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Introduction: Prader-Willi syndrome (PWS) is a multisystem genetic

imprinting disorder mainly characterized by hyperphagia and childhood

obesity. Extensive structural alterations are expected in PWS patients, and their

influence on brain nuclei should be early and profound. To date, few studies

have investigated brain nuclei in children with PWS, although functional and

structural alterations of the cortex have been reported widely.

Methods: In the current study, we used T1-weighted magnetic resonance

imaging to investigate alterations in brain nuclei by three automated analysis

methods: shape analysis to evaluate the shape of 14 cerebral nuclei (bilateral

thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala,

and nucleus accumbens), automated segmentation methods integrated in

Freesurfer 7.2.0 to investigate the volume of hypothalamic subregions, and

region of interest-based analysis to investigate the volume of deep cerebellar

nuclei (DCN). Twelve age- and sex-matched children with PWS, 18 obese

children without PWS (OB) and 18 healthy controls participated in this study.

Results: Compared with control and OB individuals, the PWS group

exhibited significant atrophy in the bilateral thalamus, pallidum, hippocampus,

amygdala, nucleus accumbens, right caudate, bilateral hypothalamus (left

anterior-inferior, bilateral posterior, and bilateral tubular inferior subunits) and

bilateral DCN (dentate, interposed, and fastigial nuclei), whereas no significant

difference was found between the OB and control groups.

Discussion: Based on our evidence, we suggested that alterations in

brain nuclei influenced by imprinted genes were associated with clinical

manifestations of PWS, such as eating disorders, cognitive disability and

endocrine abnormalities, which were distinct from the neural mechanisms of

obese children.
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Introduction

The pediatric obesity rate has increased explosively over the
past 30 years, reaching up to 10% worldwide (Gerhart et al.,
2022). This is a critical public health issue, since obesity is
associated with far-reaching and costly implications, such as
type II diabetes and heart disease (Flegal et al., 2010). Brain
circuitry involved in motivation, reward, and cognitive control
has been identified to explore neurobiological underpinnings of
childhood obesity (Bruce et al., 2010).

Prader-Willi Syndrome (PWS) is a typical genetic obesity
disease caused by the loss of paternal gene expression located
in chromosome 15q11-q13 (Bittel and Butler, 2005). It is
characterized by variable and typical phenotypes, affecting
one in 15,000–20,000 live births (Soni et al., 2008). The
predominant clinical manifestations of PWS are hypotonia and
poor suck before the neonatal stage; as age increases, these
transition to developmental delay and an insatiable appetite,
showing hyperphagia as well as morbid and even life-threatening
obesity without external restriction of food intake (Butler et al.,
2006; Angulo et al., 2015). In addition, other phenotypes,
such as hypogonadism, temperature instability, high pain
threshold, hypersomnia, mild to moderate intellectual disability,
and avariable range of social and behavioral difficulties, and
psychiatric disturbances also occur in children with PWS
(Dykens and Kasari, 1997; Clarke et al., 2002; Holland et al.,
2003).

These diverse symptoms indicate a widespread
developmental abnormality in the brain structure of children
with PWS. Eating behavior is known to be regulated by high
levels of cognitive control and satiety mechanisms based on
brain subcortical reward and motivational neurocircuitry
involving the amygdala, hippocampus, caudate nucleus,
putamen, pallidum, nucleus accumbens (NAc), septal nucleus
and thalamus (Orsi et al., 2011; Kirouac, 2015). As the
predominant endocrine gland, the hypothalamus is responsible
for sensing nutrients and regulating neuropeptides such as
leptin, ghrelin, and insulin (Volkow et al., 2011; Angulo
et al., 2015). Additionally, deep cerebellar nuclei (DCN)
are associated with motor control, hypotonia, and satiation
networks for sensing nutrient infusion in the gut and releasing
dopamine (Blanco-Hinojo et al., 2021; Low et al., 2021).
All of these brain nuclei comprehensively contribute to
the recognition and regulation of homeostatic and hedonic
eating behavior.

Previous neuroimaging studies of PWS have focused on
cortical reward and inhibitory circuities and found functional
deficits in multiple related regions, such as the dorsolateral
and medial prefrontal cortex, orbitofrontal cortex, right anterior
cingulate cortex, temporal lobe, and insula (Holsen et al., 2006;
Xu et al., 2017). However, only a few studies have paid attention
to the alteration of brain nuclei, let alone in children with
PWS (Honea et al., 2012; Xu et al., 2017; Manning et al.,

2018). Honea et al. (2012) found lower gray matter volume
(GMV) in the right hippocampus in young adults with PWS.
Lukoshe et al. (2017) reported no volumetric differences in
the hypothalamus and mammillary bodies in children with
PWS. In cerebellar studies, decreased whole cerebellar and
relative lobular volume ratios in posterior inferior lobules in
PWS individuals compared with normal controls were reported
(Honea et al., 2012; Lukoshe et al., 2013, 2017; Yamada et al.,
2020). In conclusion, due to the limited number of cerebral and
cerebellar nuclei investigated in previous findings, a systematic
and comprehensive study of the brain nuclei in children with
PWS is needed.

To date, segmentation methods of subcortical nuclei for
PWS have been concentrated on manual segmentation and
voxel-based morphometry (VBM). However, there are still
several knowledge gaps. First, based on voxel-wise comparison,
VBM is prone to registration artifacts in the deep gray
matter and may not be suitable for the analysis of cerebral
nuclei. Second, arbitrary smoothing makes VBM insensitive to
boundary location, and it is difficult to detect subtle atrophy of
nuclei. Third, relatively small studies such as those involving
PWS run the risk of false-positive findings or nonsignificant
results using hypothesis-free segmentation methods (Patenaude
et al., 2011; van den Bogaard et al., 2011; Nemmi et al.,
2015; Zonneveld et al., 2019). Subcortical shape analysis can
provide a direct, purely local measure of geometric changes by
analyzing differences in boundary vertex locations, which has
been applied to Parkinson’s disease and Huntington’s disease
to find cerebral nuclei atrophy (van den Bogaard et al.,
2011; Nemmi et al., 2015). Meanwhile, the shape analysis
method has been validated in pediatric studies and makes
it a promising technique for cerebral nuclei segmentation
in children with PWS (Ortega et al., 2019; Lidauer et al.,
2021). Moreover, it is well known that the hypothalamus is an
indispensable nucleus in eating control, and because of its small
size, the conventional segmentation method relies on manual
delineation (Baroncini et al., 2012). A recent study accomplished
auto-segmentation of 10 subregions of the hypothalamus by
a deep convolutional neural network, which has been verified
in several diseases (Billot et al., 2020; Chao et al., 2022;
Lee et al., 2022), so the method was used in our article to
investigate alterations in the hypothalamic subunits of PWS and
OB subjects.

In summary, children with PWS and obesity share similar
alterations in the cerebral cortex, which are mainly caused
by acquired plasticity of the brain, while alterations in brain
nuclei are closely related to inheritance (Roshchupkin et al.,
2016). The current study aims to analyze the differences
in brain nuclei between PWS, OB, and control children
through multiple convincing analysis methods to reveal
neural mechanisms involved in extreme hyperphagia and
dietary restraint in PWS and obesity. We hypothesized
that children with PWS would exhibit genetically influenced
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impairment in brain nuclei compared with the control
group, which was not found in children with obesity.
To test our hypothesis, we performed high-resolution T1-
weighted magnetic resonance imaging (MRI) in a three-
group study and implemented a systematic quantitative study
on PWS brain nuclei using auto-segmentation techniques
(Figure 1), which included shape analysis for cerebral nuclei,
automated segmentation approach for subregions of the
hypothalamus, and region of interest (ROI)-based analysis
for DCN.

Materials and methods

The study was approved by the Institutional Review Board
at the University of Florida. We certify that all applicable
institutional and governmental regulations concerning the
ethical use of human volunteers were followed during this
research.

Subjects

A total of 12 children with PWS (eight girls and four
boys; age mean 7.2 years), 18 obese children (12 girls and
six boys; age mean 9.0 years), and 18 healthy, normal-weight
children (12 girls and six boys; age mean 8.3 years) participated
in this study. The subjects in this study were the same as
those in Xu et al. (2017) and a part of Miller’s (2006, 2007)
study. The image data of subjects was authorized by Xu
et al. (2017) and was re-used in this study. Written informed
consent and child assent were obtained from all participants
and guardians before any aspect of the research was initiated.
The three groups were age- and sex-matched (P > 0.05). All
PWS subjects were characterized by DNA methylation analysis
at the 5’ SNURF-SNRPN locus and by fluorescence in situ
hybridization (FISH) using the SNURF-SNRPN probe and a
distal chromosome 15 control probe. None of the patients
with PWS were currently at the stage of receiving growth
hormone therapy or estrogen/androgen replacement therapy
when recruited for the MRI scans. All children with obesity were
recruited based on a history of a body mass index (BMI) >95%
for age and sex before the age of 4 years and had normal
chromosomal, DNA methylation, and SNURF-SNRPN FISH
analysis for PWS, melanocortin 4-receptor mutation testing, and
Fragile X DNA testing. To reduce the effects of socioeconomic
and genetic background, siblings of the children with PWS
and obesity who were generally closest in age to the probe
and who did not have a history of childhood obesity or
known genetic abnormalities were recruited in the control
group (Miller et al., 2006). Cognitive and achievement testing
was performed using the Woodcock-Johnson Test of Cognitive
Ability and Academic Achievement-Third Edition (WJ-III;

Miller et al., 2006). The body mass index standard deviation
score (BMI-z) was calculated from the standardized growth
charts distributed by the Centers for Disease Control1 (Miller
et al., 2006; Xu et al., 2017).

Image acquisition

All subjects were scanned on a 3.0 T head dedicated
Siemens Allegra MRI scanner (Siemens, Munich, Germany).
A set of T1-weighted, high-resolution structural images
were acquired using a magnetization prepared rapid
acquisition gradient echo sequence with the following
imaging parameters: matrix size = 512 × 512, field of
view = 240 × 240 mm2, slice number = 160 slices, slice
thickness = 1.1–1.4 mm, TR = 1,500 ms, TE = 4.38 ms, and flip
angle = 8◦.

Image processing and measurement

Shape analysis of cerebral nuclei

Shape analysis of cerebral nuclei was performed
using the FIRST toolbox in FSL, which is a model-based
segmentation/registration tool proposed by Patenaude et al.
(2011). The FIRST used manually labeled T1-weighted MRI
brain image data from 336 normal and pathologic subjects aged
from 4.2 to 72 years as a training set, which were provided by
the Center for Morphometric Analysis (CrangeMA), MGH,
Boston. We began by using FIRST to create vertex meshes for
14 nuclei, including the bilateral thalamus, caudate, putamen,
pallidum, hippocampus, amygdala, and bilateral NAc. Each
nucleus was parameterized as a surface mesh and then modeled
as a point distribution in native space. An example of cerebral
nuclei segmentation is shown in Figure 1A, and the quality
of segmentations was manually checked by an experienced
radiologist. Second, multivariate statistics were performed for
each nucleus to yield differences between the groups (PWS
vs. OB, PWS vs. control, OB vs. control). The F values and
vectors acquired indicate the values and directions of the results,
respectively. Outward arrows represent the expansion of the
surface, and inward arrows represent atrophy. Finally, correction
for multiple comparisons was carried out using false discovery
rate (FDR) correction.

In addition, fsl stats were used to obtain the volume
of each cerebral nucleus, and volumetric differences
among the groups (PWS vs. control, PWS vs. OB, OB
vs. control) were calculated with a two-sample t-test and
FDR correction.

1 https://www.cdc.gov/growthcharts/percentile_datafiles.htm
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FIGURE 1

Overview of segmentation methods and corresponding brain nuclei. (A) Shape analysis of subcortical nuclei. (B) Auto-segmentation of
hypothalamus. (C) ROI analysis of deep cerebellar nuclei (DCN). NAc, nucleus accumbens; a-iHyp, anterior-inferior; a-sHyp, anterior-superior;
posHyp, posterior; infTub, inferior tubular; supTub, superior tubular.

Auto-segmentation of hypothalamic subunits

The volumetric analysis was conducted with the
HypothalamicSubunits tool integrated in FreeSurfer 7.2.02. This
pipeline fulfills automated segmentation of the hypothalamus
and its subunits with the deep learning approach of a
convolutional neural network (Billot et al., 2020). First,
T1-weighted images from all subjects were processed with
the FreeSurfer recon-all script. Second, 10 subunits of the
hypothalamus in bilateral hemispheres were segmented using
the script MRI_segment_hypothalamic_subunits, and the
following hypothalamic nuclei were acquired: bilateral anterior-
inferior, including the suprachiasmatic nucleus and supraoptic
nucleus; bilateral anterior-superior, including the preoptic area
and parts of the paraventricular nucleus; bilateral posterior,
including the lateral mammillary nucleus, supramammillary
nucleus, lateral hypothalamus, and tuberomammillary nucleus;
bilateral inferior tubular, including the infundibular nucleus,
ventromedial nucleus, and lateral tubular nucleus; and bilateral
superior tubular, including the dorsomedial nucleus, lateral
hypothalamus nucleus and parts of the paraventricular nucleus.
Figure 1B shows the example of a labeled hypothalamic
segmentation, and the quality of segmentations was manually
checked by an experienced radiologist. Finally, volumetric

2 https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunits

differences among the groups (PWS vs. control, PWS vs. OB,
OB vs. control) were calculated for each hypothalamic subunit
with a two-sample t-test and FDR correction.

ROI analysis of deep cerebellar nuclei

ROI analysis was used to compare the volumes of DCN
among groups. First, default VBM processing was conducted
with CAT12 (r1907) in SPM3, including preprocessing, tissue
segmentation, spatial registration to Montreal Neurological
Institute (MNI) space and modulation, acquiring modulated
and normalized GMV and white matter volume (WMV)
tissue maps. In addition, total intracranial volume (TIV)
was calculated at this step and was used as a covariate in
the subsequent statistics. Second, the volumes of DCN were
extracted within the six ROIs from a validated probabilistic
atlas of the human cerebellum available in the SUIT (Spatially
Unbiased Infratentorial Template) toolbox4, which includes
the bilateral dentate nucleus, interposed nucleus, and fastigial
nucleus (Diedrichsen et al., 2009, 2011). Figure 1C shows the
6 ROIs of the DCN. The sum of total GMV and WMV within
the ROI was then measured as the volume of each ROI. Finally,
volumetric differences among the groups (PWS vs. control, PWS

3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12

4 https://github.com/jdiedrichsen/suit
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vs. OB, OB vs. control) were calculated for each ROI with
two-sample t-test and FDR correction.

Statistical analysis

All of the numeric statistics, including volumes of
cerebral nuclei, hypothalamus subunits, and DCN, were
performed with the statistical tool integrated into GRETNA5

(Wang et al., 2015). The two-sample t-test was performed
to examine the significance of the mean volumetric
differences among the three groups, with age, sex, and
TIV as covariates and P values were corrected for multiple
comparisons by FDR (PFDR). Results with PFDR < 0.05 were
considered significant.

The vertex statistics for shape analysis were carried out with
the first_utils and were also adjusted for age, sex and TIV.
Multiple comparison correction was performed with surface_fdr,
and only vertices with PFDR < 0.05 were retained.

5 http://www.nitrc.org/projects/gretna

Results

Demographic information

The group comparisons of demographic profile and TIV are
listed in Table 1. The BMI-z of the OB group was significantly
larger than that of the PWS (P = 0.014) and control (P < 0.001)
groups, and the BMI-z of the PWS group was significantly
larger than that of the control (P < 0.001). However, it should
be noted that BMI underestimates the degree of obesity in
PWS due to their decreased muscle mass (Goldstone, 2006). No
significant difference was found for age, sex, or TIV between
groups.

Cerebral nuclei

The volumetric analysis of cerebral nuclei investigated the
group differences of the whole volume for each nucleus, and
the results are listed in Table 2. After controlling for age,
sex and TIV, the PWS group showed a significantly decreased
volume of the right amygdala (PFDR = 0.042) compared with
the control and of the bilateral hippocampus [Left (L) and

TABLE 1 Demographic information for the PWS, OB, and control groups.

Group P value

Variable Control OB PWS A B C

Sex (Boys/Girls) 6/12 6/12 4/8 1.000 1.000 1.000
Age (years) 8.3 (0.9) 9.0 (0.9) 7.2 (1.2) 0.466 0.252 0.594
BMI-z 0.79 (0.21) 3.06 (0.19) 2.16 (0.25) 0.000 0.014 0.000
TIV (mm3) 1,383.3 (144.5) 1,365.6 (119.6) 1,307.7 (138.0) 0.173 0.238 0.704

Data are presented as the mean (standard deviation) for continuous variables and n/n for sex. Bold, P < 0.05. PWS, children with Prader-Willi syndrome; OB, obese children
without PWS; BMI-z, body mass index standard deviation score; TIV, total intracranial volume. A: comparison between the PWS and control groups (PWS vs. control). B:
Comparison between the PWS and OB groups (PWS vs. OB). C: Comparison between the OB and control groups (OB vs. control).

TABLE 2 Cerebral nuclei volumes of each group and P value of group comparisons.

Mean (SD; mm3) Uncorrected P value PFDR value

Nuclei Control OB PWS A B C A B C

thalamus_L 6,070 (590) 6,496 (919) 5,274 (904) 0.134 0.022 0.219 0.248 0.052 0.352
thalamus_R 6,048 (582) 6,458 (919) 5,274 (890) 0.139 0.023 0.226 0.248 0.052 0.352
caudate_L 2,868 (368) 2,989 (431) 2,603 (471) 0.225 0.122 0.334 0.248 0.131 0.390
caudate_L 3,067 (412) 3,141 (471) 2,567 (486) 0.093 0.055 0.406 0.248 0.086 0.406
putamen_L 3,674 (461) 4,120 (827) 3,484 (643) 0.374 0.073 0.174 0.374 0.102 0.352
putamen_R 3,871 (480) 4,012 (794) 3,390 (683) 0.207 0.088 0.380 0.248 0.110 0.406
pallidum_L 1,281 (129) 1,388 (213) 1,121 (212) 0.170 0.026 0.194 0.248 0.052 0.352
pallidum_R 1,281 (144) 1,393 (223) 1,149 (201) 0.216 0.039 0.201 0.248 0.068 0.352
hippocampus_L 2,513 (348) 2,782 (557) 2,073 (429) 0.136 0.013 0.207 0.248 0.046 0.352
hippocampus_R 2,448 (397) 2,948 (487) 2,094 (501) 0.180 0.010 0.058 0.248 0.046 0.352
amygdala_L 815 (95) 852 (128) 746 (108) 0.230 0.094 0.322 0.248 0.110 0.390
amygdala_R 844 (70) 784 (84) 644 (88) 0.003 0.261 0.203 0.042 0.261 0.352
NAc_L 377 (72) 449 (78) 293 (61) 0.070 0.003 0.088 0.248 0.042 0.352
NAc_R 360 (64) 387 (77) 268 (50) 0.044 0.008 0.295 0.248 0.046 0.390

SD, standard deviation; PFDR , P value after FDR correction; PWS, children with Prader-Willi Syndrome; OB, obese children without PWS; NAc, nucleus accumbens; L, left;
R, right. Bold, PFDR < 0.05. A: Comparison between the PWS and control groups (PWS vs. control). B: Comparison between the PWS and OB groups (PWS vs. OB). C:
Comparison between the OB and control groups (OB vs. control).
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FIGURE 2

Results of shape analysis in cerebral nuclei, shown from medial,
lateral, anterior, and posterior views. (A) Atrophic subregions
(cyan color) of PWS compared with the control. (B) Atrophic
subregions (green color) of PWS compared with OB. PWS,
children with Prader-Willi Syndrome; OB, obese children without
PWS.

Right (R), PFDR = 0.046] and bilateral NAc (L, PFDR = 0.042,
R, PFDR = 0.046) compared with the OB group. No significant
results were found between OB and control subjects.

Shape analysis of cerebral nuclei showed intergroup
differences in subregional shape for each nucleus, which is
more sensitive to subtle structural changes than volumetric
and VBM analysis (Lu et al., 2016). Figure 2 displays the
significantly altered subregions in PWS vs. OB (Figure 2A,
color cyan) and PWS vs. control (Figure 2B, color green),
with PFDR < 0.05 with age, sex, and TIV as covariates. The
PWS group showed significant subregional atrophy in the
bilateral thalamus, pallidum, hippocampus, amygdala, and NAc,
and right caudate compared with OB and control individuals.
Although the distribution of altered subregions in these brain
nuclei was almost identical in PWS vs. control and PWS vs.
OB, the latter group exhibited a wider difference in almost
all the atrophic nuclei, except for bilateral caudate and right
amygdala. No significant results were found between OB and
control subjects.

In addition, since the classification of the boundary voxels
was based on intensity distribution of different regions, we
calculated the mean intensities of all 14 regions for each subject

and compared them between groups (Supplementary Figure 1).
No significant differences were found (one-way ANOVA).

Hypothalamic subunits

The volumetric analysis results of hypothalamic subunits
are listed in Table 3. After controlling for age, sex, and TIV,
the PWS group had significantly smaller volumes not only in
the whole left (control, PFDR = 0.022, OB, PFDR = 0.020) and
whole right (PFDR = 0.022) hypothalamus, but also in the subunit
parts including bilateral posHyp and infTub, and left a-iHyp,
compared with control group (PFDR < 0.05) and OB group
(PFDR < 0.05). In right supTub, a significant difference existed
only between the PWS and control groups (PFDR = 0.036), while
in bilateral a-sHyp and right a-iHyp, no differences were found.
Additionally, no significant results were found between OB and
control subjects.

Deep cerebellar nuclei

The volumetric analysis results of the DCN are listed in
Table 4. After controlling for age, sex and TIV, the PWS group
had a significantly smaller volume in all six DCN ROIs than both
the control (PFDR < 0.001) and OB (PFDR < 0.01) groups. No
significant results were found between OB and the control after
FDR correction.

It should be noted that the reduction in DCN volume in PWS
was mainly due to WMV loss, either than GMV loss because the
total WMV was much greater than the total GMV in DCN ROIs
from the SUIT atlas (Supplementary Table 1).

Additionally, decreased GMV of the cerebellar cortex was
also found in children with PWS compared with the control
group using the VBM method (Supplementary Figure 2 and
Supplementary Table 2). The detailed VBM analysis method of
cerebellar cortical volume is described in Section “Gray matter
volume and white matter volume of deep cerebellar nuclei” of
Supplementary Materials.

Discussion

In the current study, we investigated alterations in brain
nuclei in children with PWS and obesity with systematic and
combined methods, including shape analysis for cerebral nuclei,
automated segmentation methods for the hypothalamus, and
VBM for DCN. The results demonstrated that PWS individuals
showed significant atrophy in the cerebral nuclei, hypothalamus,
and cerebellum compared with control and OB subjects. We also
found no significant difference in these brain nuclei between
OB and control children. Our results suggest that although
PWS and obesity share predominant clinical manifestations (e.g.,
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TABLE 3 Hypothalamic subunit volumes of each group and P value of group comparisons.

Mean (SD; mm3) Uncorrected P value PFDR value

Subunits Control OB PWS A B C A B C

a-iHyp_L 10.1 (2.9) 10.6 (2.4) 5.8 (2.7) 0.012 0.011 0.320 0.022 0.022 0.494
a-iHyp_R 7.7 (2.4) 8.0 (1.4) 7.7 (1.9) 0.415 0.406 0.243 0.415 0.406 0.494
a-sHyp_L 12.0 (3.3) 12.6 (2.8) 9.9 (1.0) 0.153 0.070 0.468 0.200 0.105 0.494
a-sHyp_R 14.3 (3.7) 14.4 (3.9) 13.4 (2.3) 0.350 0.358 0.494 0.382 0.391 0.494
posHyp_L 103.5 (10.3) 102.2 (8.2) 88.9 (9.3) 0.011 0.013 0.434 0.022 0.022 0.494
posHyp_R 99.0 (9.8) 95.0 (10.3) 70.8 (12.2) 0.003 0.005 0.310 0.022 0.020 0.494
infTub_L 96.7 (16.6) 109.8 (14.2) 67.3 (17.1) 0.013 0.001 0.161 0.022 0.012 0.494
infTub_R 99.2 (16.5) 95.6 (12.6) 60.9 (20.6) 0.009 0.007 0.375 0.022 0.021 0.494
supTub_L 89.7 (9.0) 89.2 (9.8) 81.0 (10.7) 0.167 0.159 0.478 0.200 0.212 0.494
supTub_R 95.9 (8.9) 86.6 (11.4) 81.0 (9.0) 0.024 0.216 0.139 0.036 0.259 0.494
Hyp_L 311.4 (32.7) 324.3 (29.1) 252.9 (35.7) 0.010 0.005 0.329 0.022 0.020 0.494
Hyp_R 316.1 (35.4) 299.1 (30.1) 233.7 (41.0) 0.008 0.011 0.286 0.022 0.022 0.494

SD, standard deviation; PFDR , P value after FDR correction; PWS, children with Prader-Willi Syndrome; OB, obese children without PWS; a-iHyp, anterior-inferior; a-sHyp,
anterior–superior; posHyp, posterior; infTub, inferior tubular; supTub, superior tubular; Hyp, hypothalamus; L, left; R, right. Bold, PFDR < 0.05. A: Comparison between the
PWS and control groups (PWS vs. control). B: Comparison between the PWS and OB groups (PWS vs. OB). C: Comparison between the OB and control groups (OB vs.
control).

TABLE 4 Deep cerebellar nuclei volume of each group and P value of group comparisons.

Mean (SD; mm3) Uncorrected P value PFDR value

Nuclei Control OB PWS A B C A B C

dentate_L 1,458.7 (124.0) 1,373.2 (143.5) 1,202.7 (136.6) 0.000 0.002 0.037 0.000 0.003 0.086
dentate_R 1,593.9 (141.9) 1,517.4 (147.3) 1,311.9 (152.4) 0.000 0.001 0.067 0.000 0.002 0.086
interposed_L 197.2 (16.5) 188.1 (18.7) 166.3 (14.4) 0.000 0.001 0.072 0.000 0.002 0.086
interposed_R 210.1 (19.7) 201.2 (18.3) 176.3 (15.6) 0.000 0.000 0.091 0.000 0.002 0.091
fastigial_L 36.0 (3.5) 34.2 (2.9) 31.6 (2.4) 0.000 0.008 0.050 0.000 0.008 0.086
fastigial_R 43.1 (4.4) 40.8 (3.3) 37.4 (3.1) 0.000 0.005 0.042 0.000 0.006 0.086

SD, standard deviation; PFDR , P value after FDR correction; PWS, recruited children with Prader-Willi Syndrome; OB, recruited obese children without PWS; L, left; R, right.
Bold, PFDR < 0.05. A: Comparison between the PWS and control groups (PWS vs. control). B: Comparison between the PWS and OB groups (PWS vs. OB). C: Comparison
between the OB and control groups (OB vs. control).

overweight and hyperphagia) and similar alterations in cortical
volume (Xu et al., 2017), impairment in brain nuclei may be
very different. Thus, our findings indicate that alterations in
brain nuclei might be associated with eating disorders, cognitive
disability, and endocrine abnormalities that characterize PWS.
Additionally, alterations in brain nuclei were found in PWS
individuals during childhood, which might be due to the
heritability of subcortical structural shape and the influence
of imprinted genes (Roshchupkin et al., 2016), while the
relationship between manifestations and brain nuclei in obese
children still needs further investigation.

In the shape analysis, atrophy was found in the bilateral
thalamus, pallidum, hippocampus, amygdala, NAc, and right
caudate in individuals with PWS. The amygdala is the vital
nucleus connecting the cortex and hypothalamus, which play an
important role in the regulation of food intake by learned and
motivational cues (Gottfried et al., 2003; Killgore et al., 2003;
Kringelbach et al., 2003; Hinton et al., 2006). The amygdala itself
possesses steady-state regulation by maintaining the balance
between food satisfaction and a high level of insulin that inhibits
eating (Areias and Prada, 2015). Animal studies have suggested
that rodents with amygdala lesions showed insulin resistance and
typical PWS phenotypes, such as hyperphagia, elevated weight,

and hyperinsulinemia (King et al., 1994, 1996; Thaler et al.,
2012). Therefore, the volumetric abnormality of the amygdala
may be a predictor of such dysfunctions.

Previous studies have reported smaller hippocampal
volumes in PWS patients than in normal controls (Honea et al.,
2012; Lukoshe et al., 2013; Manning et al., 2018). Consistent
with these findings, our results further investigated the shape
variation in detail, revealing that the variation was mainly
contributed by specific subregions, such as the dorsal, ventral,
and lateral of field 1/3 of Ammon’s horn and subiculum.
Hippocampal-dependent mnemonic functions play a dominant
role in feeding behavior through external sensory food-relevant
and internal energy-relevant information (Kanoski and Grill,
2017). Neurons in the dorsal hippocampus receive visuospatial
information from the cortex, the ventral hippocampus primarily
forms a bidirectional modulation of olfactory cues, and the
ventral and lateral hippocampus receive gastrointestinal and
other visceral information, all of which determine where,
when, what, and how much to eat (Webster et al., 1991; De La
Rosa-Prieto et al., 2009; Fanselow and Dong, 2010; Kanoski
and Grill, 2017). Patients with bilateral hippocampal lesions
show deficits in establishing episodic memory, leading to much
more frequent eating. Although the mechanism of hippocampal
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reduction is unclear, one possible explanation is that hormone
signal disturbance caused by abnormal genetic expression
influences the formation and maintenance of new memories,
including synaptic plasticity and neurogenesis (Shanley et al.,
2001; During et al., 2003; Diano et al., 2006; Moult and Harvey,
2008).

The neurons in the NAc regulate motivation for feeding
behavior and are activated or inhibited by hormones such as
glucose-like-protein-1 or leptin, the dysfunction of which results
in excessive food intake (Kenny, 2011; Alhadeff et al., 2012).
The subregions of the NAc serve distinct functions; for example,
the rostral part contains a hedonic hotspot where “liking” is
enhanced for food rewards, while the caudal part contains opioid
coldspot where positive hedonic impact is suppressed (Castro
et al., 2015). Although the mechanism of NAc volumetric
alteration is unclear, the differential performance in PWS and
OB may suggest that the reduction is caused by genetically
induced cytokine and brain metabolites.

It is well known that limbic cortico-striatal-pallido-thalamic
loops are involved in emotional cognition, reward-guided
decision-making, and goal-related behavior (Burton et al.,
2015; Manning and Holland, 2015). The caudate nucleus plays
a dominant role in cognitive function, and its dorsolateral
part mediates memory processing and consolidation (Grahn
et al., 2008; White, 2009). The ventral pallidum mediates the
hedonic influence of food rewards and salience of motivational
incentives, particularly through the caudal and rostral parts
(Castro et al., 2015). In our study, subregional changes in
the thalamus, pallidum and caudate nucleus were noted by
the shape analysis method, providing finer neuroimaging
evidence than previous findings. Honea et al. (2012) and
Kim et al. (2020) reported a larger thalamic volume in obese
individuals and a smaller white matter volume in PWS; Hayashi
et al. (1992) found coagulative necrosis with nerve cell loss
scattered throughout the pallidum; and a small GMV in
the caudate nucleus was reported in both PWS and obese
patients (Ogura et al., 2011; Kim et al., 2020). Although the
genesis of volumetric alteration is unclear, our finding that
specific subregions in PWS were much smaller than control
and OB groups suggests genetically induced impairment may
not be compensated by the acquired neuroadaptive reward
system.

However, no morphological change was found in the
cerebral nuclei of obese children, according to our study.
Previous findings on the relationship between cerebral nuclei
volume and obesity are inconsistent. Some studies have reported
an enlarged amygdala, hippocampus, thalamus, putamen, and
pallidus in obese individuals (Widya et al., 2011; Bernardes et al.,
2018; Kim et al., 2020). However, Bobb et al. (2014) reported
that higher BMI was associated with a lower volume of the
amygdala, and a study with a large sample size of 12,087 subjects
from the UK Biobank proved that the percentage of total
body fat was negatively associated with subcortical GMVs in

men, including the thalamus, caudate nucleus, putamen, globus
pallidus, hippocampus, and NAc (Dekkers et al., 2019). From
these contradictory evidences, we suggest that there might be
sophisticated neurobiological interactions between obesity and
cerebral nuclei under physiological and pathological conditions.

Hypothalamic dysfunction is well known to be responsible
for the majority of PWS phenotypes, such as hyperphagia,
hypersomnia, and multiple endocrine abnormalities (Angulo
et al., 2015). However, limited by segmentation methods,
most of the studies have not found significantly hypothalamic
structural abnormality (Honea et al., 2012; Lukoshe et al., 2017).
Recently, using the same Hypothalamic Subunits tool as in this
manuscript, Brown et al. (2022) reported PWS adults had smaller
volumes of whole hypothalamus and its subunits except for right
a-iHyp, than that in obese and control adults. Consistent with
the results of PWS adults, atrophy of the bilateral hypothalamus
in PWS children was found in our study, specifically contributed
by the bilateral in fTub andposHyp, right supTub and left
a-iHyp subregions. The hypothalamic paraventricular nucleus,
dorsomedial nucleus, and lateral hypothalamic area of the
superior tubular hypothalamus, as well as the ventromedial
nucleus and infundibular nucleus, comprise the feeding pathway,
which facilitates or inhibits feeding through sensing cues,
including hormone levels (leptin and ghrelin), visceroceptive
inputs (such as food taste), olfactory cues, and glucose-
sensitive neurons (Saper and Lowell, 2014). Previous studies
have reported that large lesions centered in the ventromedial
nucleus lead to hyperphagia and obesity, and neurons in
the infundibular nucleus, paraventricular nucleus and lateral
hypothalamus nucleus are affected in postmortem hypothalamic
tissue specimens from PWS patients (Saper and Lowell, 2014;
Correa-da-Silva et al., 2021). Meanwhile, no hypothalamic
atrophy was found in OB in our study, which is consistent
with a previous study with semiautomated segmentation of
the hypothalamus of 338 subjects, indicating that hypothalamic
volume is not associated with obesity (Thomas et al., 2019). The
relationship between volumetric alterations in the hypothalamus
and obesity needs to be further investigated.

The cerebellum plays an irreplaceable role in regulating
satiety and meal termination, mainly by DCN and lateral-DCN
neurons (Simerly and DiLeone, 2021). The dentate nucleus has
been demonstrated to participate in a widespread functional
network, including the striatum, hypothalamus, thalamus,
sensorimotor and associative cortices, associated with cognition,
learning, and sensorimotor coordination (Habas, 2010). The
interposed nucleus assists the motor thalamus, mediates
eye movement, and responds to tactile stimulation (Judd
et al., 2021). The fastigial nucleus receives histaminergic
and orexinergic afferents from the hypothalamus and directly
projects to the hypothalamus, visceral-related nuclei/regions
in the medullary reticular formations and the limbic system
to regulate feeding and emotion (Zhang et al., 2016). The
dysfunction of DCN is greatly associated with the phenotype
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of PWS. Low et al. (2021) observed a difference in DCN
between individuals with PWS and control participants with
fMRI responding to food images. Moreover, mice with a
knockout of the Fmr1 gene showed a reduced volume of DCN
and displayed the restricted, repetitive behaviors characteristic
of PWS (Ellegood et al., 2010; Wilkes and Lewis, 2018).
Meanwhile, as we know, no studies have been reported about
DCN alterations in obese children. Consistent with previous
studies, we reported a decreased volume of DCN in children
with PWS, which was not found in OB. Our findings suggested
that the dysfunction of DCN contributed to the developmental
behavioral characteristics in PWS and provided evidence that
DCN plays an important role in regulating satiety and meal
termination in terms of genetics.

There are several limitations that need to be discussed
here. First, even though the sample size was small in our
study, leading sex and age were not perfectly matched, it had
sufficient power to find between-group differences. Meanwhile,
as a rare disease, large age ranges and small sample sizes are
acceptable in PWS neuroimaging studies (Manning et al., 2018;
Kim et al., 2020). Second, structural change in the two major
PWS subtypes was not investigated because they do not exhibit
clinical differences, except for hypopigmentation (Butler, 1990).
Third, the slice number was fixed to 160 slices for all subjects,
which was an alternative acquisition mode to the fixed slice
thickness, causing the slice thickness to vary with the field
of view in z direction. Though all images were resampled
to the same voxel size before segmentation, the variation of
slice thickness might have potential impact on the precision
of segmentation. Fourth, Hypothalamic Subunits tool has not
been widely validated on pediatric analysis, except for a recent
preprint which was conducted by Voldsbekk et al. (2022) on
young samples (age range 5–21 years). Although the quality
control procedure was performed manually by an experienced
radiologist for every subject in our study, the validation needs
to be further investigated. Fifth, unlike subcortical nuclei and
hypothalamus, the volume of DCN was calculated by adding
total GMV and WMV within each ROI. As discussed previously,
VBM methods have limitations in brain nuclei, though we
have used the SUIT atlas for better registration. Finally, no
significant results were found between OB and the control.
Thus, the meaning of different kinds of changes in adult obesity
could not be explained by our current study. In the future,
the relationship between genetic subtypes and structural change
could be investigated to examine the influence of heritable
differences involving PWS on brain nuclei.
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