
fninf-16-871904 April 8, 2022 Time: 15:28 # 1

METHODS
published: 14 April 2022

doi: 10.3389/fninf.2022.871904

Edited by:
Andreas Bahmer,

University Hospital Frankfurt,
Germany

Reviewed by:
Cem Uran,

Max Planck Society, Germany
Keyvan Mahjoory,

Max Planck Institute for Empirical
Aesthetics, Germany

*Correspondence:
Raul Cristian Mureşan
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Brain oscillations are thought to subserve important functions by organizing the
dynamical landscape of neural circuits. The expression of such oscillations in neural
signals is usually evaluated using time-frequency representations (TFR), which resolve
oscillatory processes in both time and frequency. While a vast number of methods
exist to compute TFRs, there is often no objective criterion to decide which one is
better. In feature-rich data, such as that recorded from the brain, sources of noise and
unrelated processes abound and contaminate results. The impact of these distractor
sources is especially problematic, such that TFRs that are more robust to contaminants
are expected to provide more useful representations. In addition, the minutiae of the
techniques themselves impart better or worse time and frequency resolutions, which
also influence the usefulness of the TFRs. Here, we introduce a methodology to evaluate
the “quality” of TFRs of neural signals by quantifying how much information they retain
about the experimental condition during visual stimulation and recognition tasks, in
mice and humans, respectively. We used machine learning to discriminate between
various experimental conditions based on TFRs computed with different methods.
We found that various methods provide more or less informative TFRs depending
on the characteristics of the data. In general, however, more advanced techniques,
such as the superlet transform, seem to provide better results for complex time-
frequency landscapes, such as those extracted from electroencephalography signals.
Finally, we introduce a method based on feature perturbation that is able to quantify
how much time-frequency components contribute to the correct discrimination among
experimental conditions. The methodology introduced in the present study may be
extended to other analyses of neural data, enabling the discovery of data features that
are modulated by the experimental manipulation.

Keywords: neural oscillations, time-frequency representation, machine learning, explainable AI, neurophysiology,
electroencephalography

INTRODUCTION

Under normal and pathological conditions, brain circuits engage in rhythmic modulations of
activity called neural oscillations (Buzsaki, 2006). Their frequencies span orders of magnitude, from
the slow and infra-slow ones, with periods of minutes, tens of minutes, or hours (Aladjalova, 1957;
Hughes et al., 2011; Belle and Diekman, 2018; Chrobok et al., 2021), to the medium ones, including
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theta (4–8 Hz) or alpha (8–12 Hz), the fast ones, like beta
(12–30 Hz) or gamma (30–80 Hz) (Mureşan et al., 2008),
and, finally, the ultra-fast ones (>100 Hz) (Csicsvari et al.,
1999; Hughes, 2008; Gourévitch et al., 2020). These different
frequency bands are associated to different brain states. While
some specific frequencies also emerge in pathological conditions,
like Parkinson’s disease (Foffani et al., 2003), it is an established
fact that oscillations are notably expressed in healthy subjects. For
example, slower frequencies are associated with sleep (Steriade
and Amzica, 1998; Steriade, 2003), while the higher frequencies
seem to support cognition and perception (Keil et al., 1999;
Klimesch, 1999; Melloni et al., 2007; Başar, 2013; Barraza et al.,
2020). In the mid-range, theta oscillations are pervasive in the
hippocampus (Wilson and McNaughton, 1994; Skaggs et al.,
1996; Buzsáki, 2002; Lega et al., 2012), while alpha rhythms seem
to block sensory inputs at cortical level (Traub et al., 2020). To
understand their role in normal or abnormal brain function, these
ubiquitous rhythmic processes need to be precisely and reliably
quantified in brain signals.

One property of neural oscillations renders their estimation
in brain signals particularly difficult. Unlike several natural
systems, where oscillatory processes may be sustained over longer
periods of time (Stuiver and Braziunas, 1989; Huisman and
Weissing, 1999; Arnaut and Ibáñez, 2020), brain oscillations
are typically transient: They emerge in bursts, or packets
(Tal et al., 2020; Moca et al., 2021), which often span only
a few cycles in duration. To evaluate their presence in the
signal, such packets need to be localized in both time and
frequency, simultaneously, and this is very difficult due to
the Heisenberg–Gabor uncertainty principle (Gabor, 1946;
Heisenberg, 1985).

The time-frequency localization of a signal is most frequently
estimated by using time-frequency representations (TFRs)
(Boashash, 2015). TFRs are a very common tool used to
hunt for oscillation bursts in neural data. Used extensively
in the analysis of electroencephalography (EEG) (Başar et al.,
2001; Herrmann and Demiralp, 2005) and local-field potential
(LFP) (Wilson and McNaughton, 1994; Skaggs et al., 1996;
Buzsáki, 2002) data, TFRs are computed using a plethora
of spectral techniques, such as short-time Fourier transforms
(STFT), Wigner-Ville distributions (WVD), wavelets, and so on.
Depending on the particular methodology, different aspects may
be emphasized in the signal, e.g., better temporal resolution or
better frequency localization (Moca et al., 2021). In addition,
some techniques are less robust to noise, which acts as
a distractor, hindering the observation of finite oscillation
packets in the data (Moca et al., 2021). Other techniques
suffer from the smearing of the packet’s representation in
time, from its leakage across frequencies, banding, or so-
called cross-terms, which are artifactual components introduced
by the method itself (Boashash, 2015). Thus, the particular
details of the method can vastly impact the properties
of the estimated TFR. Furthermore, even for the same
method, one may obtain TFRs with different characteristics.
Indeed, some methods have one or more parameters (e.g.,
window size, number of cycles of the mother wavelet, order
of the superlet, etc.) and their choice determines what

properties of the data are emphasized or suppressed in
the representation.

One of the major issues is that it is not always clear what
the “correct” (or best suited) TFR of a signal should be. Each
estimation technique yields TFRs that may differ in terms of
time or frequency resolution (or both), and is sensitive to some
properties of the data (Moca et al., 2021). Here we propose
one possibility to more objectively assess the quality of a
representation: To determine how much useful information the
latter extracts from neural signals.

Unfortunately, determining the information content of a TFR
is never an easy task, especially when dealing with feature-
rich data such as neural time-series data (e.g., EEG or LFP).
This is made even harder because the items humans most
readily perceive in various signal representations can display
features that may not necessarily be systematically related to
the experimental condition. Luckily, tools developed in the past
decades in Artificial Intelligence (AI), like machine learning
(LeCun et al., 2015) may come to the rescue. Such tools can
be helpful to judge how much task- or stimulus-related (class-
related) information there is in a given labeled dataset by
measuring the prediction accuracy (% of correctly classified
samples) of trained classification models on test data (Ciuparu
et al., 2020). Here, we show that although the “true” time-
frequency representation of a signal is not necessarily known, the
“quality” of a certain TFR may be judged with the help of machine
learning. We use this tool to determine how informative a TFR is
about the underlying experimental conditions. We also show that
explainable AI techniques (Došilović et al., 2018; Barredo Arrieta
et al., 2020; Linardatos et al., 2020) can be used not only to judge
the “quality” of a TFR, but also to discover where in the TFR
one can find the informative oscillation packets which enable the
discrimination among conditions.

MATERIALS AND METHODS

In vivo Recordings
Visual stimuli consisted of either moving bars (protocol “RF”;
Figure 2A, top) or drifting sinusoidal gratings (0.11 cycles/deg,
at a speed of 1.75 cycles/s, protocol “SRCS”; Figure 3A, top)
of 4 different orientations and 8 moving directions in steps of
45◦, each presented monocularly 10 times on an LCD monitor
(Beetronics) with a resolution of 1,440 × 900 pixels and a
refresh rate of 60 Hz.

Adult wild type C57/BL6J mice were anesthetized with
isoflurane (5% for induction, 2–2.5% for surgery) and Xylocaine
was used as local analgesic. The animals were placed in a
stereotaxic frame (Stoelting Co., IL, United States) and the
body temperature was maintained at 37◦C using a heating
pad (Harvard Apparatus). To avoid dehydration during the
experiment, saline was infused intraperitoneally (IP). Silicon oil
(Sigma-Aldrich) was applied to both eyes to prevent corneal
drying and damage. A 2 mm circular craniotomy was performed
over the left visual cortex of the animal (2–2.5 mm lateral from
midline, 0–0.5 anterior to lambda) to allow insertion of the neural
probe. The dura matter was left intact.
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Extracellular recordings were acquired using a 32-channel
silicon probe (Cambridge NeuroTech) at a sampling frequency
of 32 k Samples/s (Multi Channel Systems GmbH) and
subsequently band-pass filtered offline (0.1–300 Hz) using a
3rd order Butterworth infinite-impulse response (IIR) filter,
applied bidirectionally. All the recordings were downsampled
to 1,000 samples/s and a series of notch filters (3rd order
Butterworth IIRs, bidirectional) were applied to remove the
line noise and its harmonics (50, 100, and 150 Hz). We thus
obtained the local-field potentials (LFP) recorded intracortically
(Einevoll et al., 2013; Teleńczuk et al., 2017). To minimize animal
use, multiple recordings were collected over a period of 6–8 h
from each animal.

The data used throughout this study was obtained from
three different animals: M048—“SRCS-1,” M60—“SRCS-2,” and
M065—“RF.” The channels considered for each analysis were
electrodes 19, 11, and 7, respectively.

Electroencephalography
High density EEG data was digitized at 1,024 samples/second
with a 128 electrode Biosemi ActiveTwo machine during a visual
recognition task. At the beginning of each trial the subjects
were instructed to fixate the center of the screen (baseline) for
1.5–2 s, after which the stimulus was presented on the screen.
During the stimulation period subjects were allowed to freely
explore the visual scene in order to reach a decision about
the identity of the stimulus (object). The stimulation period
ended with a key press to signal one of the three possible
outcomes: the stimulus was identified (seen), something was
visible but the subject was unable to identify it (uncertain), or
that no discernable shape was presented on the screen (nothing).
A set of 30 shapes comprising familiar objects, fruits, and
animals were processed with the “Dots” method (Moca et al.,
2011). The trials were organized in 7 blocks with successively
increasing visibility to a total of 210 trials per recording session.
Visual stimuli (Figure 5A left) spanning 8.7◦ and 5.6◦ of visual
horizontal and vertical angle, respectively, were presented on a
fast response (2 ms) 22-inch LCD monitor (Samsung SyncMaster
226BW). The dots method and the experimental protocols are
described in more details elsewhere (Ciuparu and Mureşan, 2016;
Bârzan et al., 2021; Moca et al., 2021, 2011). Here, we used
data from a single subject, as a testbed to exemplify the TFR
evaluation technique.

The EEG data, sampled at 1,024 samples/s, was processed
offline with Fieldtrip (Oostenveld et al., 2010). First, data
was band-pass filtered to 1–150 Hz and two notch filters
were also applied to reject the mains noise (50 Hz) and
its first harmonic at 100 Hz. Next, channels and trials with
abnormally large amplitudes were rejected manually before ICA
decomposition. Finally, eye, muscle, and other artifacts were
identified and removed from the ICA components and the
cleaned EEG was recomposed.

Short-Time Fourier Transform
The Short-Time Fourier Transform (STFT), also commonly used
to compute the spectrogram, is one of the most established time-
frequency representation methods. The concept behind the STFT

is simple and entails computing multiple windowed Fourier
transforms and arranging the resulting spectra out in time:

STFTx
(
t, f
)
=

∞∫
−∞

x (τ) h(τ− t)e−j2πf τdτ

where, x is the signal of interest and h is a time-localizing
window function.

Both the time and frequency resolution of the STFT are
determined by the length of the analysis window, h. A long
window favors better concentration in frequency but worse
temporal localization, while a short window provides good
temporal localization but poor frequency resolution. Therefore,
the size of the analysis window is typically set to the time
scale of whatever process is being followed in the analysis,
but, importantly, this timescale is unique for a given TFR
(Moca et al., 2021). Thus, one cannot simultaneously and
optimally track multiple timescales using this representation—
this is why multiresolution methods are required, such as the
continuous wavelet transform or the superlet transform, both
described below.

Continuous Wavelet Transform
The Continuous Wavelet Transform (CWT) is a multiresolution
technique that involves convolving the input signal with wavelets,
which can be thought of as band-pass filter kernels whose scale is
adjusted for whatever frequency is being measured. Here, we used
the CWT with the complex Morlet wavelets ψf ,c with a known
bandwidth which is defined in terms of the number of cycles c of
the mother wavelet (Moca et al., 2021):

ψf ,c (t) =
1

Bc
√

2π
e
−

t2

2B2
c ej2πft

where, t is time, f is frequency, and c is the number of cycles of
the mother wavelet, and

Bc =
c

5f

By scaling the wavelet in time, therefore changing its frequency
response, one can measure an arbitrary range of frequencies via
convolution with the input signal:

CWTx
(
t, f , c

)
= 2

∣∣∣(ψf ,c ∗ x) (t)
∣∣∣2

Because each wavelet scales with the frequency it measures,
the time resolution of this method (relative to the timescale of
processes evolving on different frequencies) is optimal. The CWT
suffers from the opposite drawback, however—its frequency
resolution degrades as the measured frequency is increased. To
improve it, one must increase the number of cycles c, but doing
so incurs the cost of worse temporal resolution.

Superlet Transform
The Superlet Transform (SLT) is a wavelet-based time-frequency
estimation technique (Bârzan et al., 2021; Moca et al., 2021)
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introduced to get around the degrading frequency resolution
of the CWT for higher frequencies (Moca et al., 2021). By
combining multiple representations in a minimum-mean cross
entropic sense (by using the geometric average), the Superlet
achieves time-frequency super-resolution. The SLT is defined
simply as:

SLTx,o,c1(t, f ) =

[ o∏
i = 1

CWT(t, f , ci)

] 1
o

where, x is the signal, o is the order of the superlet, and c1 is the
number of cycles of the base wavelet.

The intuitive explanation of the SLT is that wavelets with small
temporal bandwidths have very small (close to zero) responses
(coefficients) outside of a process’ time window, while larger
wavelets will have very small responses outside of the process’
frequency characteristic, thereby the combination of short and
wide wavelets is isolating the process in both time and frequency.

Wigner-Ville and Reduced Interference
Distributions
Another technique widely employed in signal processing is the
Wigner-Ville distribution (WVD). A full explanation regarding
the WVD is outside the scope of this paper, but can be found in
Debnath (2002). In short, it is the Fourier transform, expressed
in time-frequency coordinates

(
t, f
)
, of the signal’s instantaneous

autocorrelation function (IAF), expressed in time-lag coordinates
(t, τ). For a single-component signal (with a single isolated
feature in the time-frequency plane), such as a Gaussian atom
(combination of a Gaussian with a complex sine wave), the WVD
achieves the best possible time-frequency resolution. For multi-
component signals (multiple features in time and/or frequency),
however, cross-terms arise between the different components
visible as ripples in the time-frequency field. Attempts to
eliminate these cross-terms have led to the development of
Reduced Interference Distributions (RIDs), which use an extra
step to apply a smoothing kernel to the representation (they are
called ambiguity kernels as they are applied in the ambiguity
domain) (Choi and Williams, 1989; Cordero et al., 2018).
Unfortunately, the smoothing kernels degrade the resolution of
RIDs when compared to WVD.

WVDx
(
t, f
)
=

∫
x
(

t +
τ

2

)
x
(

t −
τ

2

)
e−j2πf τdτ

Here, we use the Choi-Williams (ChoiW) distribution (Choi
and Williams, 1989), a form of RID, to create time-frequency
representations of neural data. It has a single additional
parameter, σ, which adjusts the smoothing factor of the
ambiguity kernel.

Feature Vector Extraction
Time-frequency representations were computed on a single
channel for each trial (8 conditions with 10 trials each for
both SRCS and RF protocols, resulting in 80 representations).
The parameters for the techniques were loosely set to obtain
good representations for the alpha, beta, and gamma frequency

bands: (i) STFTs using 250 ms Blackman windows, zero padded
to a Fourier window of 2 s and a time step of 1 ms, (ii)
CWTs with 3 cycles for the mother wavelet, (iii) SLTs with
either a shorter temporal footprint (c1 = 2, o = 5) or a better
frequency concentration (c1 = 3, o = 10), and (iv) ChoiW with
σ = 3. The electrophysiological (intracranial and EEG) data
was analyzed differently, according to the peculiarities of their
respective experiments.

For intracranial recordings, the trial length and frequency of
interest regions differ depending on the experimental protocol
and the frequency characteristics of the responses. For trials with
the SRCS paradigm we extracted TFRs spanning 4 s, while for
RF it we considered a temporal window of 3 s, matching the
difference in trial size for these different stimulation protocols.
Between the three mice that were used in this analysis, each
had their stimulus response in another frequency range within
the gamma band, which we could normalize to about 20 Hz
of bandwidth (RF: 50–70 Hz, SRCS-1: 35–55 Hz, SRCS-2: 30–
50 Hz).

For EEG recordings, the trial window was chosen to be a
700 ms window (Figure 1A), occurring 300 ms after stimulus
presentation to avoid stimulus onset effects. The frequency range
was chosen between 5 and 55 Hz (Figure 1B).

Each analysis technique produces time-frequency
representations for the given time segment and frequency range,
but each of them have their unique peculiarities in achieving
this, especially in the digital domain where representations are
discrete. For example, the number of bins per Hz in the SLT
and CWT is specified by the user, but the number of bins per
second will be equal to the sampling rate of the signal, which
differs between the intracranial recordings (1,000 samples/s)
and the EEG recordings (1,024 samples/s). STFTs can have
varying number of bins for both time and frequency axes (as
they can be adjusted using the step size and window length,
respectively), and the ChoiW’s binning is determined (fixed)
by the sampling rate. Considering the diverse range of time
and frequency binning of various methods, a standardization
was necessary to compare the representations. Therefore, all
TFRs used here were resampled from their native bin sizes
(Figure 1C) to a single bin size using bicubic interpolation
(Figure 1D), a method widely used in image processing. After
this resampling step all TFRs have the same time- and frequency
ranges and bin sizes (1 ms and 0.5 Hz per time and frequency bin,
respectively, unless otherwise specified). The last step involves
compacting the obtained spectrum to a more palatable number
of features for classification. This entails establishing numbers
of features to obtain per second and per Hz. It essentially means
downsampling the time-frequency spectra by splitting in tiles
and computing the average of each tile (see Figure 1D). The
spectra are then linearized and labeled to prepare them for
classification (Figure 1E).

Information Content Estimation Using
Machine Learning
Artificial neural networks (ANNs) were used to quantify the
information content of the TFRs. The networks used here
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were multilayer perceptrons (MLPs) with 2 hidden layers,
each layer’s size being 20 and 10% of the size of the
input layer, respectively (Figure 1E). This network architecture
was determined empirically by evaluating multiple different
configurations and selecting the simplest one that had a good
performance. Importantly, further optimization may be possible
for specific neural datasets, e.g., by increasing the depth of the
network or the sizes of the hidden layers. Here we refrained from
overoptimizing the networks for the different datasets in order
to provide a simple and general proof of concept. Importantly
however, we found that, for the data presented here, results were
robust across a wide range of architectures.

The networks used a novel activation function called Soft++,
discussed in Ciuparu et al. (2020). To train the networks, we
used the iRPROP+ (Igel and Hüsken, 2000), an improved version
of the resilient backpropagation algorithm (Rprop). Because
neuroscience datasets typically yield a large number of features
but a small number of samples and, in addition, the neural
networks have a large number of parameters, this renders such
setups prone to overfitting. To deal with this we introduced a mild
dropout strategy (Hinton et al., 2012). The full parameters of the
ANNs and of the learning algorithm are given in Table 1.

To train and test the networks we used datasets consisting of
downsampled and linearized TFRs (feature vectors) computed
per experimental trial (see Figure 1). For the EEG dataset,
this yielded a total of 150 machine learning samples (feature
vectors; 60 “nothing” trials and 90 “seen” trials), while for LFP
datasets it provided 80 machine learning samples (10 trials for
each direction—see above). For each dataset and each run of
training/testing a network, the set of machine learning samples
was split randomly into 60% train and 40% validation (test)
samples. Training was only performed using the samples in
the training set. Furthermore, training was performed for 1,000
epochs and the best network state during the training process was
saved. Due to the small number of samples in our datasets, biased
sampling during splitting becomes a problem that needs to be

mitigated. To average out effects due to the random splitting, as
well as due to the random weight initialization of the networks, all
dataset splitting, training, and testing procedures were repeated
100 times for each TFR type (4 in total). Finally, to evaluate
chance level (especially for unbalanced datasets), we performed
the same splitting/training/testing procedure 100 times and for
each TFR type while simultaneously randomizing the labels of the
datasets for each run.

Feature Permutation
To evaluate how much a certain feature or set of features
contributes to the classification, we developed a methodology
based on feature permutation (Fisher et al., 2019). The idea
behind this is to perturb each feature at the input of the ANN
and to evaluate how much certain performance metrics degrade
(e.g., decrease in accuracy or increase in mean-squared error).
This is achieved by permuting the values of that feature between
different samples such that the values of the feature no longer
match the values of the other features nor the classes they belongs
to. As a result, the relation between the values of the feature and
class labels becomes a random one. If that feature is important
for classification, then it is expected that its permutation leads to
a degradation of the performance of the classifier. In addition,
the importance of the feature can be quantified by measuring the
amount of degradation in the performance of the classifier.

One important problem of this strategy is that the
perturbation of a feature may not affect the performance of
the classifier if other features are strongly correlated to that
feature. Indeed, a set of strongly correlated features provides
redundant information, resilient to the disturbance of some of
the features in the set. Thus, the set of correlated features has to
be considered as an aggregate and perturbed together.

Considering these important aspects, we devised a feature
permutation methodology consisting of the following steps.
The classifier is first trained using the training set and its
performance on the validation set is evaluated. This is the

FIGURE 1 | Analysis pipeline for evaluating TFRs. (A) Example of single trial EEG signal. (B) TFR using the SLT of the EEG signal in panel (A). (C) Slicing of the TFR
into time-frequency tiles. (D) Standardization of the TFR tiles using bicubic interpolation. (E) Linearization of the tiled, interpolated TFR in panel (D), fed to the MLP.
The example indicates the application of the pipeline for a single trial of the EEG dataset.
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reference performance on the “intact” feature space. Second, the
pairwise correlation (Pearson) (Nikolić et al., 2012) is computed
between all the features values on the validation set. Third,
features are considered one by one for the purpose of applying
the permutation strategy. Before permuting the current feature,
we determine the set of its correlated features by applying a
threshold. Here we considered that features are part of the same
set if their correlation exceeded 0.5. Next, instead of permuting
only the current feature, permutation is applied to all features in
the set. After the permutation, the performance of the classifier is
evaluated on the new (perturbed) validation set and compared
to the reference performance on the intact validation set. The
permutation for each correlated feature set is performed multiple
times (here we used 10 permutations), and the average change in
performance is computed. Finally, the next feature is considered,
its correlated set is computed, and the procedure is repeated until
all features have been visited.

The permutation of a certain feature set should lead to a
decrease in performance (decrease in accuracy, increase in error)
but in some cases it can also lead to an increase in performance. In
such a case, the feature set acts as a “distractor” for the classifier.
The classification performance would be higher if the distractor
feature set would be discarded. Thus, the methodology described
here can be used to identify both features that are important for
classification and features that act as distractors.

RESULTS

We next tested the TFR evaluation methodology on both
intracranial LFP data recorded in mice and on EEG data recorded
in humans. First, we focused on a receptive-field (RF) mapping
protocol, where drifting, oriented bars are used to map out the
structure of RFs in primary visual cortex neurons (Figure 2A). In
this case, the passing of the bars through the RF of the cluster
of neurons located at the position of the recording electrode
induces vigorous gamma bursting at ∼55 Hz. Importantly, due
to the retinotopic location of the cluster of neurons relative
to the drifting bar, the bursting appears at different moments
throughout the trial. This temporal separation makes it such that
the ANN will “perceive” increased inputs on different subsets
of neurons in the input layer—as a result, classifiers learn the
relationship between the TFRs and the experimental condition
very robustly (Figure 2B; performance close to 100%) and in very
few epochs (Figure 2C). While the SLT and STFT seem to have a
slight advantage, performance is almost saturated for most TFRs.
In other words, all representations contain sufficient information
to unambiguously identify the direction of the moving bars.
For such simple cases it is difficult to say which representation
is more useful from an information content perspective—but
other criteria may be applied, like the temporal and frequency
localization of the gamma burst.

In a second batch of tests, we analyzed data recorded from
mouse primary visual cortex when using drifting grating stimuli
instead of bars. These stimuli induce periodic gamma bursting
that occurs at different latencies for different conditions, as
shown by all TFRs (Figure 3A). For this case, the STFT and

SLT provide the most informative representations (Figure 3B)
and also enable the fastest learning (Figure 3C), followed
by the CWT. Interestingly, the ChoiW representation, which
appears to subjectively generate the sharpest frequency-resolved
representation, has the lowest information content about
stimulus identity. This occurs because cross-terms expressed
in between the gamma bursts appear to be detrimental to the
representation. Indeed, the temporal location of the bursts is
important for identifying the orientation of the drifting gratings
and the cross-terms of the ChoiW representation interfere with
the temporal localization of the bursts.

In a third set of tests, we evaluated the information content of
TFRs on data recorded with the same type of stimuli (gratings)
but that exhibits more pronounced noise, evident as broadband
transients in the TFRs (Figure 4A). In this case, the STFT
provides the most informative TFR, probably because its poorer
temporal resolution. Indeed, at the other end the CWT provides
the least information about the stimuli because it emphasizes
better the short-lived broadband noise transients (Figure 4B). In
this case, the SLT and ChoiW representations offer a tradeoff,
although learning is faster in the case of the SLT (Figure 4C).
Thus, methods which are more sensitive to brief transients, like
the CWT, provide representations that are less accurate when
broadband noise contaminates the spectrum.

Intracranial electrophysiology data, such as the LFP, exhibits in
general cleaner spectra than extracranial data, such as the EEG.
The reason is that in extracranial signals sources of noise are
more prevalent. In addition, data in Figures 2–4 was recorded
in anesthetized animals, where cortical dynamics may also be
more predictable, and the experiment better controlled in terms
of visual input. To have a harder and more realistic testbed, we
used EEG data recorded in adult human volunteers. We evaluated
how much information various TFRs contain about the conscious
perception of one human subject on images of dots representing
objects with various degrees of visibility (Moca et al., 2011).
Classifiers were thus trained to predict the response of the subject
(object not seen, i.e., “nothing,” or object “seen”) (Moca et al.,
2011) by using exclusively the TFRs computed on the EEG signals
recorded from the occipital electrode (Oz; Figure 5A).

As expected, the case of the EEG data is much more
difficult for classifiers, which attain a top average performance
around 70% (Figure 5B; chance level is ∼60%, given the class
unbalance—90 trials with “seen” response compared to 60 trials
with “nothing” response). In this case, the best performance
was attained on the SLT representation, where classifiers also
learned the fastest (Figure 5C), closely followed by the ChoiW
distribution. The worst performer was the STFT, which provided
the lowest accuracy and slowest learning curve. Thus, for complex
spectra, the more advanced methods provide representations
with a net advantage over the classically used TFRs, such as the
STFT and the CWT.

The results presented so far indicate that various TFRs provide
an informative spectral landscape that is correlated to various
degrees with the experimental condition. However, it is not
sufficient to determine that a representation is informative—
ideally one needs to also find out which components of that
representation are important and to what degree. To this end,
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FIGURE 2 | Intracranial electrophysiology with RF visual stimulation protocol. (A) Table of TFRs where each column corresponds to a particular grating direction
(condition) and each row corresponds to one of the time-frequency analysis methods. (B) Average accuracy as measured on the validation set (100 network
initializations and dataset splits), with original (true) and shuffled labels (for chance level estimation). (C) Learning curves on the validation set for the original labels
group (chance level curves were omitted here but reside at ∼12.5%). Error bars are s.e.m.

we developed a methodology that is able to quantify how much
certain time-frequency components contribute to the accuracy
of the classifiers (see section “Materials and Methods”). The
methodology is based on feature permutation (Fisher et al., 2019),
an algorithm belonging to the larger class of explainable AI
techniques (Došilović et al., 2018; Barredo Arrieta et al., 2020;
Linardatos et al., 2020).

To determine what TFR components enable the
differentiation of perceptual conditions in the EEG data from
Figure 5 (“seen” vs. “nothing” responses), we first computed
the TFRs for all the trials and created a fixed random split into
train and validation sets for all types of TFR. This ensured that
a source of variability was eliminated and that all models were
trained and tested on the exact same sets of experimental data.

Using the fixed training set, we trained multiple classifiers on
the TFRs computed with different methods and selected the best
networks, reaching the following top accuracy on the validation
set: SLT: 80%, ChoiW: 78.3%, CWT: 71.7%, and STFT: 70%.
Next, we applied the feature permutation technique on sets of
correlated features (see section “Materials and Methods”) and
computed the increase in mean-squared error (MSE) and the
amount of decrease in prediction accuracy. These two quantities
provide overlapping, but not identical information. If the increase
in MSE is a more “continuous” measure of feature importance,
the decrease in prediction accuracy is more non-linear (for

example, the degradation of a feature may increase error but not
sufficiently to generate a misclassification).

Before permuting the features, we computed correlated feature
sets that had to be perturbed together, as they provide similar,
redundant information (Figure 6A; see section “Materials and
Methods”). Interestingly, for the exact same data, different
TFRs provided features with different correlation profiles. The
most uncorrelated feature space is generated by the ChoiW
representation, while the SLT generates a feature space whose
correlation profile is in between the STFT and the CWT.

Figure 6B displays the increase in MSE and magnitude of the
decrease in prediction accuracy for the different TFRs on the EEG
data. In all representations, the time-frequency components that
contribute most to distinguishing between “seen” and “nothing”
trials are localized around the alpha and low beta frequency
bands (8–15 Hz). The clearest picture is provided by the SLT,
which also had the highest classification performance on this
data. Interestingly, in addition to the alpha band, the prediction
accuracy decrease also indicates that a 47 Hz gamma burst,
located around ∼400 ms was found useful for classification. For
the other representations, the distinguishing TFR components
were either less localized in frequency, or scattered more toward
the sides of the analyzed time segment. In some cases, the
analysis also revealed confounding distractors (negative values in
Figure 6B), especially for the CWT and ChoiW. Taken together,
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FIGURE 3 | Intracranial electrophysiology with SRCS visual stimulation protocol (SRCS-1). (A) Table of TFRs where each column corresponds to a particular grating
direction (condition) and each row corresponds to one of the time-frequency analysis methods. (B) Average accuracy as measured on the validation set (100
network initializations and dataset splits), with original (true) and shuffled labels (for chance level estimation). (C) Learning curves on the validation set for the original
labels group (chance level curves were omitted here but reside at ∼12.5%). Error bars are s.e.m.

these results indicate that the most prominent oscillatory features
distinguishing “seen” from “nothing” trials are oscillatory bursts
in the alpha / lower-beta bands. This is most clearly evidenced
by the SLT representation, which also seems to be the most
informative (see Figure 5).

DISCUSSION

Traditional methods for evaluating the quality of a TFR usually
rely on the concept of resolution (Cohen, 1995). In a classical
sense, resolution is calculated by estimating the time and
frequency uncertainty product of known signals (sine waves,
Gaussian atoms). The definition of TFR resolution has been,
however, recently challenged (Flandrin et al., 1994; Folland
and Sitaram, 1997; Stanković, 2001; Boashash and Sucic, 2003),
as this needs to reflect not only the ability to localize an
isolated oscillation packet but also the degree to which multiple
oscillations can be resolved simultaneously, when they are
present in a signal in close temporal and frequency proximity
(Moca et al., 2021).

In feature-rich neuroscience data, resolution is not useful
for the quantification of the quality of a TFR because the real
time-frequency characteristics of the signals cannot be known.

The estimations that we use are only reliable insofar as they
unravel as many individual components in the signal as possible,
while having as little faults (leakage, cross-terms) as possible.

Here, we have shown that, rather than relying on subjective
evaluations of how “sharp” a TFR representation is, one
can use automatic methods, such as machine learning,
which can discover the relation between the features of
brain activity, revealed by different representations, and
the particular experimental condition. Although time and
frequency resolution may be determining factors for the
prediction accuracy and learning efficacy, resolution is
clearly not the only relevant factor when judging the quality
of a TFR. In particular, it is interesting that techniques
which are known to provide the best theoretical time-
frequency resolution, such as those derived from the WVD,
sometimes underperform in terms of information content on
neuroscience data. In that sense, machine learning comes to
confirm, in an objective manner, previous empirical results
(Moca et al., 2021).

Machine learning techniques for the exploration of brain
signals have witnessed increased adoption in recent years (Moca
et al., 2009; Vu et al., 2018; Glaser et al., 2019; Roy et al.,
2019; Li et al., 2020; Lo Giudice et al., 2022). However, it is
important to note that such tools have their own pitfalls and
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FIGURE 4 | Intracranial electrophysiology with SRCS visual stimulation protocol (SRCS-2). (A) Table of TFRs where each column corresponds to a particular grating
direction (condition) and each row corresponds to one of the time-frequency analysis methods. (B) Average accuracy as measured on the validation set (100
network initializations and dataset splits), with original (true) and shuffled labels (for chance level estimation). (C) Learning curves on the validation set for the original
labels group (chance level curves were omitted here but reside at ∼12.5%). Error bars are s.e.m.

may present traps that can mislead even the experimented user.
For example, the accuracy reached by a trained neural network
model does not depend only on the properties of the data, but
also on the particular architecture used, training algorithm, the
initial weights, or the random splitting into train and test sets
(Ciuparu et al., 2020). Therefore, in general, no conclusion can be
drawn on a single trained model but multiple models need to be
evaluated. In general, the architecture (often chosen empirically)
and training algorithm are fixed for a particular problem, but
the impact of the random initial conditions can be averaged
out by performing multiple, hundreds or thousands of model
instantiations, as we have shown here.

Such multi-model approaches are paramount for datasets
encountered in neuroscience, which typically have more features
than samples (Ciuparu et al., 2020) and exhibit sample numbers
usually in the range of tens to hundreds, at best. Training models
on such data is almost always cumbersome. For robust training
of machine learning models, especially when using deep learning,
hundreds of thousands to millions of samples (Deng et al., 2009)
are ideal. In neuroscience, the number of available samples is
many orders of magnitude below that. While recording more
data is rarely possible, one can use techniques involving multiple
random splitting and random network initializations, as well as

specialized activation functions that fare well under such difficult
conditions (Ciuparu et al., 2020).

Here we have used exclusively MLPs for machine learning,
but other options may also be explored. Since TFRs are two-
dimensional data representations, it may be interesting to study
how convolutional neural networks (CNNs) (LeCun et al., 2015)
would fare on such data. There are, however, at least two
important aspects to consider. First, CNNs typically require very
large datasets to converge, such that convolution kernels can
represent the meaningful spatial statistical properties of the data
(Krizhevsky et al., 2012). For neural data, it is rarely possible
to obtain datasets with even thousands of trials, let alone large
datasets with hundreds of thousands / millions of trials. Data
augmentation techniques, combined with pooling of datasets
across large historical databases may represent a solution. Second,
natural images have specific statistical properties (Torralba and
Oliva, 2003) that enable CNNs to develop convolution kernels
which detect oriented contours, blobs, etc. It is unclear is TFRs
possess such universal statistical properties—more likely, TFRs
of different types of data may display very different statistics,
leading to convolution kernels with very different distributions.
In addition, the TFR estimation method is also likely to leave
its fingerprint on the statistical properties of the TFR, thereby
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FIGURE 5 | Electroencephalography data with the Dots 30 stimulation protocol. (A) Table of TFRs where each row corresponds to the participant’s response
(“nothing” or “seen”) and each column corresponds to one of the time-frequency analysis methods. First column on the left shows an example of the visual stimulus
for a seen shape (a giraffe, top) and nothing (bottom). (B) Average accuracy as measured on the validation set (100 network initializations and dataset splits), with
original and shuffled labels for chance level estimation. (C) Average learning curves on the validation set. Error bars are s.e.m.

FIGURE 6 | Importance of time-frequency components for distinguishing experimental conditions in the EEG data. (A) Pairwise feature correlation for each method.
(B) Top row: increase in MSE (1MSE) when features (time-frequency components) are randomly permuted between trials. Bottom row: magnitude of decrease of
prediction accuracy (-1PAcc) as a result of feature permutation. Larger positive values represent more important features for correct classification.
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TABLE 1 | Architecture of MLP networks, properties of datasets, and parameters of the training algorithm.

Parameter name / Property Value

MLP achitecture for LFP data

Activation function Soft++, c = 30, k = 1 (Ciuparu et al., 2020)

Input layer size RF: 600, SRCS-1 and 2: 800

Number of hidden layers 2

Hidden layer sizes 20% and 10% of input layer size

Output layer size 8

Softmax output layer Yes

Weight initialization LeCun normal (LeCun et al., 2012)

Initial weight range [−0.1, +0.1]

MLP architecture for EEG data

Activation function Soft++, c = 30, k = 1

Input layer size 350

Number of hidden layers 2

Hidden layer sizes 20% and 10% of input layer size

Output layer size 2

Softmax output layer Yes

Weight initialization LeCun normal

Initial weight range [−0.01, +0.01]

LFP datasets

Sample dimensionality (size of feature vectors) RF: 600 (30 time × 20 freq.), SRCS-1 and 2: 800 (40 time × 20 freq.)

Number of samples 80

Number of classes 8 (directions covering 360◦ in steps of 45◦)

Training set size 48

Validation/Test set size 32

Sample (feature vector) normalization Min-Max range globally scaled to [−3.3823, +1.323] across entire dataset

EEG dataset

Sample dimensionality 350 (14 time × 25 freq.)

Number of samples 150

Number of classes 2 (“seen” / “nothing”)

Training set size 90

Validation/Test set size 60

Sample normalization Z-scoring each sample

Training parameters

Training algorithm Batch, IRPROP+ (Igel and Hüsken, 2000)

10 0.001 / Fan-in

1min 10−15

1max 0.01 for LFP data, 0.001 for EEG data

η− 0.95

η+ 1.05

Dropout probability 10% (Hinton et al., 2012)

biasing the learning of the CNN. Nevertheless, exploring the use
of CNNs for the evaluation of information content in TFRs is an
interesting avenue, worth pursuing in future studies.

The fact that machine learning is able to discover information
in neural data is not sufficient for most scientific endeavors.
It is equally important to discover how such information is
reflected in the properties of the neural data, giving insights into
mechanistic brain processes that support perception, cognition,
or behavior. As we have shown here, explainable AI techniques
(Došilović et al., 2018; Barredo Arrieta et al., 2020; Linardatos
et al., 2020) are able to provide insights into why a machine
learning model can learn and to indicate where and how relevant

information is expressed in the neural data. This is valuable
because such automatic techniques may reveal phenomena that
the experimenter could not imagine a priori.

For the case of neural oscillations, investigated here, our
results indicate that different TFRs can reveal different relevant
aspects of the data. The informative features of the TFRs we have
tested here show remarkable similarity but also slight differences.
The SLT emerges as one of the most informative representations,
with good concentration of power and less sensitivity to noise.
On the other hand, WVD-based techniques or the STFT can
also provide informative representations but tend to be less
appropriate for signals with a more complex spectral landscape,
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such as the EEG. In all cases, the explainable AI techniques reveal
interesting oscillatory components that largely overlap between
representations. However, the same tools also indicate that some
TFRs can “catch” informative oscillation packets that the others
cannot—and this depends not only on the representation but also
on the properties of the data.

To conclude, we have shown that machine learning can be
a valuable tool for evaluating the quality of TFRs on various
types of neural data. In addition, explainable AI techniques
can identify what features of the data are relevant and hint at
important neural processes that are difficult to discover without
automatic tools. The large-scale adoption of such methods is
likely to provide a significant boost to the analysis of neural data
in the years to come.
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Ciuparu, A., and Mureşan, R. C. (2016). Sources of bias in single-trial
normalization procedures. Eur. J. Neurosci. 43, 861–869. doi: 10.1111/ejn.13179
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The oscillation score: an efficient method for estimating oscillation strength
in neuronal activity. J. Neurophysiol. 99, 1333–1353. doi: 10.1152/jn.00772.
2007
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