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PymoNNto: A Flexible Modular
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Neural Networks
Marius Vieth*, Tristan M. Stöber and Jochen Triesch*

Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

The Python Modular Neural Network Toolbox (PymoNNto) provides a versatile and

adaptable Python-based framework to develop and investigate brain-inspired neural

networks. In contrast to other commonly used simulators such as Brian2 and NEST,

PymoNNto imposes only minimal restrictions for implementation and execution. The

basic structure of PymoNNto consists of one network class with several neuron- and

synapse-groups. The behaviour of each group can be flexibly defined by exchangeable

modules. The implementation of these modules is up to the user and only limited

by Python itself. Behaviours can be implemented in Python, Numpy, Tensorflow,

and other libraries to perform computations on CPUs and GPUs. PymoNNto comes

with convenient high level behaviour modules, allowing differential equation-based

implementations similar to Brian2, and an adaptable modular Graphical User Interface

for real-time observation and modification of the simulated network and its parameters.

Keywords: neural network simulator, software toolbox, python library, graphical user interface (GUI), simulator

fusion, evolutionary algorithm

1. INTRODUCTION

Simulating neural networks has become an indispensable part of brain research, allowing
neuroscientists to efficiently develop, explore, and evaluate hypotheses. Working with such models
is facilitated by various simulation environments, which typically provide high level classes and
functions for convenient model generation, simulation, and analysis.

Each simulation environment has particular strengths and limitations. Neural network models
can be formulated at different levels of detail/abstraction. Reflecting the various scales of
investigation, several simulation environments exist, each with its own focus area (for review
see Brette et al., 2007; Brette and Goodman, 2012; Tikidji-Hamburyan et al., 2017). While for
example, Neuron (Hines and Carnevale, 1997) excels at simulating neurons with a high degree
of biological detail, NEST (Fardet et al., 2020) is optimized to simulate large networks of rather
simplified spiking neurons on distributed computing clusters (Jordan et al., 2018). Another
simulator, Brian/Brian2 (Goodman and Brette, 2009; Stimberg et al., 2019) prioritizes concise
model definition over scaling to large computing environments.

Typically, the convenience provided by a particular neural network simulation toolbox comes
at the price of reduced flexibility. This can cause problems when researchers need to leave the
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“comfort zone” of a particular simulator. For example, when
aiming to explore a novel plasticity rule, investigators may
be confronted with a difficult choice: They either have to
work their way around the constraints of the simulator or
write their own simulation environment from scratch. While
implementing a workaround may turn out to be arduous and
complicated, writing a simulation environment from scratch is
time consuming, error prone, hampering reproducibility, and
sacrificing useful features of mature simulation environments
(Pauli et al., 2018).

The scientific community has become increasingly aware of
this dilemma. Several developments aim to increase the flexibility
of existing simulators. For example, NEST has been extended
with its own modeling language to allow for custom model
definition without having to write C++ modules (Plotnikov
et al., 2016). Brian2 simulations, limited to a single core,
can be accelerated by executing them on GPUs (Stimberg
et al., 2020) via automated code translation to GeNN (Yavuz
et al., 2016). However, in all cases, specific simulator-inherent
restrictions remain.

An alternative strategy to achieve both flexibility and
reproducibility is to detach model definition from its execution.
Simulator-independent model description interfaces, such as
PyNN (Davison et al., 2009) or general model description
languages, such as NeuroML (Gleeson et al., 2010), allow to first
specify a model using a fixed set of vocabulary and syntax. In
a second step, model definition is automatically translated to a
selected simulation environment. In either approach flexibility
remains bounded: The ability to express new mechanisms is
limited by a finite number of language elements and the
restrictions of the available simulation environments.

FIGURE 1 | Key features of PymoNNto (left) and its core structure (right). The core structure consists of a Network class, NeuronGroups, SynapseGroups, and

Behaviour modules. One Network can have many NeuronGroups and SynapseGroups. One or more Behaviour modules with custom code are attached to all

three classes.

To address the dilemma between flexibility and convenience
with a novel approach, we designed PymoNNto as a modular
low level Python (Van Rossum and Drake, 1995) framework
with minimal restrictions, while at the same time providing
several high level modules for convenient analysis and interaction
(see Figure 1 for an overview of PymoNNto’s key features
and core structure). Its lightweight structure comes with a
number of advantages: (1) Dynamics of neurons and synapses
can be freely designed by custom behaviour modules. (2) The
content of behaviour modules is only limited by the expressive
power of Python. (3) These modules can be optimized for
speed, for example via Tensorflow (Abadi et al., 2016) or
Cython (Behnel et al., 2010), and can even wrap around
and combine established simulators, facilitating multi-scale
approaches. Without sacrificing flexibility, PymoNNto allows
for efficient implementation and analysis via a multitude of
features, such as a powerful and extendable graphical user
interface, a storage manager, and several pre-implemented
neuronal/synaptic mechanisms and network models (compare
Table 1).

2. ARCHITECTURE AND FUNCTIONALITY

To streamline the network development workflow, the core of
PymoNNto forms a scaffold in which the user can embed his
own code. In short, this scaffold consists of a network containing
neurons and synapses. Interactions between these elements are
defined by behaviour modules. The main purpose of this scaffold
is to add structure to the model, to simplify the development
process through communication functions and to make the
development of additional tools more convenient.
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TABLE 1 | Pre-implemented neuronal mechanisms and network models.

Neuronal/synaptic mechanisms

Spike-timing-dependent plasticity (STDP) (Lazar et al., 2009)

Synaptic weight normalization (Lazar et al., 2009)

Intrinsic plasticity (IP) (modified from Lazar et al., 2009)

Refractory period

NOX diffusion-based homeostasis (Sweeney et al., 2015)

Network/Neuron Models

Hodgkin and Huxley (1952)

Hopfield (1982)

Hindmarsh and Rose (1984)

Wang and Buzsáki (1996)

Brunel and Hakim (1999)

Diesmann et al. (1999)

Izhikevich (2003)

Brunel and Hakim (1999)

PymoNNto’s architecture aims to represent neural circuits
by reusable building blocks in an object-oriented fashion. The
dynamics of each building block are described by a behaviour
module—representing for example a specific synaptic receptor
class. PymoNNto’s modular design allows for efficient addition
or removal of such building blocks, and thus facilitates the
development and investigation of complex neural networks.

2.1. Core Classes
The low level core of PymoNNto consists of four main classes
derived from the same NetworkObjectBase class. Figure 2 shows
a detailed UML diagram explaining the inheritance relationships
among the different classes. It also shows an example execution
pipeline, where the behaviours have been sorted by their “keys”
specifying the order of execution.

NeuronGroup

NeuronGroup objects represent populations of neurons.
PymoNNto neurons have no neuron-like behaviour, logic,
or data by default. They can be seen as empty shells, which
can be filled with custom code modules. A NeuronGroup
object contains a list of behaviour modules which define
what the neurons are doing, what variables they have,
and how they communicate with other NeuronGroups.
Further, NeuronGroup objects are equipped with functions
to efficiently access afferent and efferent synapses, to
initialize vectors for data storage, and to partition the group
into subgroups.

SynapseGroup

SynapseGroups are used to connect source and target
NeuronGroups. As in NeuronGroups, SynapseGroups can be
freely defined by their own behaviour modules.

In contrast to NeuronGroups, which contain functions to
initialize activity vectors, SynapseGroups contain helper

functions to initialize synaptic weight matrices with specific
connection densities and receptive fields.

Network

The Network object is the main object and contains all
Neuron- and SynapseGroups of the simulation, as well
as some optional global behaviour modules. It provides
mechanisms for communication between the groups,
functions to control the simulation and manages the order
of execution of the custom code blocks.

Behaviour

Behaviour modules are the core of the simulation and
contain custom code. A Behaviourmodule is divided into an
initialization- and an update-function called at every time
step. Module-specific variables and functions can be stored
inside, while shared functionality should be stored in the
parent object.

The Behaviour modules can be initialized in a very compact
way with different helper functions to define their attributes.
This allows to describe the full network and associated
parameters in one file. Behaviour modules can be associated
to the Network object, NeuronGroups, or SynapseGroups.
However, in most cases, the NeuronGroup objects are the
preferred objects to which Behaviour modules are assigned.
This facilitates operations across different SynapseGroups,
such as a synaptic normalization mechanism that scales
the sum of all excitatory synapses onto a neuron to a
specific value. Because Behaviour modules are classes, they
can benefit from all the advantages of object oriented
programming, such as inheritance.

2.2. Internal Processing
The internal workings of PymoNNto’s core are simple. When
Behaviour modules are assigned to different objects (compare
Code block 2), each of these modules receives an individual
number which determines the order of execution. These
behaviour numbers are sorted across all objects of the network
during initialization. The main loop repeatedly executes all the
behaviours in the determined order (see Figure 2), which only
needs one dictionary access per behaviour.

2.3. Additional High Level Functions
In addition to the four core objects, PymoNNto contains a
multitude of optional high level helper functions and tools to
streamline network design and investigation. Here, we briefly
summarize the most useful ones (see online documentation for
more details):

Graphical User Interface (GUI)

PymoNNto’s GUI is a powerful tool to interactively explore
the behaviour of a network simulation. Parameters can be
modified and statistics displayed in real time. For example,
as parameters are varied or plasticity mechanisms switched
on or off, the GUI allows to monitor ongoing network
activity, the presence of activity oscillations, or emerging
changes to the network connectivity (see Figure 3). The
GUI is organized into modular and customizable tabs. It
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FIGURE 2 | A UML Diagram of PymoNNto’s core with its most relevant variables and functions on the left as well as a visualization of an example execution pipeline

composed of sorted behaviours (boxes) on the right. The white arrows indicate inheritance relationships and the black diamonds indicate compositions. The numbers

in the execution pipeline represent the keys of corresponding behaviours in the dictionary of their parent object. The colors of these behaviours correspond to the

colors of their parents on the left. The orange arrows connect both visualizations and indicate how the functions interact with the execution pipeline. npa, NumPy array.

is based on PyQt5 (Riverbank Computing, 2020) and uses
additional PyQtGraph (Campagnola, 2020) elements for
plotting.

Tagging system

To simultaneously access similar variables in multiple
objects, the NetworkObjectBase class contains a tagging
system. It can be used to find objects with the same tag,
such as all SynapseGroups tagged with Glutamate receptors.
The tagging systems helps to write simple, compact code
by giving the programmer easy access to all tagged objects
within an instance of a class. To use the tagging system
theMyObject[“tag”] operator can be used. This removes the
need to create variables for all kinds of objects and pass them
to functions via multiple arguments. The only object that
has to be passed is the root object, typically the network,
and everything else can be accessed via the respective tag.

Recorder

The Recorder module records some custom variable of a
NeuronGoup at a given interval. This allows PymoNNto
to store activity traces for plotting and further analysis.
The Recorder can not only record variables, but also results
of custom functions. One can, for example, use the string

“n.activity” to record the neurons’ activity, but it is also
possible to use “f(n.activity,. . . )”, where f can be the mean or
the sum of the activity vector, for example. This is possible,
because the string is compiled into code at runtime. Another
useful feature is that this recording string can also be used
as a tag for the previously described tagging system. For
example, after adding a recorder with “n.activity,” calling
MyNetwork[“n.activity”] will return a list of all recorded
activity traces.

Storage manager

To store recording data, parameters, results and variables,
a Storage-Manager is included in PymoNNto. It searches
for a “Data” folder in the project directory and can
create a directory with a custom name for a group of
simulation runs. At every run, it creates a separate sub-
folder to save and load vectors, matrices, images, videos,
and parameters. Furthermore, the Storage-Manager allows
to sort, compare, and analyse multiple runs with respect to
different parameters of interest.

Partitioning

The partitioning function is helpful when designing locally-
connected networks.When the implementedmodel is based
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FIGURE 3 | Design elements of PymoNNto’s graphical user interface. The GUI layout is structured as follows: The left bar contains an activity monitor and control

elements. The activity monitor displays one or several neuron groups in real time. Each neuron group can receive a distinctive base color. In addition, one can select

one or several overlay colors to display ongoing activity, reflecting for example the current voltage or spikes. The activity monitor allows to select individual neurons

(green) for further analysis. Control elements allow for example to start, pause, save, and load the simulation and can contain additional tab-specific elements.

PymoNNto’s GUI contains a large variety of tabs which can be used to analyze and monitor network properties. Three exemplary tabs are shown on the right: Spectral

analysis of membrane potentials (top), histograms of synaptic weight distributions (center), and a three-dimensional animation of network activity with excitatory

neurons in blue, inhibitory neurons in red (bottom), recently active neurons in white, and a selected neuron in green. For a real GUI example, see Figure 6.

on vector and matrix operations, the NeuronGroups can
be divided into SubNeuronGroups with a mask. Such a
SubNeuronGroup allows partial access to variables of the
original NeuronGroup. The use of SubNeuronGroups can
avoid slow computations due to large connection matrices

by splitting one big sparse SynapseGroup into many smaller
and denser ones.

When adding the partitioning behaviour module to a
SynapseGroup it will automatically detect the pre- and the
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FIGURE 4 | Automatically generated flow chart of the PymoNNto model defined in Code blocks 1–3. Interactions between Basic_Behaviour and Input_Behaviour as

well as the respective recorders are shown. Positions of behaviour modules reflect the order of internal execution from left to right.

post-synaptic NeuronGroup as well as the maximal distance
in which a neuron can make connections. This information
is then used to replace the big SynapseGroup with multiple
smaller ones that are attached to SubNeuronGroups. With
this, we can conveniently combine fast processing with
small computational overhead and avoid the quadratic
growth of synaptic weight matrices for increasing
numbers of neurons when using networks of locally
connected neurons.

Evolution

PymoNNto’s Evolution package follows generic
evolutionary principles to optimize parameters (Eiben
et al., 2003; Vikhar, 2016): Multiple networks are initiated
as individuals, differing in selected parameters, so called
genes. In each round of simulation, the fitness of each
individual is evaluated by a scoring function, a fraction of
individuals with the best score survive and new individuals
are generated with mutated parent genes. To use the
Evolution package, the user may insert the two functions
get_gene(key, default) and set_score(score) as interfaces
to receive new parameters and to set the fitness in a given
simulation file. During the optimization process, this file
is executed multiple times, either on different cores or
machines (accessed via ssh). This process can be controlled
either by a master file or by the Evolution package’s own
graphical user interface. For more details and a code
example, we refer the reader to the PymoNNto’s online
documentation. Note, the general design of the Evolution
package allow its use beyond the context of network
simulations.

3. HOW TO USE PymoNNto?

PymoNNto is based on Python3 and can be installed with the pip
package installer with the command: “pip install pymonnto” We
also refer the reader to the online documentation and the GitHub
repository for more detailed examples and descriptions.

In the following, we demonstrate how to implement a
minimal network with PymoNNto. The network consists of
a group of simplified leaky-integrate and fire (LIF) neurons,
communicating via excitatory synapses. To keep things simple,
the resting and reset voltages of the simplified LIF neurons
are defined to be zero. Membrane potential updates are
calculated by numerically solving the differential equations with
the Euler method for a fixed number of iterations. All code
blocks in the section are compatible with each other. The
relations between modules defined in Code blocks 1–3 are
visualized in a flowchart, automatically generated via the function
My_Neurons.visualize_module() (see Figure 4).

3.1. Basic Structure
The core of a PymoNNto simulation consists of three steps: (a)
defining network, neurons, and synapses, (b) initializing, and (c)
simulating them (see Code block 1). Both the NeuronGroup and
the SynapseGroup receive as input the parent network and a name
tag. Further, the NeuronGroup requires a size argument and the
SynapseGroup its source and destination.

Code block 1: Structure

from PymoNNto import *
My_Network = Network()

My_Neurons = NeuronGroup(

net=My_Network,

tag= 'my_neurons' ,

size= 100)

SynapseGroup(

net=My_Network,

src=My_Neurons,

dst=My_Neurons,

tag= 'GLUTAMATE')

My_Network.initialize()

My_Network.simulate_iterations( 1000 )

3.2. Behaviour
Behaviour modules allow to define custom dynamics of neurons
and synapses. Each Behaviour module typically consists of two
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functions: set_variables is called when the Network is initialized
and new_iteration is called every time step. Both functions receive
an additional attribute, in code block 2 it is named neurons,
which points to the group the behaviour belongs to, in this
case a NeuronGroup. This attribute allows to use parent group
specific functions and to define and modify its variables. In
this example, we initialize the NeuronGroup variable voltage
with zero values via the get_neuron_vec function. At every
timestep, we add random membrane noise to these voltages
with get_neuron_vec(“uniform,”. . . ). Further, we define a local
variable threshold, defining the voltage above which the neuron
will create a spike before being reset, as well as the variable
leak_factor for the voltage reduction at each iteration. Here,
it is not relevant whether variables are stored in the neuron-
or the behaviour-object. Though, in more complex simulations
it can be advantageous to store variables only used by the
behaviour in the Behaviour object and other variables in the
parent object.

Code block 2: Behaviour

class Basic_Behaviour(Behaviour):

def set_variables ( self , neurons):

neurons.voltage = neurons.get_neuron_vec()

self .threshold = 0. 5

self .leak_factor = self.get_init_attr(

'leak_factor' , 0. 9, neurons)

def new_iteration ( self , neurons):

# spikes

neurons.spike = (neurons.voltage >

self.threshold)

# reset

neurons.voltage[neurons.spike] = 0. 0

# voltage decay

neurons.voltage * = self .leak_factor

# 1% noise (uniform 0-1)

neurons.voltage += neurons.get_neuron_vec(

'uniform' , density= 0. 01)

# ...

# Add behaviour to NeuronGroup

My_Neurons = NeuronGroup(

net=My_Network,

tag= 'my_neurons' ,

size= 100 ,

behaviour={

1: Basic_Behaviour(),

9: Recorder(

tag= 'my_recorder' ,

variables=[

'n.voltage' ,

'np.mean(n.voltage)' ]),

10: EventRecorder(

tag= 'my_event_recorder' ,

variables=[ 'n.spike' ])})

We add the Basic_Behaviour to the NeuronGroup together
with a pre-defined Recorder behaviour, to store the voltage
variable over time. Behaviours are added to a NeuronGroup
or SynapseGroup as a dictionary. The key in front of each
behaviour has to be a positive number and determines the order
of execution across the whole simulation. Note, that correct
ordering is important. At the initialization step all behaviours
across all neuron or synapse groups are ordered. In case
behaviours have the same index, the order is randomly set (see
Figure 2). Here, we chose a higher number for the recorder, to
store values at the end of each iteration.

3.3. Synapses and Input
Next, to couple the neurons via synapses, we add an additional
Behaviour module, Input_Behaviour (see Code block 3). This
module collects input at afferent synapses and updates the
vector of neurons’ voltages accordingly. In set_variables the
synapse matrix W is created, which stores one weight-value for
each connection. W has the dimension of D × S, where D is
the size of the destination NeuronGroup and S is the size of
the source NeuronGroup group. Such synapse matrices can be
conveniently created with the function get_synapse_mat with
equal or random values. The function new_iteration defines
how the information is propagated through the synapses (dot
product). Here, the for-loops are not necessary, because we
only have one SynapseGroup. However, they would be required
for multiple Neuron- and SynapseGroups. With synapse.src
and synapse.dst you can access the source and destination
NeuronGroups assigned to a SynapseGroup.

In this example, the membrane voltage is mainly driven by
random input, which avoids network instability due to runaway
excitation. Mechanisms for stabilizing network activity, like a
refractory period, intrinsic plasticity, or interneurons can be
added with further modules and neuron groups.

Code block 3: Input Behaviour

class Basic_Behaviour(Behaviour):

# ... content of basic behaviour module

class Input_Behaviour(Behaviour):

def set_variables ( self , neurons):

for synapse in neurons.afferent_synapses[

'GLUTAMATE' ]:

# 10% connectivity

synapse.W = synapse.get_synapse_mat(

'uniform(0, 10)' ,

density= 0. 1)

synapse.enabled = synapse.W > 0

def new_iteration (self, neurons):

for synapse in neurons.afferent_synapses[

'GLUTAMATE' ]:

neurons.voltage += (

synapse.W.dot(synapse.src.spike) /

synapse.src.size)
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My_Network = Network()

My_Neurons = NeuronGroup(

net=My_Network,

tag= 'my_neurons' ,

size=get_squared_dim( 100),

behaviour={

1: Basic_Behaviour(),

2: Input_Behaviour(),

9: Recorder(

tag= 'my_recorder' ,

variables=[

'n.voltage' ,

'np.mean(n.voltage)' ]),

10: EventRecorder(

tag= 'my_event_recorder' ,

variables=[ 'n.spike' ])})

SynapseGroup(

net=My_Network,

src=My_Neurons,

dst=My_Neurons,

tag= 'GLUTAMATE')

My_Network.initialize()

My_Network.simulate_iterations( 1000 )

# ... plotting

3.4. Tagging System and Plotting
PymoNNto’s tagging system makes access to the NeuronGroups,
SynapseGroups, Behaviours, and recorded variables inside the
network more convenient. To access the tagged objects we can
use the [] operator. [’my_tag’] returns a list of all objects tagged
withmy_tag. It basically searches the whole tree structure defined
by the object and its children recursively. Because of an internal
caching mechanism, the search is only performed once. After the
first search, the execution is as fast as a dictionary access when the
same tag is requested repeatedly. Therefore it can also be used in
Behaviour modules where speed is critical.

In the following Code block 4 we see an example of
how the tagging system can be used to plot data. Here we
access the variables stored in the recorder from the previous
example after the simulation. An example output of this code is
shown in Figure 5. Internally, the recording strings "n.voltage"
and "np.mean(n.voltage)" are converted into Python code and
executed at every time step during recording. These strings also
act as tags for the tagging system to access the recorded data
series. In the code block, we also show some general examples
and their output to illustrate how the tagging system can be used.

Code block 4: Tagging and Plotting

# Plot voltages

plt.plot(My_Network[ 'n.voltage' , 0])

plt.plot(

My_Network[ 'np.mean(n.voltage)' , 0],

color= 'black' )

plt.axhline(

My_Neurons[ 'Basic_Behaviour' , 0].threshold,

linestyle= 'dashed' )

plt.show()

# Plot spike trains (with EventRecorder)

plt.plot(

My_Network[ ’n.spike.t’ , 0],

My_Network[ ’n.spike.i’ , 0],

’.k’)

# General tagging examples

# Access from network to neuron group

My_Network[ 'my_neurons' ]

# => [< PymoNNto.NetworkCore.Neuron_Group.

# NeuronGroup object at ... > ]

# 'my_recorder' can be accessed through

# Network- or NeuronGroup

My_Network[ 'my_recorder' ]

# is equivalent to

My_Neurons[ 'my_recorder' ]

# => [< PymoNNto.NetworkBehaviour.Recorder.

# Recorder.Recorder object at ... > ]

# Access of n-th element from within bracket

My_Neurons[ 'n.voltage' , n]

# is equivalent to

My_Neurons[ 'n.voltage' ][n]

3.5. Diversification and Initialization
The Basic_Behaviour code example can also be extended with
another useful feature of PymoNNto. Behaviourmodules provide
additional functions for compact behaviour initialization.
Because it can be useful to access the parent object during
the initialization, Behaviour modules do not use the typical
Python class constructor init. The problem with the default
constructor is that the parent neuron group is not yet
created when the behaviour is constructed. To solve this,
variables are initialized in set_variables, which is called at
the end of the network description. Here, the get_init_attr
function allows to access the original initialization attributes.
Further, the get_init_attr function adds functionality for neuron
diversification. In the code example leak_factor is a number.
However, when we, for example, change the initialization to
Basic_Behaviour[leak_factor=’normal(0.9,0.1);plot’], the variable
becomes a vector with different values for each neuron, without
changing the rest of the code. In this example we use a normal
distribution, which can be displayed in a histogram with the
optional ";plot" string at the end. We can use all distributions in
the numpy.random package, like lognormal, uniform, or poisson,
as well as custom functions.

3.6. Graphical User Interface
To control and evaluate our model with PymoNNto’s
interactive graphical user interface we can replace the pyplot
functions (Hunter, 2007), the recorder and the simulate_iterations
with code to launch theNetwork_UI (Code block 5 and Figure 6).
Like other parts of PymoNNto, the Network_UI is modular. It
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FIGURE 5 | The output of the plotting code block 4 (with additional axis labels), where the neurons receive random input from the Basic_Behaviour and additional

input from other neurons through the Input_Behaviour. (Left) The individual voltage traces of the first 10 neurons are plotted with different colors, the mean voltage in

black and the (constant) firing threshold with dashed lines. (Right) Raster plot showing spikes (black dots) of all neurons during the same period.

FIGURE 6 | An image of the graphical user interface executed with the code from the User Interface section. The neuron grid on the left displays the activity of each

neuron by increasing levels of brightness. The control panel below includes controls to start, pause, save, and load the simulation. The Multi Group tab that has been

selected on the right displays the mean activity (blue trace) of the whole neuron group as well as the activity (green trace) of a selected neuron (green pixel in neuron

grid) across time. The other (non-selected) tabs listed at the top provide additional forms of live visualizations when selected.

consists of multiple UI_modules, which can be freely chosen.
Here, we use the function get_default_UI_modules to get a
list of standard modules applicable to most networks. To

correctly render the output, some UI_modules require additional
specifications or adjustment of the code. In this example, the
sidebar_activity_module displays the activity of the neurons on
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a grid and allows to select individual neurons (blue rectangle,
Figure 5). The size is specified via aNeuronDimension behaviour,
which receives the width, height and depth of the grid and
creates spatial coordinates for each neuron stored in the vectors
x, y, and z.

Code block 5: UI

from PymoNNto import *

# ...

My_Network = Network()

size = NeuronDimension(

width= 10, height= 10, depth= 1)

My_Neurons = NeuronGroup(

net=My_Network,

tag= 'my_neurons' ,

size=size,

behaviour={

1: Basic_Behaviour(),

2: Input_Behaviour(),

# 9: Recorder(...),

# 10: EventRecorder(...)

})

SynapseGroup(

net=My_Network,

src=My_Neurons,

dst=My_Neurons,

tag= 'GLUTAMATE')

My_Network.initialize()

# My_Network.simulate_iterations(1000)

my_UI_modules = get_default_UI_modules(

[ 'voltage' ], [ 'W' ])

Network_UI(

My_Network,

modules=my_UI_modules,

label= 'My_Network_UI' ,

group_display_count= 1).show()

4. FLEXIBILITY

So far, the presented examples relied on NumPy (Harris et al.,
2020) routines for data storage and computation. However,
the minimal design of PymoNNto allows to freely define
and optimize data types and computations to any specific
problem. Any Python-based data representation or computation
library can be employed, such as PyTorch matrices or SciPy
sparse matrices.

4.1. Increase of Simulation Speed With
Tensorflow
To demonstrate PymoNNto’s versatility, we re-implement the
examples of section 3 with Tensorflow 2 (see Code block
6). Commonly used for deep learning, Tensorflow efficiently

operates with tensor graphs, which are multidimensional arrays,
connected by mathematical operations. These operations are
not restricted to deep learning approaches and rather resemble
NumPy’s functionality, with only few exceptions.

The use of Tensorflow can substantially increase simulation
speed for large networks (Mohanta and Assisi, 2019). Tensorflow
is highly optimized and natively runs on CPUs, GPUs or even
specialized Tensor Processing Units.

To compare the performance, we simulated the neural
network, defined as NumPy version in section 3, and its
Tensorflow counterpart with different sizes (∼102−104 neurons
in steps of 100 ∗ 1.2s; 1,000 iterations; computed on a Dell
XPS 15 with i7-8750H CPU and Nvidia-GeForce-GTX-1050-Ti
GPU). We find that Tensorflow is slower compared to NumPy
for small networks (below around 2,000 neurons), likely due to
its larger computational overhead. However, for larger networks,
Tensorflow is consistently faster on both, the CPU and GPU (see
Figure 7). Note, the speed of the Tensorflow network may be
further optimized. Especially, the creation and conversion of a
new random vector at every time step is not optimal, but it makes
the comparison to the NumPy implementation easier.

The mixing of NumPy and Tensorflow modules is also
possible but requires conversions with the tensor.numpy()
command. This, however, only makes sense when only small
vectors are moved from GPU to CPU memory and back. One
potentially useful option would be to shift the computationally
expensive weight matrix and its operations to the GPU via
Tensorflow, while only the result vectors are moved to the CPU
for further processing.

Code block 6: Tensorflow

class Basic_Behaviour_Tensorflow (Behaviour):

def set_variables (self, neurons):

neurons.voltage = tf.Variable(

neurons.get_neuron_vec(),

dtype= 'float32' )

neurons.spike = tf.Variable(

neurons.get_neuron_vec(),

dtype= 'bool' )

self.threshold = tf.constant(

0. 5, dtype= 'float32' )

self.decay_factor = tf.constant(

0. 9, dtype= 'float32' )

def new_iteration (self, neurons):

# spikes

neurons.spike.assign(

tf.greater(

neurons.voltage,

self.threshold))

# reset

not_firing = tf.cast(

tf.math.logical_not(firing),

dtype= 'float32' )

neurons.voltage.assign(

tf.multiply(

neurons.voltage,

not_firing))

# voltage decay

new_voltage = tf.multiply(
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FIGURE 7 | Comparison of processing time (y axis, log scale, seconds) for the described network comprised of different numbers of neurons (x axis, log scale,

number of neurons) implemented either with NumPy (blue) or Tensorflow (orange and red) modules. Plotted are the means over 10 runs and their standard deviations.

neurons.voltage,

self.decay_factor)

rnd_act = tf.constant(

neurons.get_neuron_vec(

'uniform' ,

density= 0. 01),

dtype= 'float32' )

# noise

neurons.voltage.assign(

tf.add(

new_voltage,

rnd_act))

class Input_Behaviour_Tensorflow(Behaviour):

def set_variables (self, neurons):

for syn in neurons.afferent_synapses[

'GLUTAMATE' ]:

syn.W = tf.Variable(

syn.get_synapse_mat(

'uniform(0, 10)' ,

density= 0. 1),

dtype= 'float32' )

def new_iteration (self, neurons):

for synapse in neurons.afferent_synapses[

'GLUTAMATE' ]:

W_act_mul = tf.linalg.matvec(

synapse.W, tf.cast(

synapse.src.spike,

dtype= 'float32' ))

delta_act = tf.divide(

W_act_mul, synapse.src.size)

neurons.voltage.assign(

tf.add(

neurons.voltage,

delta_act))

# ...

my_UI_modules = get_default_UI_modules(

[ 'voltage.numpy()' ], [ 'W.numpy()' ])

4.2. PymoNNto Supports Brian2-Like
Model Definition
A major advantage of Brian2 is its concise model definition.
Dynamics are defined as a string of differential equations
with physical units handled by the SymPy package (Meurer
et al., 2017). In Code blocks 7 and 8 we show how
similar features can be added to PymoNNto with few
additional modules: The Clock module keeps track of
time across iterations, the Variable module initializes the
neuron parameters and the Equation module handles
differential equations in string format. While these
modules are still in development, they already allow
to write PymoNNto programs which resemble Brian2’s
concise style and produce similar results with similar
processing speed.

Code block 7: Brian2

from brian2 import *

defaultclock.dt = 0. 1 * ms

start_scope()

eqs = '''

dv/dt=(0 * mV-v)/tau : volt

tau : second

'''
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G = NeuronGroup( 100 , eqs, method= 'euler' )

G.v = np.ones( 100 ) * mV

G.tau = 100 * ms

M = StateMonitor(G, 'v' , record=True)

run( 1000 * ms)

for vrec in M.v:

plot(M.t, vrec / mV)

show()

Code block 8: PymoNNto

from PymoNNto import *
from matplotlib.pyplot import *
from ... .EulerClock *
from ... .VariableInitializer *
from ... .Equation import *

net = Network()

NeuronGroup(net=net, size= 100 , behaviour={

1: Clock(step= '0.1 * ms' ),

2: Variable(eq= 'v=1 * mV'),

3: Variable(eq= 'tau=100 * ms' ),

4: Equation(eq= 'dv/dt=(0 * mV-v)/tau' ),

9: Recorder([ 'n.v' , 'n.t' ], tag= 'my_rec' )

})

net.initialize()

net.simulate_iterations( '1000 * ms' )

plot(net[ 'n.t' , 0], net[ 'n.v' , 0])

show()

4.3. Simulator Fusion With PymoNNto
The flexible and modular nature of PymoNNto allows to embed
other simulators into PymoNNto. This unique feature allows to
combine the functionality of other simulators with PymoNNto
modules and its user interface. For clarity we only show two
minimal examples, integrating Brian2 andNEST into PymoNNto
(see Code block 9 and 10).

Code block 9: Brian2 embedding

class Brian2_embedding(Behaviour):

def set_variables ( self , neurons):

# define resolution

brian 2.defaultclock.dt = 1. 0 * ms

# define neuron model

eqs = '''

dv/dt=(1.0 * mV-v)/tau : volt

tau : second'''

self .G = brian 2.NeuronGroup(

1, model=eqs, threshold= 'v>0.9 * mV' ,

reset= 'v=0.0 * mV' , refractory= 1. 0 * ms

)

self .net = brian 2.Network( self .G)

# set variables

self .G.v = 0. 0 * mV

self .G.tau = 100 . 0 * ms

def new_iteration ( self , n):

self .net.run( 1 * ms)

n.v = self .G.v / volt

# ...

My_Neurons = pymonnto.NeuronGroup(

behaviour={

1: Brian 2_embedding()

},

# ...

)

Code block 10: NEST embedding

class Nest_embedding(Behaviour):

def set_variables ( self , neurons):

# define resolution

nest.SetKernelStatus({ 'resolution' : 1. 0})

# define neuron model

self .G = nest.Create(

"iaf_psc_delta" , 1, params={

'E_L' : 1. 0,

't_ref' : 1. 0,

'V_th' : 0. 9,

'V_reset' : 0.}

)

# set variables

nest.SetStatus(self.G, 'V_m' , 0. 0)

nest.SetStatus(self.G, 'tau_m' , 100 . 0)

def new_iteration ( self , n):

nest.Simulate( 1. 0)

n.v = nest.GetStatus( self .G, 'V_m' )

# ...

My_Neurons = NeuronGroup(

behaviour={

1: Nest_embedding()

},

# ...

)

4.4. Custom UI Module
In this last example (Code block 11) we define a custom tab
for the graphical user interface to plot the mean voltage of the
neuron group (compare blue trace in Figure 6). UI modules
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are derived from the TabBase class, which typically consists of
the following four functions: __init__, add_recording_variables,
initialize and update. These modules have a similar layout as
Behaviour modules. The update function is called at every
timestep. To access the parent user interface, we use an additional
initialization function. Here, the __init__ function is only defined
to give the tab a name which can be done before the parent user
interface is initialized.

We specify the tab and its user interface elements in
the initialize function. First, we add a new tab by calling
Network_UI.Next_Tab which creates a new tab element and
a corresponding layout for the internal components. This
layout is arranged in rows and we can attach Qt widgets
(QLabel, QPushButton, QSlider, ...) to the current row with the
Add_Element function. Next_H_Block can be called to jump to
the next row. In this example we want to add a PyQtGraph plot
to the tab, which is also a Qt widget compatible with the rest of
the Qt framework. Because plotting is relatively common, there is
a convenience function Add_plot_curve which creates a plot with
a curve and adds them to the current row automatically.

Next, we define the recording variables in the
add_recording_variables function. To this end, we call the
Network_UI function add_recording_variable, specifying what
we want to record and for how many time steps. This function
checks whether there are redundant recorders and , if so, replaces
them with one recorder covering the full recording time to
improve memory efficiency. The access through the tagging
system is not affected by this and is still the same as in the
previous plotting example. Alternatively, one could directly add
a recorder to the neuron group similar to the previous examples.
However, this could be inefficient if multiple tabs use partially
redundant recorders.

The last step is to define the update function which refreshes
the plotted voltage trace. To save resources we check whether
the tab is visible in the first place. If so, we access the recorded
data via the tagging system. Like in the previous plotting example
we can use the same string for variable evaluation and tagging.
Therefore, [“np.mean(n.voltage),” 0, “np”] gives us the recorded
mean of the voltage, selects the first and only element in the list of
the tagged objects and directly converts it to a numpy array with
the “np” attribute. The [−1000:] at the end is optional and ensures
that the plotted trace is not longer than 1,000 elements, which
could be the case when merging recorders of different length.
This, however, only gives us the y-axis data. If we want to get
the corresponding time steps on the x-axis, we can access the
n.iteration trace in the same way as the y-data. This is possible,
because the Network_UI adds this recorder automatically. To
display the custom tab, we can add it to the list of ui_modules
from the first examples, which is shown at the bottom of the
code block.

Code block 11: Custom Tab

class MyUITab(TabBase):

def __init__ ( self , title= 'myTab' ):

super(). __init__ (title)

def add_recorder_variables (

self , net_obj, Network_UI):

Network_UI.add_recording_variable(

net_obj,

'np.mean(n.voltage)' ,

timesteps= 1000 )

def initialize ( self , Network_UI):

self .my_Tab = Network_UI.Next_Tab(

self.title)

self .my_curve = Network_UI.Add_plot_curve(

x_label= 't' , y_label= 'mean voltage' )

def update ( self , Network_UI):

if self .my_Tab.isVisible():

data = Network_UI.network[

'np.mean(n.voltage)' ,

0, 'np' ][- 1000 :]

iterations = Network_UI.network[

'n.iteration' , 0, 'np' ][- 1000 :]

self .my_curve.setData(

iterations, data)

# ...

ui_modules = [

MyUITab()] + get_default_UI_modules()

Network_UI(

my_network,

modules=ui_modules,

# ...

).show()

4.5. Cython
Performance of Python code can be drastically improved by using
Cython, which compiles Python into faster C code. In contrast to
the PymoNNto’s lightweight core, Behaviour modules with their
heavy computationsmay strongly benefit from the use of Cython.
The flexibility of PymoNNto allows to speed up only selected
Behaviour modules. This leaves the rest of the code unaffected
and avoids extensive re-compilation at every run. PymoNNto’s
online documentation contains detailed instructions on how to
use Cython with PymoNNto.

5. DISCUSSION

We presented PymoNNto, a flexible modular neural network
toolbox, which provides a low level core together with
several high level features. This design aims to impose
only minimal restrictions for model definition, while at
the same time simplifying the network development via
support functions. The flexibility of PymoNNto allows for any
Python-based data representation and computation, opening
the way to seamless interactions with external neuronal
network libraries, such as Tensorflow or Brian2. Featuring a
versatile user interface, a storage manager and an evolution
package for hyperparameter tuning, Pymonnto facilitates an
efficient workflow.
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PymoNNto’s emphasis on flexibility defines its niche in
the vibrant ecosystem of neural network simulators. In recent
years, the research community has been witnessing intensive
developments of many established simulators. For example,
NEST Desktop allows to design, control and analyse NEST
simulations without the need to write code (Spreizer et al., 2021).
Going even further, NetPyNE, a simulation manager for Neuron,
provides both a programmatic and graphical interface for model
definition, standardized import and export, parallel execution,
parameter optimization, visualization, and analysis (Dura-Bernal
et al., 2019). Making use of the highly-optimized deep learning
library PyTorch, BindsNET can efficiently simulate spiking
neural networks both on CPUs and GPUs (Hazan et al., 2018).
And, the simulator Nengo (Bekolay et al., 2014) recently received
a backend for Intel’s neuromorphic chip Loihi (Davies et al.,
2018). Together, these developments illustrate a common trend:
The number of options increases for how to define a model
and which hardware to use for execution. However, in most
cases, these additions do not extend the expressive power of the
respective core. PymoNNto strives not only to allow for flexible
core control but also to keep the core itself as flexible as possible.

Due to its simple core design, PymoNNto is easy to
learn. Furthermore, transferring existing custom vector based
models to PymoNNto is straightforward. Hence, PymoNNto
may be of great interest to researchers that, until now,
do not use existing simulators for their custom models,
because of described restrictions of these simulators. With
PymoNNto they get access to a powerful GUI and many
useful support and analysis functions with minimal changes to
their code.

While we see PymoNNto primarily as a stand-alone neural
network simulator, it can also be used in combination
with one or several external simulation environments. While
in our minimal example PymoNNto was only combined
with Brian2 and NEST, more complex interactions can be
conceived. For example, a Brian2 NeuronGroup could use
a native PymoNNto plasticity module, while it interacts
with a deep neural network implemented in Tensorflow.
Note, as of now PymoNNto provides only a scaffold for
interactions, but does not possess any built-in optimization
for such processes. Thus, potential pitfalls remain and users
need to assert caution when integrating external libraries.
In a related approach, real-time interactions between a
robotic simulator and the NEST simulation environment
have been achieved by bridging between the Multi-Simulator
Coordinator (MUSIC) and the Robotic Operating System (ROS)
(Weidel et al., 2016).

When using differential equation-based model definitions,
users may choose between PymoNNto’s own differential
equation module or integrating Brian2 into PymoNNto
code. While integrating Brian2 directly allows access to its
extensive functionality, PymoNNto’s differential equation
module has a lower computational overhead and allows for
additional flexibility.

The features demonstrated in this manuscript are considered
stable except otherwise noted. In the future, we aim to include
additional features, such as pre-processing functions for video
and audio data, advanced high level modules for convenient
model definition, and multicore processing of single networks.
Because a single Python instance can execute operations only
on a single core, multiprocessing or distributed computing is
currently limited to specific cases: Computations can be executed
on multiple cores via Tensorflow; and the Evolution module
uses a “pleasingly parallel” computation scheme to test different
parameter configurations on multiple cores and machines. To
enable true multiprocessing, we intend to explore data exchange
betweenmultiple Python instances or a PymoNNto C++ backend
with a Python interface. Another goal is to expand the public
repository for behaviour and GUI modules. This would facilitate
the incorporation of, e.g., plasticity models or useful network
visualization tools developed by other research groups.

PymoNNto facilitates interactions between spiking neural
networks and deep learning. The efficiency of training deep
non-spiking convolutional networks has led to remarkable
progress in artificial intelligence research (LeCun et al.,
2015; Schmidhuber, 2015). In contrast, as of now, spiking
neural networks are mostly used in the context of brain
research. Reflecting this divide, largely different tools are
used in each of the two domains. Boosted by the prospect of
energy-efficient neuromorphic hardware, efforts have been
started to translate deep-learning based training algorithms
to spiking neural networks (Pfeiffer and Pfeil, 2018; Zenke
and Ganguli, 2018; Neftci et al., 2019, for a review see
Tavanaei et al., 2019). In addition, deep learning frameworks
are extended to simulate spiking neural networks (Hazan
et al., 2018; Mozafari et al., 2019). Thus, with increasing
interactions between these two fields, it will become
important to have tools like PymoNNto, which can be used
in both contexts and can flexibly combine the strengths of
existing libraries.

6. DEVELOPMENT AND AVAILABILITY

PymoNNto is released under the free and open MIT
licence (Massachusetts Institute of Technology, 1988). The
development is public and code is available at: https://github.
com/trieschlab/PymoNNto Tutorials and documentation can be
found at: https://pymonnto.readthedocs.io. All code examples
can be found in the GitHub repository and were executed with
PymoNNto’s release version 1 and the library versions from the
release description. We invite the community to contribute to
PymoNNto’s development and to extend the ecosystem with
additional behaviour and UI modules.
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