during execution; therefore,
planning states are interspersed within the execution phase. The
temporal sampling rate of the fMRI data may be a limiting factor.
Alternatively, the sluggish and blurred underlying hemodynamic
response may be the factor preventing the ability to detect brain
states. We plan to explore this factor in future work.
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