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An open challenge on the road to unraveling the brain’s multilevel organization is

establishing techniques to research connectivity and dynamics at different scales in

time and space, as well as the links between them. This work focuses on the design

of a framework that facilitates the generation of multiscale connectivity in large neural

networks using a symbolic visual language capable of representing the model at different

structural levels—ConGen. This symbolic language allows researchers to create and

visually analyze the generated networks independently of the simulator to be used, since

the visual model is translated into a simulator-independent language. The simplicity of

the front end visual representation, together with the simulator independence provided

by the back end translation, combine into a framework to enhance collaboration among

scientists with expertise at different scales of abstraction and from different fields. On the

basis of two use cases, we introduce the features and possibilities of our proposed visual

language and associated workflow. We demonstrate that ConGen enables the creation,

editing, and visualization of multiscale biological neural networks and provides a whole

workflow to produce simulation scripts from the visual representation of the model.

Keywords: multiscale simulation, large scale simulation, visual language, neural networks, connectivity

generation, connectome

1. INTRODUCTION

The brain has a multilevel organization, with anatomical and dynamic features spanning orders of
magnitudes. Understanding the nature of its components and how they are connected with each
other is critical to unraveling this complexity (Evanko and Pastrana, 2013; Morgan and Lichtman,
2013; Peyser et al., 2019), for both healthy and diseased brains (e.g., Chen et al., 2021). Indeed,
connectivity is an essential aspect defining the functionality at all organizational scales of the brain
(Sporns et al., 2005).

The 21st century has seen multiple interdisciplinary research initiatives initiated to address this
important topic (Collins and Prabhakar, 2013;Markram et al., 2015); however, despite advances and
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efforts toward standardization in this field (Gadde et al., 2012;
Gorgolewski et al., 2016), there is no consistent way to represent,
visualize, explore, and generate connectivity for simulation
or analysis across different scales. Consequently, developing
the tools to support investigations of multiscale functional
organization remains an open challenge.

A central method in such investigations is numerical
simulation of the brain. Existing simulation engines capture
the brain behavior at different levels of detail: detailed multi-
compartment simulations (e.g., Arbor—Akar et al., 2019; Abi
Akar et al., 2021, Neuron—Carnevale and Hines, 2006), point
neuron simulations (e.g., NEST—Jordan et al., 2019, Brian—
Stimberg et al., 2019) or whole brain level simulations (e.g., The
Virtual Brain—TVB Sanz Leon et al., 2013). By exploiting high
performance computing we are now able to simulate large scale
networks as well as those which represent the brain at different
scales simultaneously. However, the absence ofmethods to create,
and explore complex connectivity in these types of networks
limits investigations in the relationships between connectivity
and function.

Creating a framework that enables simulation of large and
multiscale models of heterogeneous neuron populations is only
possible by making use of well-defined interfaces, either new
or existing. These interfaces must allow weak coupling between
software systems and the necessary front ends to interact with
them, but at the same time be able to leverage the native functions
of the simulation engines and their inherent scaling capabilities.
The development of tools and standards which take advantage
of these interfaces will additionally enable the comparison of
performance and function metrics between different simulation
engines. This will allow the formulation of more robust
scientific conclusions and move the field of computational
neuroscience forward. The implementation of easy to use
and flexible tools for benchmarking different simulation tools
remains a critical and still unfulfilled requirement by the
neuroscience community.

This work focuses on the design and implementation
of ConGen, a framework that facilitates the generation of
connectivity in large neural networks using a new symbolic
visual language capable of representing the model at different
structural levels. This symbolic language is specifically designed
to provide researchers with a tool to represent and explore the
connectivity in models of multiscale and large scale networks.
ConGen provides an agnostic way to represent models and
later instantiate them with specific simulation frameworks.
The connectomes represented in the visual language can be
exported to the standardized network representation format
NeuroML (Gleeson et al., 2010). These descriptions can be
used directly by simulation engines which support the format.
ConGen adds functionality with a back end, also interfaced
with NeuroML.

The ConGen back end enables interfacing with efficient
connection generation approaches (e.g., Djurfeldt et al., 2014)
and allows users to launch simulations using the simulation
engines’ native scaling capabilities. For convenience, the ConGen
back end encapsulates a set of basic templates allowing users to
generate the connectivity using the standard description. The

ConGen back end also includes a number of thin simulator-
specific interfaces, enabling basic launching, i.e., using default
model parameters, on the target simulator. Users can edit and
extend the thin simulator-specific scripts in the ConGen back end
to define their own simulation and model parameters. Currently
the ConGen back end supports execution of the NEST and TVB
simulators, as well as the generation of EBRAINS co-simulation
model scripts ready for execution by external tooling. However,
due to its modular design it is possible to easily extend the back
end to support other simulators.

With this work we provide a bridge between a simple, yet
expressive, visual language (see section 2.1.1) embedded into a
simulator-agnostic graphical interface, simulation frameworks,
and high performance computing infrastructure. By providing
a language to describe connectivity in a simulator-agnostic way,
ConGen also represents a new platform to assist benchmarking
using a generic description of networks based on model
description standards. As such, ConGen helps to address the
unfulfilled requirement for an easy to use and flexible tool
for benchmarking.

This paper is structured as follows: first, we present the
state of the art in connectivity visualization and representation
techniques, as well as standards for network description. Then,
we describe the front end which implements the symbolic visual
language: ConGen. Afterwards, we discuss the implementation
of the back end which takes the standard output representation
from the visual language and translates it into a model instance in
one or multiple simulators. In the results section we show two use
cases for this framework. The first refers to the well-knownmodel
of the cortical mircrocircuit by Potjans and Diesmann (2014) and
the second is a multiscale model which combines a simulation
in TVB and NEST. Finally, we discuss the use cases and the
current limitations of the framework, provide some conclusions,
and point toward future directions.

1.1. State of the Art
1.1.1. Visual Representations of Connectivity
Connectivity matrices have long been used as a way to represent
connections in the brain. For example, the work of Rubinov
and Sporns (2010) presents a Matlab Toolbox intended to
generate connectomes at the scale of brain regions using this
type of representation. Here, binary entries in the matrix indicate
the presence or absence of connections; real-valued entries
can be used to represent magnitudes regarding correlational
or causal interactions. Although the authors state that the
neuroimaging methods available for them were unable to directly
detect anatomical or causal directionality, the matrices produced
using the Toolbox can incorporate this information if it is
available. Mijalkov et al. (2017) created another Matlab Toolbox
that allows the user to create visualizations mainly based
in connectivity matrices derived from different neuroimaging
modalities with the aim to study large scale brain connectivity
applying techniques from graph analysis theory.

An alternative representation of connectivity is given by
a Connectivity Pattern Table (CPT), a 2D schematic and
compact representation intended to shown the spatial structure
of connections as well as their strength, proposed by Nordlie
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and Plesser (2010). The main features of CPTs are a clutter-free
presentation of connectivity, the ability to represent connectivity
at several levels of aggregation and a high information contents
regarding the spatial structure of connectivity.

Other approaches have focused on morphologically detailed
connectivity. For example, NeuroLines (Al-Awami et al., 2014)
is a multiscale abstract visualization technique for the analysis of
neurites and their connections. Here, each neurite is represented
as a tree structure based on 3D data of their morphology. Once a
synapse is selected, all other synapses linked to the same neurites
are visually highlighted for contextual information. In related
work, Böttger et al. (2014) developed an edge bundling method
which depicts clear and high-resolution pictures of functional
brain connectivity data across functional networks in the 3D
brain space.

Additional tools address MEG/EEG data import and pre-
processing. NeuroPycon (Meunier et al., 2020) is a Python
toolbox for the visualization of connectivity analysis in MEG
sensors. The visualization is built from the sensor-level
connectivity matrix obtained from the computation of the
coherence among MEG sensors in alpha band. The colors of the
connectivity edges indicate the strength of the connection, and
the node size and color represent the number of connections
per node. Similarly, Espinoza-Valdez et al. (2021) presented a 3D
visualizer of the brain connectivity for EEG data. The selection of
electrodes is performed in a dynamic way; graph theory is then
applied to characterize brain connectivity in 3D images.

Finally, Fujiwara et al. (2017) introduced a visual analytics
system to enable neuroscientists to compare networks. The
system provides visual tools for comparison at both individual
and population levels. Themain visualization techniques they use
are based on representations of connectivity and node-linkage
matrices (both 2D and 3D).

1.1.2. Abstract Representations of Connectivity
Unfortunately, often the descriptions of network model
connectivity do not adhere to any standards (Nordlie et al.,
2009). Model definitions rely on a combination of complex text
descriptions, pieces of pseudo-code or simulator-specific code,
tables, and connectivity patterns without formal definitions.
Consequently, ambiguities in the model description make it
difficult to independently reproduce the network, or port it from
one simulation environment to another (Pauli et al., 2018).

To provide a formal standard that can be used to convey the
connectivity of amodel, not only in written text and formulas, but
also among neuronal simulators, Djurfeldt (2012) developed the
Connection Set Algebra (CSA): a mathematical representation
of connections between populations of neurons based on set
algebra. With this abstract formalism, a connectivity pattern can
be defined independently of the implementation by the various
simulators. This independence is an important aspect of the
modular nature of CSA, allowing it, in principle, to be used
in combination with any simulator. The connection with the
simulators is formalized in the Connection Generation Interface
(CGI; Djurfeldt et al., 2014). The CGI allows the simulator to
query connections from the linked connection generator. Both

the simulator and the connection generator need to implement
the interface.

1.1.3. Standardized Network Model Descriptions
A number of domain languages exist to describe networks at
different scales, notably PyNN (Davison et al., 2009), NeuroML
(Gleeson et al., 2010), and NineML (Raikov et al., 2011). PyNN
is a Python based simulator-independent language. It supports
modeling at multiple levels of abstraction. The instruction
set of each simulator and PyNN code can be mixed, so
models described in PyNN can still access features specific to
individual simulation engines. Importantly for our work, PyNN
implements the CGI, which allows connection generation using
the CSA. During the development of ConGen, PyNN did not
support NeuroML, but a NeuroML file export for networks
generated with PyNN has since been added. While PyNN enables
easier interfacing with various simulators, it has been designed
primarily as a scripting tool. No visual tools are available for
PyNN, instead network creation follows procedural instructions.

NeuroML is a simulator-independent XML-based formalism
that is supported by a variety of neuroscience tools and supports
a more biophysically detailed level of modeling than PyNN. The
standard consists of three levels, which are built hierarchically
and provide a standard for describing morphologically detailed
neurons, spiking neurons and populations of neurons. The most
recent version of NeuroML (NeuroML2) combined with LEMS
(Cannon et al., 2014) has been developed in order to be able
to represent both network structure and model dynamics in a
standardized and domain specific fashion.

Finally, NineML is an XML-based modeling language similar
to NeuroML formalized in an XML Schema Definition (Raikov
et al., 2011). Its primary focus is on definitions on the network
level, such as populations and connections; as a consequence
of this focus it lacks many of the detailed elements present in
NeuroML, e.g., biological cell structures of neurons and synapses.

The computational neuroscience community needs to further
use and define standards in order to promote reproducibility
and robustness of results. With this in mind, efforts like Open
Source Brain (Gleeson et al., 2019) try to integrate graphic user
interfaces, model description languages and simulation engines
into a cohesive effort to simulate the brain.

1.1.4. Simulation Engines
Simulators are an important tool in computational neuroscience.
Simulation engines enable the creation and simulation of models
at different scales. They typically provide a language, usually a
scripting language, for the user to access the simulator’s functions.

Some common spiking neuron simulation tools are NEURON
(Carnevale and Hines, 2006), NEST (Jordan et al., 2019), and
BRIAN (Stimberg et al., 2019). For a detailed comparison on
these and other simulators see Tikidji-Hamburyan et al. (2017).
Of the three simulators, NEURON is the one with the longest
history and largest user community. Arbor (Akar et al., 2019)
is a new simulation framework, developed in the context of
the HBP, at the morphologically detailed scale and is designed
to take full advantage of new computing architectures and
reach high scalability. While NEURON and Arbor are used
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for detailed cell models, NEST is used to simulate primarily
point neurons, and multi compartment neurons with up to
three compartments. NEST is optimized for simulations of
large scale networks—including up to hundreds of millions of
neurons and their synapses—on high performance computers
while still having great performance on smaller devices. BRIAN
supports simulations of both detailed and large scale networks
with a focus of separating model definition and simulator
implementation details. For ease of use all these simulators have
implemented Python interfaces, or can be controlled using a
simulator specific language [e.g., PyNEST (Eppler et al., 2009)
for NEST].

Simulations of the whole brain are also possible at a coarse
resolution. For example, The Virtual Brain is a simulation
framework which allows the representation of the brain using
neural mass models and simulate them to generate synthetic
Electroencephalography (EEG), Magnetoencephalography
(MEG), or Blood Oxygen Level Dependent (BOLD) signals.
Another emerging simulator at the whole brain scale level
is neurolib (Cakan et al., 2021). Similar to TVB, neurolib
provides the end user with a variety of neural mass models, the
ability to create networks based on empirical connectivity data
and generate simulated signals which can be optimized using
parameter fitting methods against empirical data.

2. METHODS

This section describes the two components of the proposed
framework: the description of the multiscale connectivity using
a symbolic visual language, and the translation of the generated
models into simulator-specific instructions.

The ConGen front end provides end users with a standardized
description of their models in NeuroML. This description can be
directly used by simulation engines which support this standard.
For convenience, the ConGen back end encapsulates a set of
basic functionality allowing users to read the NeuroML file
and generate the connectivity. The ConGen back end includes
simulator specific thin interfaces, allowing for basic launching on
the target simulator. To increase the compatibility of ConGen
to multiple simulators, we have extended the NeuroML scheme
used to define the models. Illustrating the flexibility of the
toolset, one of our use-case expands on the standard NeuroML
interface with new functionality. We show that new simulators
and functionality can be added by adapting the ConGen back
end. Users can also directly interact with the output of the
ConGen front end in NeuroML format to create more complex
simulations with detailed model specifications which go beyond
basic configuration and connectivity definition e.g., cell model
specific parameters, pre and post- processing of input and output
data, etc.

2.1. Visual Front End for Connectivity
Generation
ConGen facilitates the creation, editing and visualization of
multiscale neural networks. Connections can be created and
visualized at the desired level of abstraction, and mechanisms

for the propagation and aggregation of connectivity along the
hierarchy are provided. This approach allows the researcher to
generate large scale scenarios capturing global behavior and local
details at the same time.

The ConGen front end has been integrated into Neuroscheme
(Pastor et al., 2015), a visual framework to guide exploration and
knowledge extraction from complex neural scenes. Neuroscheme
allows the creation of domains that define the set of elements that
conform a neuronal scene. For example, Neuroscheme includes
the cortex domain, which provides elements corresponding to
the organizational levels of column, minicolumn and neuronal
cell, as well as defining the properties associated with each
element. ConGen has been conceived and developed as a new
domain within Neuroscheme, defining a new set of abstract
neural elements (i.e., not corresponding to specific brain areas)
and connections between them in order to represent models of
large scale and multiscale neural networks.

Neuroscheme offers an environment with multiple views
where different representations of the data can be visualized
in a coordinated manner. In this way, abstract views can be
combined with accurate representations of cellular anatomy.
The iconic view of a circuit provides a global, simplified view
with summarized or aggregated information, while the realistic
view provides all details of the neuronal anatomy and spatial
distribution. ConGen has been designed to act as a front end
for interactive visual definition of neural connectivity, thereby
facilitating the creation and manipulation of neural circuit
models. Following a top-down approach, ConGen enables the
creation of a hierarchy of super-populations and populations
and the specification of their connections by establishing the
necessary connectivity parameters. Populations constitute the
leaves of the hierarchy and grouping them together gives rise to
a superpopulation. In turn, superpopulations can be grouped
iteratively, also giving rise to hierarchical superpopulations.
Figure 1 shows a hierarchy of superpopulations and populations.
Our approach to interaction and visual representation
emphasizes simplicity, depicting views using easy symbolic
representations. The models so created can be exported using
an extended version of NeuroML for further simulator-specific
translation. The following subsection details the operations
supported by ConGen.

2.1.1. Creation and Parameterization of a Hierarchical

Network Structure
ConGen supports the creation of a neural scene and its
connectivity by providing an interface that visually displays the
created entities and relationships. Each entity will be represented
by a circular shape. Entities of the same type will share the same
color (superpopulations, populations, inputs and outputs). The
number of inner circles will represent the number of descending
levels of a superpopulation and the filling of the horizontal bar
will be proportional to the number of neurons in each grouping.
By simply right-clicking with the mouse, a context menu appears
allowing entities to be created and hierarchically structured. To
create one or more super-populations, the user simply sets the
number of entities to be created, their name and the other
configurable parameters. Figure 2A shows the super-population
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FIGURE 1 | Hierarchical structure of a scene. Level 0 shows three superpopulations that group either populations or descendant superpopulations, as shown in level

1. Superpopulations SP_0_0 and SP_0_1 contain two neuron populations each, as depicted in level 2.

creation panel as well as the visual representation of the three
super-populations created. Figure 2B illustrates the creation of
two populations of neurons within the super-population SP_2.
Note that the visual representation of the super-population
SP_2, compared to its appearance in Figure 2A, now reflects the
existence of a hierarchical descendant level (presence of an inner
circle) and the number of neurons in the descendant populations
(green filling of the horizontal bar).

Continuing the procedure outlined above, the hierarchy
initially shown in Figure 1 can be easily created. Figure 3A
shows this scene depicted at level 0, composed of three super-
populations (SP_0, SP_1 and SP_2). SP_0 in turn contains two
child super-populations (SP_0_0 and SP_0_1); each of them, as
well as SP_1 and SP_2, containing two populations of neurons.
The super-populations can be expanded to show their children,
either in the same panel or in a different panel; Figure 3B
shows the result of expanding all super-populations in a different
panel, thus allowing the scene to be visualized at two levels of
abstraction simultaneously (level 0 on the left, and level 1 on the
right). Similarly, the SP_0_0 and SP_0_1 super-populations can
be expanded into a further panel, depicting the scene at the lowest
level of abstraction in the right panel of Figure 3C.

Connections are created by dragging with the mouse from
the source population to the target population. Figure 4A shows
the parameterization options of the connections as well as the
context menu that allows auto-connections (i.e., connections of a
population to itself) to be added. Each connection is represented
by an arrow whose thickness is proportional to the strength of
the connection. Since the views shown in the different panels
are coordinated, the connections created at the lowest level of
abstraction are reflected in an aggregated way in the panels

showing the scene at higher levels of abstraction, as shown in
Figure 4B.

In addition to neuron populations, input and output entities
can be created. These entities are external to the hierarchy. Input
entities stimulate one or more populations of neurons. An input
entity is connected to its target population analogously to the
connections between populations. Figure 4C shows the result of
including an input connected to example populations NP_0_0_1
and NP_0_1_0; note that input entities appear at all levels of
abstraction. Output entities, such a measurement devices, can
receive a connection from one or more populations of neurons.

2.2. From Visual Representation to
Simulation
In this section, we introduce the back end of ConGen, which
is used to generate the hierarchical neural network models
and interact with the simulation engines (see division of front
end/back end in Figure 5). The ConGen front end has to serialize
the model expressed in ConGen’s graphical language by some
means. Here, we make use the pre-existing NeuroML standard
rather than developing a new declarative language to achieve this
goal. Any simulator that supports NeuroML can be considered a
potential execution target.

The back end of ConGen consists of a modular translator
system. Its purpose is to translate the NeuroML descriptions of
the models created in the GUI described in the previous section
into simulator-specific code. It is important to highlight that the
ConGen back end is not a simulation engine but is able to call
functions from different target simulators using the simulator
interface. The translation system was designed with the following
technical requirements in mind:
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FIGURE 2 | Creation of super-populations and populations. (A) The panel on the right sets the name root of the super-populations (SP in this example) and the

number of entities (three in this example) to be created. (B) Right clicking on SP_2 allows the creation of descendant neuron populations. The panel on the right sets

the name root of the populations (NP_2 in this example) and the number of entities (two in this example) to be created.

1. The translation system should enable the simulation of a
model defined in the ConGen GUI by a supported simulator

2. The simulation should be able to be performed in
different simulators

3. Adding support for a new simulator should require a low
development cost

4. The translation system should be functionally separate from
the ConGen GUI

5. The overhead of the system should be low: performance
should be close to that of using the simulator directly.

The back end of ConGen is designed to be separate from the
GUI (technical requirement 4). This separation allows the front
end and back end to be used as independent modules. For
example, the front end can run on a desktop computer, while
the back end runs and then executes the simulations on a
high performance computing system. This modular design also
allows individual components to be easily maintained or replaced
(technical requirement 3). A modular design requires careful
construction of interfaces and data exchange; these are illustrated

in Figure 5, which shows the overall flow of data from the visual
tool to the simulator.

2.2.1. Using NeuroML
The main data exchange between the front end and the back
end is via NeuroML: ConGen serializes its visual models to
NeuroML files for storage or data exchange. This separation
through a common data standard allows the ConGen translator
to be entirely independent of the GUI. ConGen uses NeuroML
version 1.8.2, which allows networks, layers, and connections to
be represented by XML files. At the time that the back end was
developed, NeuroML version 2 was still in development. For this
reason, the work presented here is based on version 1.8.2, but will
be ported to version 2 in the future.

The structure and validity of files is defined by XML
schemas, which allows extensions of the described file
format. To increase the compatibility of ConGen to multiple
simulators, we have extended the NeuroML scheme used for
translation. These additions include spatial connectivity and
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FIGURE 3 | Creation of scenes in ConGen. (A) A scene where SP_0 has two hierarchical descendant levels (indicated by the two inner rings) while SP_1 and SP_2

have one hierarchical descendant level each. The green filling of the horizontal bars indicates that SP_1 and SP_2 have the same number of neurons while SP_0 has

twice the amount. (B) Super-populations can be expanded to visualize the next hierarchical level. Left panel: the three super-populations in a collapsed view. Right

panel: The three super-populations have been expanded to show their direct children. (C) The panels show the three hierarchical levels of the scene simultaneously.

Left: Neuron super-populations at the highest level of abstraction. Middle: The hierarchical entities tree displayed at depth level 2. Right: All entities have been drilled

down to show the lowest level of abstraction. Icons have been arranged in a circular layout for convenience for connectivity creation.

Frontiers in Neuroinformatics | www.frontiersin.org 7 January 2022 | Volume 15 | Article 766697

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 4 | Connections and inputs. (A) Connections are created by dragging with the mouse from the source to the target population. The panel on the right shows

the parameterizable features. Auto-connections can be created through the context menu that appears when right-clicking on a population. (B) Connectivity

simultaneously displayed at three levels of abstraction. Note the connections of superpopulations represent the aggregation of the connections of their descendant

populations. (C) Inputs can be created as entities that are external to the hierarchy. Note that inputs appear at every level of abstraction.
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FIGURE 5 | Flow of data from visual representation to simulation. The user creates a model in ConGen and exports it as a NeuroML file. The translator parses the

NeuroML file and converts the connectivity into the Connection Set Algebra. The populations and inputs are built directly in the simulator. Using the Connection

Generation Interface (CGI), connections are generated from the connection generation library and passed to the simulator, which can then start the simulation. A

future extension of this workflow will allow simulation results to be processed and passed back to ConGen (dotted line).

TABLE 1 | XML connectivity pattern tags and their corresponding Python classes and CSA structures.

NetworkML tag Python class CSA structure

<all_to_all/> AllToAll csa.full

<one_to_one/> OneToOne csa.oneToOne

<fixed_probability/> FixedProbability csa.random(p)

<per_cell_connection/> PerCell csa.random(fanIn=n)

<gaussian_connectivity_2d/> GaussianSpatialConnectivity gaussian(sigma)

The Gaussian spatial connectivity has to be combined with CSA’s random operator, which samples from the distribution.

synapse parameter distributions. All changes are listed in the
Supplementary Material (see section Changes to NeuroML).

2.2.2. The ConGen Back End
After a visual model has been saved as a NeuroML file, the file
can be used as an input to the ConGen translator. The translator
parses the defined network structure, translates the layer
and connectivity information, and generates simulator-specific
instructions. The translator and the subsequent simulation can be
called either independently or invoked directly by ConGen. In the
following, we describe the workflow resulting in a set of simulator
specific commands which enable the model simulation using
specific simulation engines, and how ConGen can be extended
to support new simulators.

First, the ConGen back end parses the NeuroML file for
translation. XML tags correspond to a Python class, as shown

for the example of connectivity patterns in Table 1. The parser
first reads the populations, then the projections, and lastly the
inputs, outputs, and translators. If the model is to be simulated
by different simulators at different scales, the back end splits
the model into scale-specific sub-models. After the model has
been parsed successfully, all string references between objects
are replaced with object references. Any errors present in the
file (schema mismatch, undefined references) are raised as
an exception.

Connectivity patterns are represented by the
ConnectivityPattern class, which may be subclassed
when adding new types of connectivity patterns. When an object
of this class is created, the connectivity patterns are transformed
to CSA masks, as seen in Table 1. Spatial connectivity patterns,
based on e.g., 2D euclidean distances, are also supported. To
this end, neuron positions can be defined either by neuron
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instance elements in the NeuroML file or sampled by a template
distribution (e.g., Gaussian sampling). Synapse parameters such
as weight and delay can be defined in analogously, by explicitly
stating neuron instance parameters or by using distributions for
whole layer connections. Currently, only Gaussian and Uniform
distributions are defined, but additional distributions can be
registered by sub-classing the Distribution class. In the
case of region-to-region connectivity, atlas based connectivity
is also supported. Additional details about the implementation
of the different connectivity patterns can be found in the
Supplementary Material.

After parsing, the layers and connections that make up a
network are instantiated for the chosen simulator. First, the
layers and neuron populations are translated to simulator specific
instructions. If the simulator requires neuron positions, any
distributions used are sampled at this point. Then, connections
between layers are instantiated. Since this connection generation
is computationally intensive, we use the Connection Generation
Interface (CGI). The CGI calls available internal simulation
engine functions to optimally generate connections instead of
the high level calls through the Python interface (Djurfeldt et al.,
2014). These native calls are typically more efficient (technical
requirement 5). We use the libneurosim package, which
supports the CGI and enables the generation of populations and
connections in the simulator (i.e., NEST). Due to the modular
nature of the implementation, individual components of ConGen
can be easily replaced. For example, the C++ implementation of
CSA (libcsa) offers increased performance over the Python
implementation when generating connectivity, but has limited
functionality. Thus, the Python implementation of CSA can be
replaced by libcsa to accelerate the connectivity generation of
large but simple networks.

For convenience to the users and in order to enable the
simulation of the generated model in an specific framework, the
ConGen back end contains a set of thin layer scripts which can
call the target simulation engine (technical requirements 1, 2, and
3). Extending the ConGen back end to support new simulator
engines is low effort and consists in the generation of a script
which takes the connectivity objects, instantiates the model and,
if desired, specifies simulator specific parameters. Pre- and post-
processing of input and output data can also be added to this
script by the user. At the moment the ConGen back end has a
thin layer execution script for NEST and TVB.

The population and cell model parameters have to be defined
by the user using simulator specific functions. This can be done
either when the user imports the NeuroML file in his or her script
or by modifying the thin layer simulator specific file in ConGen
in order to add these parameters before model execution. In the
current paper we focus specifically on connection generation as
this is a complicated task on its own. Setting of model parameters
could also be integrated into the ConGen front end, but is left as
future work.

ConGen also allows the visual representation and
generation of multiscale co-simulation models, and
supports the output of multiscale configuration files. The
orchestration and deployment of these multiscale simulations
is complex (Klijn et al., 2019) and falls outside of the

scope of the template based ConGen Translator simulation
launching functionality.

3. RESULTS

In this section we will describe first two use cases which are used
to demonstrate the functionality of ConGen while addressing
specific needs from the neuroscience community. Please refer
to the Supplementary Material section to see where to find and
how to execute the example files for these use cases. This section
ends with an overview of the supported simulators.

3.1. Use Case 1: The Cortical Microcircuit
Model
The Potjans and Diesmann microcircuit model (Potjans and
Diesmann, 2014) is an abstraction of 1 mm3 volume of
cortical tissue comprising four layers, each with one excitatory
and one inhibitory population. The model has been used to
address a variety of scientific questions and is able to show
spiking dynamics similar to those observed in real cortical
tissue. Due to its importance, we chose this model to test the
whole functionality of ConGen, from visual language definition
to simulation.

We constructed the model on two levels of abstraction: on
the higher level, the representation of the column; on the lower,
the representation of the single populations and their connection
probabilities. It is important to note that ConGen provides the
ability to define how the connectivity should be instantiated by
the simulation on a probabilistic or deterministic way. By using
CSA below the NeuroML description generated by ConGen, it
is possible to create stable, portable and constant instantiations
of connectivity patterns which will be the same independently of
the target simulator. A step by step description of themodel using
ConGen is described in the following.

First, the user can start by creating a super-population to
represent the cortical microcircuit entity and the Thalamic
region. The user can then go one level down in the visualization
of the cortical microcircuit super-population to create the eight
different populations of the cortical microcircuit using the Add
NeuronPop option in the menu. After the eight populations
have been created, the user can create connections between
the populations by clicking and dragging the cursor from the
source population to the target population. As the connectivity
in the cortical microcircuit model is defined by a set of
connection probabilities, the user defines a random connection
with Gaussian distributions for the weights and the delays. In
order to create an auto-connection, the user right-clicks on the
desired population and selects Add Auto Connection from the
menu. The model at this stage of creation is depicted in Figure 6.
It is important to highlight that the connectivity in the original
manuscript by Potjans andDiesmann (2014) is calculated under a
specific set of considerations that are not reflected in the random
distribution used in this use case. More specifically, the original
model makes use of a fixed number of connections derived from
the connection probability: Kn,m = ln(1 − Pn,m)/ ln((NnNm −

1)/NnNm), where Kn,m is the total number of connections
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FIGURE 6 | Views at different levels of cortical microcircuits. Panel (A) shows microcircuit super-population and the Thalamic super-population. Panel (B) presents the

microcircuit super-population where all 8 populations can be seen with their respective connections.

between population n and population m, Pn,m is the connection
probability between the two populations, and Nx denotes the
number of neurons in population x. In our implementation, the
connectivity of the model is generated using a pairwise Bernoulli
distribution with probability Pn,m. Therefore, variations in the
actual number of connections between the model created with
ConGen and the original model are to be expected.

Next, the user can create a set of input devices, in this
case Poisson generators, in order to represent input arriving
from other regions in the brain. This is done using the Add
Input option and defining the frequency of the random stimuli
produced by the Poisson generator. The input devices can be then
connected using the click and drag operation from the source
input to the target population.

Finally, in order to create the Thalamic connections, the
user goes one level up in the visualization and then selects to
expand the children of both the Thalamic and the microcircuit
super-populations. This allows a Thalamic super-population to
be created that can be then connected with the desired probability
to the subpopulations representing the layer 4 and layer 6 of the
microcolumn. See Figure 7 for the final version of the model.

The user can then export the resulting model to JSON or save
as NeuroML, producing the file which can be then used by the
generation back end to call NEST and execute the simulation.
The time required by the ConGen backend to read, generate
the model and create the connections using CSA is negligible
compared to the actual connectivity generation step using CGI
and the following execution of the model in NEST. This goes

in agreement with the technical requirement 5 in section 2.2.
An expert user is able to define the model in this use case in
about 10 min. The resulting NeuroML file is easy to explore and
understand by the users.

3.2. Use Case 2: Co-simulation of The
Virtual Brain and NEST
The need to simulate the brain at different scales is an
emerging requirement of modern computational neuroscience.
Researchers may want to simulate the whole brain at a coarse
resolution while simultaneously simulating specific areas that are
relevant to answer a particular scientific question at a higher
resolution. This interaction between simulators is complex (Klijn
et al., 2019) and has been addressed in the past by several
tools such as MUSIC (Djurfeldt et al., 2010). Having a common
language to describe simulations which connects different scales
and simulation back ends is essential for providing a usability
layer to facilitate this ambitious next step in neuroscience. As
ConGen’s visual language is agnostic with respect to the target
simulation platform, it can be used to define complex multiscale
models for co-simulation.

In this second use case of ConGen we generate simulation
scripts which are compatible with the co-simulation framework
of the EBRAINS infrastructure developed by the Human Brain
Project.1 In particular, we target a whole human brain co-
simulation model where different parts are simulated at two

1https://ebrains.eu/
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FIGURE 7 | Final view of the complete model considering all populations, connections, and input devices.

scales using two simulators, The Virtual Brain (TVB; Sanz Leon
et al., 2013) and NEST (Jordan et al., 2019). The coupling
between the simulators is in part performed using the Elephant
framework (Denker et al., 2018). For information going from
NEST into TVB, the spike activity is translated into firing
rates using Elephant. For information flowing from TVB into
NEST, firing rates are tunneled to the NEST I/O back ends and
defined as firing rates in heterogeneous Poisson generators. It
is important to highlight that the coordination and deployment
of the simulators is provided by external multiscale simulation
infrastructure (Klijn et al., 2019) and not by ConGen itself.

ConGen is used to define the model and simulator at
each scale, the connection points between simulators, and the
translation modules to be used in order to transform data
produced from one simulator and input to the other. In order
to make it possible for the ConGen back end to identify which
parts of the model belong to each scale, a prefix label is to be used
for each component in the multiscale model. In this use case, we
use “l” for all model components which should be simulated at
the point neuron scale with NEST (in agreement with the model
definition in use case 1) and the label “Brain_region” for all model
components to be simulated at the whole scale level by TVB.

For the coarse scale, we divide the brain into 68 regions
according to the Desikan Killiani cortical atlas (Desikan et al.,
2006). Of the 68 regions, 67 are represented using a neural mass
model, which in this case is the Kuramoto model (Kuramoto,

1975, 2003), and are to be simulated in TVB. The remaining
region is represented as a cortical microcircuit as described in use
case 1 and to be simulated in NEST. In this specific use case NEST
will simulate a region in the atlas related to the auditory cortex
on the right hemisphere, the right Transverse temporal cortex
region. The model can be used to study the propagation of audio
information from the auditory cortex to the rest of the brain and
its interactions using simulations with sound stimuli. Please note
that here for simplicity we assume that the phase represented by
the state variable in the Kuramoto model can be linked to an
indirect measure of the mean neural activity in the region and
translated into spikes using the Rate to Spike translator available
in the co-simulation framework.

The user starts by generating two super-populations, one
will represent the brain regions modeled in TVB and the
other one the brain region modeled in NEST. Additionally,
the user will create one spike to rate translator and a rate to
spike translator (see Figure 8). These input devices are used
to exchange information between scales and will be connected
to specific populations within each super-population. Although
obviously not existing in the real brain, translator components
are nonetheless required to produce a functional multiscale co-
simulation model.

Now the user can go one level down in the two super-
populations. In the NEST region, the hierarchy, connectivity and
inputs of the cortical microcircuit are defined as in use case 1. In
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FIGURE 8 | Modeling of the co-simulation use case starting with the super-population for the brain region represented by NEST, the super-population for the brain

regions represented by TVB and the translator modules which have the task of translating spikes to rates and vice versa.

the TVB super-population, 68 population elements are created.
The neuron model to be used for 67 of the 68 regions will be
a neuron mass model called “nmm kuramoto” corresponding
to the Kuramoto model. The last region (correspond to ID
27) is modeled as a proxy for the NEST cortical microcolumn
using the model called “proxy.” These elements are automatically
numbered from 0 to 67 when created by ConGen and are linked
to the correct region ID in the Desikan Kiliani brain atlas for
simulation by the back end tool.

The next step is to define the connectivity between all the 68
regions. The type of connection to be used in the TVB models is
Atlas based and the value in the Connectivity Matrix field should
correspond to the connectivitymatrix file to be used at simulation
time (see Figure 9A). The value indicates a zip file which contains
at least two files, one containing the weights matrix and another
one containing the tract lengths matrix. The weights matrix is
an NxN matrix which defines the strength of the connections
between brain regions and where N is the number of regions
in the specific parcellation to be used. The tract lengths matrix
has the same dimensions as the weights matrix and specifies the
distance between brain regions. These matrices are plain CSV
files derived from empirical Diffusion Tensor Imaging (DTI) data
[for more information please refer to Sanz Leon et al. (2013),
section 1.1]. This ensures that the weight and the delay are loaded
from the desired connectivity matrices before simulation. The
user only needs to connect the first and the last region which
will be connected with the desired atlas. It is important that the

regions in the atlas match the range of regions selected in the
model and that all regions involved are created with an index e.g.,
Brain_region_{index}.

In order to connect the two simulations on different scales,
the output of all 67 regions in the TVB super-population, which
are to be simulated in TVB, need to be connected to the Rate to
Spike translator device created before. The output of the Spike
to rate translator device must also be connected as input to the
67 regions in the TVB super-population. As mentioned before,
region 27 serves as a proxy of the NEST super-population and,
together with the translator modules, it is also used to simplify
the exchange of information between both scales. As all regions
in the TVB super-population are connected between each other
using the atlas based connectivity, including region 27, it is only
necessary to connect the output of region 27 to the Rate to Spike
translator and the output of the Spike to rate translator as input
to region 27. This way, the information exchange will be tunneled
via the proxy region 27 in TVB.

Now the user can also connect the output of the Rate to
Spike translator device as input to the excitatory and inhibitory
populations in layers 4 and 6 of the cortical microcircuit model
of the NEST super-population. The output of the excitatory
population in layer 5 is then connected to the Spike to rate
translator device (see Figure 9B).

Finally, the user can export the NeuroML file and execute
the back end tool in order to generate the simulation files
for TVB, NEST and the spike/rate translator modules. Using
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FIGURE 9 | Views of the multiscale model. (A) Establishing connectivity within the brain regions in the TVB super-population using the Atlas based connectivity. A

single connection from Brain_region_0 to Brain_region_67 is used to specify the atlas based connectivity. The connection from region 27 to the rate to spike translator

device is also visible at this step. (B) The final whole connectivity setup visualized on the right and the inside view of the cortical microcircuit model on the left.

ConGen, and using the cortical circuit model as a starting
point, the user takes about five additional minutes to specify
the connectivity of this multiscale model. In return, the ConGen
back end inputs the specific identifiers, connectivity patterns,

and proxy interfaces in TVB, NEST, and the translator module
files to enable co-simulation. The resulting files can then
be executed using tools from the EBRAINS co-simulation
framework (see the Supplementary Material section for more
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TABLE 2 | Simulator support by ConGen in different modalities: Connectivity

setup and generation by ConGen back end, connectivity setup and basic

simulator launching via ConGen back end, support for NeuroML file generated by

ConGen front end using only standard features (see Supplementary Material for

details on ConGen’s extended connectivity features), and CGI connectivity

generation through the ConGen back end.

Type of support NEST TVB EBRAINS

multiscale

co-simulation

All NeuroML

compatible

simulators

Connectivity setup YES YES YES NO

Basic simulation launching YES YES NO NO

Standard NeuroML YES YES YES YES

CGI compatibility YES NO NO NO

Available use cases YES YES YES NO

details). The performance of the connectivity generation is
almost identical between having a single scale model or as part
of a multiscale model. The only difference is in the connectivity
to and from the translation modules, which depends on the
co-simulation infrastructure.

3.3. Supported Simulation Engines
Even though the two use cases presented in this manuscript
focus on NEST and TVB, ConGen can be easily extended
to work with any simulator that supports the CGI. The
only requirement is that a thin interfacing file needs to be
generated to deal with importing, accessing the model data
with the simulator-specific CGI commands, and launching the
simulation. Simulation engines which support NeuroML can
directly read the file generated by the ConGen interface and use
it as a base for simulation. To summarize we provide an overview
of the different simulators supported directly or via the diverse
interfaces in Table 2.

4. DISCUSSION

ConGen provides an easy way to generate networks at different
scales, providing users the ability to visualize the relationships
between scales in independent but correlated views and in side by
side panels. As a concise but expressive visual language, ConGen
provides a new way to define and navigate complex neural
network models. The transcription of the defined circuits into
NeuroML provides independence with respect to the ultimate
choice of simulator.

The interaction offered by the ConGen’s visual front end
enables a rapid construction of neural network models through
simple contextual menus, from defining a hierarchical structure
with complex connectivity to parameterizing the neuronal and
synaptic properties. The symbolic representations of the language
synthesizes the most relevant features while eliminating less
important details. The combination of schematic representations
together with their arrangement in levels of abstraction yields
simplified views of complex models.

The two use cases presented in this work illustrate the
visual creation of connectivity in neural network models for
their subsequent integration into simulation engines. Figure 7

provides a good example of how a user can examine the different
levels of abstraction and easily identify the relationships between
the components in the network. Use case 2 illustrates new
possibilities to interact with abstractions that allow definition
of multiscale models. At the higher level (Figure 8) we see
the coarse components that form the model together with the
abstract modeling components required to translate information
between scales. Figure 9A shows an alternative view of themodel,
with the abstract high-level multiscale components on the left
and the whole brain scale region definition on the right. In
contrast, Figure 9B ConGen provides a more detailed view of
the cortical microcircuit region and makes the relationship to
translation and other components in the model easy to see and
manipulate by the user. One important feature of the ConGen
front end is the ability to have multiple panels concurrently
showing different hierarchical levels of the model. These panels
are connected between each other, so any actions done on one
panel are automatically reflected on the others. This is useful for
the exploration and design of multiscale models because it allows
the user to visualize propagation of model changes from lower
scales into higher scales as seen in Figure 9B.

Use case 2 provides an initial proof of concept for the
definition of multiscale models compatible with the EBRAINS
co-simulation infrastructure. The capabilities of the ConGen
back end on this area are still limited and need to be extended
to support further use cases and more complex interactions
between simulators.

When comparing ConGen to existing simulator front ends,
such as PyNN, further advantages become apparent. In PyNN,
network creation code is inherently sequential, a characteristic
that is contrary to the structure of a neuronal network. The visual
language introduced in ConGen allows for a holistic view of a
network model, which makes it easier to interpret the network
or to spot errors. Other front ends like NEST Desktop (Spreizer
et al., 2021), the TVB framework, and the NEURON graphic
user interface (Carnevale and Hines, 2006) also allow the user to
define networks and their connectivity in a visual way but are by
definition, in contrast to ConGen, simulator-specific. We hope
that ConGen can serve to decouple the way we create network
models from the technical aspects of simulation, such as specific
execution and deployment definitions, something that projects
such as PyNN still require.

5. CONCLUSIONS AND FUTURE WORK

ConGen addresses the complexity inherent to model generation
in computational neuroscience from two perspectives. Firstly, it
supports the visualization of complex models at different scales,
allowing a reduction in the number of elements at higher scales
and thus simplifying the visual complexity present in images
with a high number of elements. Secondly, it reduces cognitive
complexity by structuring the model in hierarchical levels of
abstraction that summarize relevant features while eliminating
less important details.

Multiscale modeling is a particularly demanding branch of
computational neuroscience which exhibits a high degree of
abstraction complexity. With the second use case provided in
this manuscript we provide a proof of concept for a new visual
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approach to manage the complexity of constructing such models.
The execution of multiscale models, which is not contemplated
by the ConGen back end, has high computational demands
which can only be efficiently fulfilled by using a dedicated
framework such as the EBRAINS co-simulation infrastructure.
Further extensions of ConGen may be required to fully facilitate
current and future research in this field. With this in mind,
ConGen was designed and implemented in a modular fashion; its
integration with network definition standards allows developers
and users to extend its functionality to include other simulation
and emulation platforms (e.g., neuromorphic hardware like
SpiNNaker; Furber et al., 2014) in the future.

The current version of ConGen does not fully constrain
the modeler with regards to the types of connections it
allows between network components scales. NeuroScheme has
basic functionality to support this kind of aided connectivity
generation but it would need additional metadata for each
component to fully enable this functionality. For example, in the
case of multiscale use cases, ConGen does not have any metadata
which allows it to suggest or prevent possible connections to or
from translators or devices. Adding such metadata would be a
good extension for the future, and would further increase the
usability for beginner users.

The next step for the ConGen back end is to update
to NeuroML version 2 with LEMS. The network description
of NeuroML version 2 has a different definition of the
populations, which makes it necessary to describe cells within
populations instead of providing generic cell types for all
elements in a population. This is useful for small networks and
morphologically detailed networks, but not suitable for the large
scale networks targeted by ConGen. As discussed in the section
2, to allow generation of networks using the CSA we had to
expand on the NeuroML interface. Although there is currently
no direct way to port our work to NeuroML2, our next steps
include working with the NeuroML2 development team in order
to extend the language with at least a subset of the connectivity
patterns available in CSA such as all-to-all or one-to-one. This
will probably be implemented with a new population description
using LEMS. Another alternative is to move toward NeuroMLite
(https://github.com/NeuroML/NeuroMLlite) which is still in
development but seems to move toward standardized description
of biological and artificial networks with features which are
compatible with the ConGen goals and architecture.

Future work also involves extending the back end to
incorporate more cases for different simulators and allow
more complex models, especially for co-simulation. Plasticity
is also an important feature of connectivity that may require
new visual language concepts. The direct next extension of
ConGen is to allow plastic synapses to be defined and to
implement an interactive loop (see Figure 5), the dashed arrow
indicates the transport of simulation results back to ConGen)
where connectivity can be refreshed based on data produced
during simulation. This new step will provide a new graphic
interface to study dynamic changes in the connectivity of large
scale networks.

PyNN has evolved as a strong domain specific language for
network representation in the last years. Future work will also

involve extending NeuroScheme and the back end in order to
support PyNN as a description language. This can be achieved
through the porting toNeuroML version 2. The automatic benefit
here is that PyNN already incorporates CSA in its description and
an extension will increase the range of potential target simulators
which can benefit from the visual language proposed by ConGen.
Adding models generated by the ConGen front end to Open
Source Brain (Gleeson et al., 2019) would also be a step forward
to increase integration with current efforts in the direction of
standardization. Additionally, the ConGen back end could be
later integrated into Open Source Brain, thanks to their usage of
common standard like NeuroML and PyNN.

In summary, with this work we propose a novel simulator-
agnostic method for the definition and generation of connectivity
in multiscale neural network models. ConGen also represents a
new way to generate models which can be ported to different
simulators using NeuroML or the ConGen back end in order to
perform benchmarking and compare functional and execution
metrics between simulation engines at different scales. Using
the ConGen framework does not require any programming
experience; any scientist, regardless of background, can employ a
common visual language to express, share, study, and implement
connectivity for in-silico experimentation, in order to solve
complex questions regarding the relationships between structure
and function in the brain.
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