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Neuromorphic hardware is based on emulating the natural biological structure of the

brain. Since its computational model is similar to standard neural models, it could serve as

a computational accelerator for research projects in the field of neuroscience and artificial

intelligence, including biomedical applications. However, in order to exploit this new

generation of computer chips, we ought to perform rigorous simulation and consequent

validation of neuromorphic models against their conventional implementations. In this

work, we lay out the numeric groundwork to enable a comparison between neuromorphic

and conventional platforms. “Loihi”—Intel’s fifth generation neuromorphic chip, which is

based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons

in the brain, serves as our neuromorphic platform. The work here focuses on Leaky

Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex

and matched to a rich data set of anatomical, physiological and behavioral constraints.

Simulations on classical hardware serve as the validation platform for the neuromorphic

implementation. We find that Loihi replicates classical simulations very efficiently with high

precision. As a by-product, we also investigate Loihi’s potential in terms of scalability and

performance and find that it scales notably well in terms of run-time performance as the

simulated networks become larger.

Keywords: neuromorphic computing, LIF models, neural simulations, validation, performance analysis

1. INTRODUCTION

The human brain is a rich complex organ made up of numerous neurons and synapses. Replicating
the brain structure and functionality in classical hardware is an ongoing challenge given the
complexity of the brain and limitations of hardware. The advent of supercomputers now allows for
complex neural models, but at a huge cost of both software complexity and energy consumption.

A recent intense focus on brain studies, with the BRAIN initiative at the US (Insel et al., 2013),
the Human Brain Project (HBP) in Europe (Markram et al., 2011), and philanthropic endeavors like
Janelia Research Campus (Winnubst et al., 2019), and the Allen Institute for Brain Science (AIBS)
(Lein et al., 2007), has produced a wealth of new data and knowledge, from records of neuronal and
network dynamics, to fine-grained data on network micro- and nano-structure, bringing in the era
of big neural data. At the same time, advances in electronics and the search for post-von Neumann
computational paradigms has led to the creation of neuromorphic systems like Intel’s Loihi (Davies
et al., 2018), IBM’s TrueNorth (Akopyan et al., 2015; DeBole et al., 2019; Löhr et al., 2020) and
HBP’s SpiNNaker (Khan et al., 2008), and BrainScaleS (Grübl et al., 2020).
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Neuromorphic chips, as the name suggests—“like the brain”—
can mimic the brain’s function in a truer sense as their design
is analogous to the brain (Thakur et al., 2018; Roy et al., 2019).
Inspired by its architecture, we work on developing a principled
approach toward obtaining simulations of biologically relevant
neural network models on a novel neuromorphic commercial
hardware platform.

Computers today are limited in this respect because of the way
they have been built historically and the way they process data
leading toward more energy and resource consumption in order
to maintain versatility (Nawrocki et al., 2016; Ou et al., 2020).
Neuromorphic chips on the other hand claim to be faster and
more efficient for a set of specialized tasks (Bhuiyan et al., 2010;
Sharp and Furber, 2013). In this study, we lay out a numeric
groundwork to validate this assertion based on neural models
derived from the primary visual cortex (VISp) of themouse brain,
as seen in recent work done on SpiNNaker (Knight and Furber,
2016; Rhodes et al., 2019). Intel’s neuromorphic chip “Loihi”
serves as our neuromorphic platform. Results obtained in Loihi
are validated against classical simulations (Rossant et al., 2010;
Nandi et al., 2020; Wang et al., 2020) given by AIBS’s software
package the Brain Modeling Toolkit (BMTK) (Dai et al., 2020).

In this manuscript we focus on the Loihi architecture, as
it is at present one of the most powerful platforms with
specialized digital hardware and significant software support.
While TrueNorth has a similar combination of hardware and
programming support, its inter-neuron connectivity capability is
relatively limited; Loihi approaches the human-scale connectivity
density of interest to our research. SpiNNaker has similar
capabilities, but is constructed of standard CPU hardware. Loihi’s
capabilities on the other hand, are built-in on a chip, thus
forcing us to explore new programming paradigms. And recent
and current state of the art hybrid analog-digital platforms, like
Neurogrid (Benjamin et al., 2014), Braindrop (Neckar et al.,
2019), DYNAP-SE2 (Moradi et al., 2017), and BrainScaleS(2)
(Pehle et al., 2022) are beyond the scope of this manuscript.
However, we believe that the simulation and programming
paradigms developed on the Loihi platform can generalize
to these analog platforms as well, and thus decrease the
development time on these unfamiliar architectures.

We present one of our main motivations for this project
in Figure 1, which highlights Loihi’s advantage in performance
when compared to standard simulations. Overall, our initial
implementation indicates that Loihi is quite efficient in terms
of compute-time in context of large brain network simulations
and thus shapes our central motivation for this work (see
Figure 1 and Table 3). This manuscript mainly focuses on
the trade-offs necessitated by these implementations, that is,
how precise are the Loihi simulations when validated against
BMTK simulations, given their very different hardware and
programming architectures?

As a starting point, we focus on a class of neural network
building blocks: point neuronal models as used in large AIBS
simulations of biological neural networks. We do so because
the Generalized Leaky Integrate and Fire Models (GLIFs, Teeter
et al., 2018) have been found to be appropriate for reproducing
cellular data under standardized physiological conditions. The

FIGURE 1 | As the network size increases, Loihi outperforms consistently in

terms of time. The figure shows runtime comparison of 500 ms of dynamics

for up to 20,000 neurons for Loihi and BMTK, with the values scaled by the

respective smallest runtime. Loihi has a maximum runtime of up to 12 ms,

whereas BMTK runtime goes up to 273 s (See Table 3 for the explicit runtime

values and Section 4.4 for further details about the network.).

data used for this study is made available by the AIBS
(AIBS, 2020).

The paper is organized as follows. In Section 2, we describe
in detail the features of Loihi and the differences between
the neuromorphic and classical hardware that form the basis
for this study. Section 3 explains the implementation of the
continuous LIF equation on classical computational architecture
using BMTK vs. the discrete Loihi setting. Also, we list the
validation methods and the cost function that is used to draw
comparisons between the implementations. In Section 4, we list
out and explain the various results leading to a qualitative and
quantitative assessment between the two platforms based in part
on methods from Gutzen et al. (2018). Finally, Section 5 lays the
ground for future work with expected improvements based on
the second generation of the Loihi chip, Loihi 2 (Intel, 2022).

2. COMPARISON BETWEEN CLASSICAL
AND NEUROMORPHIC PLATFORMS

At present, various simulators are available for implementing
spiking neural networks (Brette et al., 2008). In this section, we
lay out the details of the mathematical model and the platforms
we use for our work. For the classical simulation, we use the
Brain Modeling Toolkit (BMTK) (Dai et al., 2020) developed
by the AIBS. Being open source, these resources enable us to
experiment with a varied range of data and thus support our
extensive validation of neuronal models in Loihi. Intel’s fifth-
generation chip Loihi provides us with the tools to implement
and test out the various neuromorphic features. The output
provided by Loihi simulations is then compared to the output of
classical simulations implemented in BMTK.

2.1. The Brain Modeling Toolkit (BMTK)
The BMTK is a python-based software package for creating and
simulating large-scale neural networks. It supports models of
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different resolutions, namely, Biophysical Models, Point Models,
Filter Models, and Population Models along with the use of the
rich data sets of the Allen Cells Database (Lein et al., 2007;
AIBS, 2020). It leverages themodeling file format SONATAwhich
includes details on cell, connectivity and activity properties of a
network along with being compatible with the neurophysiology
data format Neurodata Without Borders (NWB), thus allowing
easy access to a vast repertoire of experimental data.

In this study, we work with the Point Neuron Models with
simulations supported by the BMTK module PointNet via NEST
2.16 (Kunkel et al., 2017; Linssen et al., 2018). For analysis and
visualization, we use the HDF5 output format, underlying both
SONATA and NWB’s spike and time series storage.

The classical BMTK simulation are instantiated and run on
a single node of Kamiak, the institutional high performance
computing cluster. A typical Kamiak node contains 2 Intel Xeon
E5-2660 v3 CPUs at 2.60 GHz, with 20 cores and 128–256 GB
RAM (CIRC and WSU, 2021).

2.2. Loihi
Neuromorphic hardware inspired by the structure and
functionality of the brain, envisioned to provide advantages
such as low power consumption, high fault tolerance and
massive parallelism for the next generation of computers, is
called neuromorphic hardware. Toward the end of 2017, Intel
Corporation unveiled its experimental neuromorphic chip called
Loihi. We provide a summary of the platform here.

As of its 2020 rendition, the version on which these results
were evaluated, Loihi is a 60-mm2 chip that implements 131,072
leaky-integrate-and-fire neurons. According to Davies et al.
(2018), it uses an asynchronous spiking neural network (SNN),
comprising of 128 neuromorphic cores, each with 1,024 neural
computational units; 3 × 86 cores; along with several off-chip
communication interfaces that provide connectivity to other
chips. As Loihi advances the modeling of SNNs in silicon,
it comprises of a large number of features necessary for
their implementation viz., hierarchical connectivity, dendritic
compartments, synaptic delays and synaptic learning rules. Each
neuron is represented as a compartment in the Loihi architecture,
i.e., it is designed to resemble an actual biological neuron
model comprising of all the functional units (Figure 2). The
SYNAPSE unit processes all the incoming spikes from the
previous compartment/neuron and captures the synaptic weight
from the memory. The DENDRITE unit updates the different
state variables. The AXON unit generates the spike message to be
carried ahead by the fan out cores. The LEARNING unit updates
the synaptic weights based on a learning rule and is not used in
this project.

The aim of this study is to establish the groundwork required
to execute an ambitious plan of simulating about ∼250,000
neurons with ∼500M synapses in the future, which encapsulates
much of the experimentally observed dynamics in the mouse
visual cortex available to the AIBS, thus providing a close
functional replica of the mouse visual cortex. Loihi’s specialized
hardware features hold promise for a real-time, low-powered
version of such an implementation.

2.3. Leaky Integrate and Fire Model (LIF)
A typical neuron consists of a soma, dendrites, and a single
axon. Neurons send signals along an axon to a dendrite through
junctions called synapses. The classical Leaky Integrate and Fire
(LIF) equation (Gerstner and Kistler, 2002) is a point neuron
model which reduces much of the neural geometry and dynamics
in order to achieve computational efficiency. It is one of the
simplest and rather efficient representations of the dynamics of
the neuron, while still providing reasonable approximation of
biological neural dynamics for some classes of neurons (Teeter
et al., 2018). It is stated mathematically as:

V ′(t) =
1

C

[

Ie(t)−
1

R
(V(t)− EL)

]

(1)

V(t)← Vr , if V(t) > 2 (2)

where,

V(t) = membrane potential (state)

C = membrane capacitance (parameter)

R = membrane resistance (parameter)

EL = resting potential (parameter)

Ie = trans-membrane current (control and state)

Vr = reset membrane potential

2 = firing threshold

Here, ′ = d/dt, t is time in ms, the membrane potential V(t) of
the neuron is in mV. These specific physical units are followed
based on what the AIBS datasets use to define the respective
physiology measurements. A LIF neuron fires when V(t) > 2,
i.e., the membrane potential exceeds the firing threshold 2 and
subsequently the membrane potential is set to a reset value Vr .

The classical LIF model (point generalized LIF) has been
shown to match well the dynamics of somemouse neurons under
a variety of conditions (Teeter et al., 2018), as listed in the Allen
Cell Types Database (Lein et al., 2007). In addition, this model
matches the LIF abstraction in Loihi to some extent (as Loihi uses
discrete time discrete state dynamics to emulate the continuous
time continuous state dynamics of the model). Thus, we work
with this model throughout this study to establish the basis for
comparison for the two platforms, determine how closely such a
discrete dynamical system can get to simulations of a continuous
dynamical system, validate the neuromorphic implementation
against the ground truth of a standard implementation, and
provide evidence that our neuromorphic platform performs
more efficiently.

2.4. Loihi LIF Model
In an SNN, spiking neurons form the primary processing
elements. The individual neurons are connected through
junctions called synapses and interact with each other through
single-bit events called spikes. Each spike train can be represented
as a list of event times, e.g., as a sum of Dirac delta functions
σ (t) =

∑

i δ(t − ti) where ti is the time of the i-th spike.
Since Loihi encapsulates the working of an SNN, one of the

computational models it implements is a variation of the LIF
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FIGURE 2 | Loihi internal neuron model—Time multiplexed pipeline architecture of a neural unit (Figure 4 in Davies et al., 2018). Reproduced from WikiCommons

(2018).

model based on two internal state variables : the synaptic current
and the membrane potential (Davies et al., 2018).

u(t) =
∑

j

wj(αj ∗ σj)(t)+ b (3)

v′(t) = −
1

τv
v(t)+ u(t) (4)

v(t)← 0, if v(t) > θ (5)

where,

v(t) = membrane potential

u(t) = synaptic current

w = synaptic weight

α = synaptic response function

b = constant bias current

τv = time constant

θ = firing threshold

A neuron sends out a spike when its membrane potential exceeds
its firing threshold θ , i.e., v(t) > θ . After a spike occurs, v(t) is
reset to 0. As in the classical LIF model, here ′ = d/dt. However,
time and membrane potential values here are in arbitrary units.

Loihi follows a fixed-size discrete time-step model, similar to
an explicit Euler integration scheme, where the time steps relate
to the algorithmic time of the computation. This algorithmic
time may differ from the hardware execution time. Moreover, to
increase the efficiency of the chip, specific bit-size constraints are
imposed on the state variables. We discuss the ones relevant for
the LIF model implementation in the following section.

3. METHODS

3.1. Model Setup and Integration
The classical LIF model as represented in Equations (1) and (2)
can be rewritten as :

V ′(t) = −
1

τv
V(t)+

1

C

[

Ie(t)+
1

R
EL

]

(6)

where τv = RC is membrane time constant of the neuron.
For a non-homogeneous linear differential equation,

df

dt
= af + g (7)

the solution is given by the “variation of constants” method as :

f (t) = eat
∫ t

0
g(s)e−asds

Comparing Equation (6) to Equation (7), we have,

a =
1

τv

f = V(t)

g =
1

C
(Ie)+

1

τv
(EL)

Here, the postsynaptic current Ie is in the form of an exponent
function. However, calculating the above integral at every step
i.e., at all grid points ti ≤ t proves to be quite expensive.

BMTK uses NEST as backend to implement the above
membrane potential dynamics. To avoid the expensive
computations, NEST chooses to use the linear exact integration
method (Rotter and Diesmann, 1999), given below as follows :
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Equation (6) is rewritten as a multidimensional homogeneous
differential equation:

d

dt
y = Ay (8)

where,

A =

























an an−1 · · · · · · a1 0
1 0 · · · 0 0 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 0

0 0
. . . 1 0 0

0 0 · · · 0 1
C

1
−τ

























The solution is given by :

y(t) = eAty0 (9)

yt+h = y(t + h) = eA(t+h)y(0) = eAh · yt (10)

for a fixed time-step h. It saves exorbitant computations
since each evaluated step involves multiplication only, and
intermediate steps between events do not have to be computed.

3.1.1. Mapping Between BMTK and Loihi Models
In this section, we illustrate the primary step of implementing
the BMTK-NEST LIF integration with the Loihi dynamic
computational model. Loihi follows a discrete-state, discrete-
time computational model, similar to an explicit Euler
integration scheme. This allows it more flexibility for
integrating non-linear neural model, but, and unlike NEST’s
exact integration method, Loihi’s engine accumulates errors at
each time step. The time steps in the Loihi model relate to the
algorithmic time of the computation which may differ from
hardware execution time. Following the linear exact numerics in
the NEST implementation, we implement our model in the Loihi
discrete setting using the forward Euler method for guidance, as
discussed below.
Step 1

First, we rewrite the standard LIF model in Equation (1) to
resemble the Loihi form as given in Equation (4). Since Loihi
parameters are unit-less, we introduce a re-scaling parameter
Vs, which converts standard physical units used in BMTK to
Loihi units.

As we compare Equations (2) and (5), it can be seen that for
BMTK the membrane potential reset value is set to Vr whereas it
is set to zero for Loihi. To account for that, we shift the BMTK
representation by Vr . Thus, the forward transformation from
BMTK to Loihi looks as follows :

v = (V − Vr)/Vs (11)

which produces an inverse transformation, to arrive back at the
BMTK values, given by :

V = v · Vs + Vr (12)

Step 2

Substituting the expression in (12) in (1) and isolating v, we get :

V ′(t) =
1

C

[

Ie(t)−
1

R
(V(t)− EL)

]

|V = vVs + Vr H⇒

(13)

v′(t)Vs = −
1

RC
(vVs + Vr − EL)+

1

C
Ie(t) |/Vs H⇒

(14)

v′(t) = −
1

τv
v(t)+

1

τv

EL − Vr

Vs
+

1

C

Ie

Vs
(15)

= −
1

τv
v(t)+ u(t) (16)

with

v(t) =
V(t)− Vr

Vs
, (17)

u(t) =
1

CVs
Ie(t)+

1

τv

EL − Vr

Vs
, (18)

τv = RC, (19)

θ =
2− Vr

Vs
(20)

Here, we reintroduce the LIF threshold 2 and the corresponding
Loihi threshold θ in Equation (20), which is derived from 2 by
the same shift and re-scaling that converted V to v.

To reiterate, Loihi implements the continuous LIF as a discrete
finite state machine model (Jin et al., 2008; Mikaitis et al.,
2018) implemented in silicon. The actual computation is similar
to a forward Euler scheme with some peculiarities reflecting
engineering design trade-offs. Specifically, the v(t) state evolves
on-chip according to the update rule,

v(t + 1) = v(t)

[

1−
δv

212

]

+ b+ u(t) (21)

where δv is the membrane potential decay constant and b is the
constant bias current listed in Equation (3).
Step 3

Using the forward Euler method :

yn+1 = yn + f (tn, yn).dt

where yn+1 = y(tn+1) and tn+1 = tn + dt for a fixed time-step
dt, we transform the classical LIF model into a form followed
in Equation (21). Thus, transforming the LIF model into the
discrete form and grouping terms to match the Loihi integration
(9) yields the following :

v(t + dt)− v(t)

dt
= −

1

τv
v(t)+ u(t) (22)

H⇒ v(t + dt) = v(t)(1−
dt

τv
)+ u(t)dt (23)

where dt is the fixed time-step with which we can adjust the
temporal precision of the Euler integration scheme.
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In order to equate the Loihi computation (21) with the Euler
scheme (23), we use dt with unitsms/Loihi timestep i.e., 1 BMTK
millisecond per Loihi timestep. Thus, comparing Equations (21)
and (23) defines the Loihi voltage decay parameter δv in terms of
the timestep dt, i.e.,

(212 − δv) 2
−12 = (1−

dt

τv
) (24)

H⇒ δv =
dt

τv
212 =

dt

RC
212 (25)

3.1.2. Bit Constraints
Given its discrete setting, there are specific bit-size constraints
that Loihi imposes on the state variables and parameters. State
variables—membrane potential and current—are allotted ±23
bits each. The membrane potential decay constant δv is allotted
12 bits and the membrane potential threshold is assigned 17 bits
interpreted as the 17 high bits of a 23 bit word to match the state
variables size. Details on other parameters can be found under
Table 1 in Davies et al. (2018) and Table 6 in Michaelis et al.
(2021).

3.2. Validation Methods
3.2.1. Data
The data used here is provided by the Allen Mouse Brain
Atlas (Lein et al., 2007; AIBS, 2020), which is a survey of
single cells from the mouse brain, obtained via intracellular
electrophysiological recordings done through a highly
standardized process. We focus on neurons of different
types with available GLIF parameters. The data used can be
accessed in the Allen Cell Types Database. Our LIF model is
implemented and simulated on BMTK based on this data, and
these simulations form the ground truth for validating the Loihi
implementations.

The datasets used for the simulations in this work can be
found in our Github repository (Dey, 2022).

3.2.2. Cost Functions
To quantify the error between the BMTK and Loihi membrane
potential values, we use two related cost functions: the RootMean
Square Error (RMSE) and the Pearson correlation coefficient (r)
with values as follows :

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL − yiB
)2

(26)

where,

i = index of data point

yL = transformed Loihi values

yB = original BMTK values

n = number of data points

and

r =

∑n
i=1

(

yiL − ȳL
) (

yiB − ȳB
)

√

∑n
i=1

(

yiL − ȳL
)2 ∑n

i=1

(

yiB − ȳB
)2

(27)

where,

ȳL = mean of the transformed Loihi values

ȳB = mean of the original BMTK values

3.2.3. Other Methods
Since BMTK and Loihi run on two different computing
environments, visual comparisons in graphs are helpful for
diagnostics of discrepancies that may be obscured in the single
numbers reported by the cost function. They also contribute to
assess the level of similarity between the two implementations.

We compare the simulation dynamics for both
implementations based on the following:

- Distribution Function: We compare the distributions of
attained state values in the two cases. We use density plot as
a representation of those distributions, thus allowing us to
compare the two implementations in terms of concentration
and spread of the values and provide a basis for comparing the
collective dynamics of the implementations.
- Raster Plot:We evaluate themembrane potential response at
each time-step. The X-axis represents the membrane potential
and the Y-axis represents the time-step. Raster plot helps
to visually communicate similarities between the BMTK and
Loihi states, and highlight potential state-localized difference
in the dynamics at each step which may otherwise be lost in
the average error measures.
- Scatter Plot: For examining association between the two
implementations, we use color-coded scatter plots identifying
the correlation relationships. We add a trend line to illustrate
the strength of the relationship and pin down the outliers to
improve the simulation results. Since we anticipate an almost
perfect linear relationship, we quantify the match with its
Pearson correlation coefficient.

4. RESULTS

In order to lay the groundwork for simulating a network of over
250,000 neurons with a connectivity of over 500M synapses in
the neuromorphic hardware, we begin by ensuring a high quality
replication of individual neural and smaller network models. The
replication performance here is evaluated based on membrane
potential and current responses, the two state variables. We
conjecture that securing a good replica for smaller models will
ensure that parameters can be calibrated correctly and thus can
be carried forward for the bigger networks needed in biological
context (Herz et al., 2006; Gutzen et al., 2018; Trensch et al.,
2018).

We begin our work on a single-neuron network1 sub-
threshold dynamics driven by both bias current and external
spikes to ensure Loihi is able to handle both stimuli efficiently.
Our test suite consists of LIF models based on 20 different
parameter sets. We perform rigorous analysis of our results based

1A network is the smallest executable structure in Loihi, hence the peculiar term

single-neuron network.
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FIGURE 3 | Membrane potential response for single-neuron network based on two different neuron parameters. (A) Simulation is driven by bias current. (B)

Simulation is driven by external spikes.

on various statistical measures and visualizations to demonstrate
that we have replication of high quality. It is important to restate
here that we test our results based on neurons with different
morphologies and biophysics, which attribute to the different
parameter sets.

4.1. Simulations of a Single Neuron
We begin by simulating a single-neuron network in BMTK.
The simulation is run for 500ms. The classical parameters are
translated to Loihi values and the corresponding LIF model is
implemented as an one-neuron SNN executed for 500/dt time
steps in Loihi. The simulations are driven either by bias current
or external spikes.

In the Loihi network, neurons are denoted by compartments.
The compartment dynamics are hardware-constrained and
determined by the parameters bias current mantissa, membrane
potential threshold, membrane potential decay, and current decay.
It is worth iterating here that the membrane potential values in
Loihi are unit-less as opposed to the BMTK values which are
assigned units of millivolts (mV) and milliseconds (ms) based on
the AIBS datasets.

We test the precision of our replication, both qualitatively and
quantitatively, for all 20 parameters sets and find that the results
are consistent with the ones described below. In Figure 3, we
illustrate the implementations achieved through bias current and

TABLE 1 | Parameter set for LIF models.

Parameters Dataset (1) Dataset (2) Units

Membrane time constant 25.0 22.0 ms

Membrane potential threshold −43.0 −43.0 mV

Resting potential −70.0 −70.0 mV

Voltage reset −70.0 −70.0 mV

Current 200.0 0.0 pA

Membrane capacitance 170.21 170.0 pF

external spikes on two different parameter sets (Table 1). The
remaining 18 parameter sets can be found in our Github page
(Dey, 2022). The parameters in the BMTK platform are mapped
to Loihi using the transformations described in Section 3.1.1 with
respect to the bit constraints described in Section 3.1.2.

It is to be noted here that stimulus bias current acts as one of
the parameters of the LIF model and hence is mapped into Loihi
according to Equation (18). When stimulating with external
spikes as stimulus, we make use of the fixed-time step dt that
we introduce in Equation (23). Here, the external spike-times are
in “ms” and we assign unit “ms/Loihi time-step” to dt. Thus, the
external spike-times are scaled as spike-time/dt and then injected
into a Loihi neural unit for each time-point, with dt guiding the
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temporal precision scale. Table 2 shows the external spike-times
used in the simulations, which are generated by five spike sources
using a random Poisson spike generator with a max firing rate
of 5Hz and then frozen to stimulate the different models in both
BMTK and Loihi.

For a qualitative comparison, it can be seen from Figure 3

that Loihi implementations simulate BMTK results very closely.
We have close correspondence in terms of spike frequency, spike
amplitude, and response values. Since Loihi membrane potential
values are unit-less, we map them back to BMTK values (mV, ms)
before performing the comparison. The inverse mapping from
Loihi to BMTK is performed based on Equation (12), i.e.,

TABLE 2 | External spike-time values.

Source Spike-times (ms)

0 446

1 355

2 53, 258, 300, 424, 457

3 88, 466

4 100, 212

TABLE 3 | Correlation and RMSE between BMTK and Loihi membrane potential

values.

Stimulus Correlation RMSE

Bias current 0.999992 1.1374× 10−4 mV/ms

External spikes 0.999942 4.208× 10−5 mV/ms

V = v · Vs + Vr

We perform a quantitative assessment of the replication using
RMSE and correlation coefficient between the values obtained
from the two platforms. As seen from Table 3, the values are
highly correlated with a relatively small RMSE.

Figure 4 illustrates the comparison of Loihi implementations
against the BMTK implementations for the two different
stimuli using various graphing data—(a) Distribution function
approximating the membrane potential dynamics, (b) Raster
plot of the spiking network activity, (c) Scatter Plot highlighting
the positive coefficient between the two implementations. These
visualizations help us track discrepancies which might remain
unobserved based on single quantitative averages given by the
cost function or the correlation coefficient.

4.2. Simulation Using Varied Precision
As already stated, Loihi follows a fixed-size discrete time-step
model along with bit-size constraints for the different parameters.
Thus, we examine how the numerics of Loihi affect its ability
to faithfully implement neuron models. More precisely, we
investigate how changing the precision of the time scale and
the neuron state values affects the accuracy of the simulations.
We explore this property for the two state variables—membrane
potential and current.

Figure 5 illustrates the membrane potential and current
responses of a single neuron model in BMTK which form the
basis of our comparison for the results below.

FIGURE 4 | Validation plots for simulations based on two different stimuli—(A) Validation plots for bias current stimulus (B) Validation plots for external spike stimulus,

based on the Distribution Function, Raster Plot, and Scatter Plot, respectively.
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4.2.1. Simulation Using Varied Temporal Precision
For Loihi’s fixed simulation time-step, we assign different
time units to each step and test the corresponding simulation
precision. This is achieved through the “dt” parameters available
in our equations while transforming the classical LIF model to
Loihi neural model. It enables us to experiment with several time
units (Hopkins and Furber, 2015). Following Equation (24), the

change of a time-step while working with the Loihi neural model
necessitates a corresponding variation of the time constant “τv”
to yield the desired results.

We check the results for dt = 0.1, 1.0 and 10.0(ms/timestep).
As mentioned earlier, we run the simulation for 500 ms, thus the
corresponding number of time steps in Loihi for dt = 0.1 and
dt = 10.0 becomes 5000 and 50 respectively, and for dt = 1.0 it

FIGURE 5 | Single neuron model in BMTK—(A) Membrane potential response. (B) Current response.

FIGURE 6 | Comparison of membrane potential and current plots with different temporal precisions in Loihi. Membrane potential plots are on the left with (A) dt = 0.1

(B) dt = 1.0 (C) dt = 10.0. Current plots are on the right with (D) dt = 0.1 (E) dt = 1.0 (F) dt = 10.0. For dt = 10.0, number of time-steps are 50 and for dt = 0.1,

number of time-steps are 5,000.
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remains at 500, (i.e., 500/dt for each dt). Figure 6 illustrates the
related Loihi simulation for membrane potential and current.
Error comparison for temporal precision Unlike continuous
analysis in which the error decreases monotonically with dt,
Loihi’s discrete-time, discrete-state simulation dynamics suggests
that there may be an optimal dt which minimizes the LIF
dynamics error.

We compare the simulations in Loihi with different temporal
precisions against the simulations in BMTK. We calculate the
RMSE to be able to deduce the result. As can be seen from
Figure 7, the error is lowest when 1 ms of simulation time in

BMTK equates to 1 time-step in Loihi for membrane potential
and current. Thus, for the LIF model simulations, representing
1ms with a Loihi hardware time step provides the best match
between the two simulations. As to using larger dt for efficiency,
panels (C) and (F) clearly show that large time steps (larger than
the synaptic time constant in this case) significantly degrade the
quality of simulations.

It should be noted that the selected simulation timestep dt
affects the range of physical time constants τv that can be

represented in Loihi. Since δv =
dt
τv

212 (Equation 24), then

τv =
dt
δv

212. In Loihi, δv ∈ [1, 212] (stored as a 12-bit word,

FIGURE 7 | Error comparison for different temporal precisions—(A) Membrane potential error. (B) Current error. In both panels, the RMSE for the corresponding state

is plotted against the log of the temporal precision dt.

FIGURE 8 | Comparison of membrane potential and current plots with different voltage precisions. Membrane potential plots are on the left with (A) Vs = 1.0× 10−3

(B) Vs = 1.0× 10−4 (C) Vs = 1.0× 10−5. Current plots are on the right with (D) Vs = 1.0× 10−3 (E) Vs = 1.0× 10−4 (F) Vs = 1.0× 10−5.
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with 0 representing δv = 212). Hence, τv ∈ [1, 212]dt, that
is, the highest physical time constant that can be represented
is τv = 212dt ≈ 4, 100dt. This is not a big constraint for
dt = 1ms, but e.g., a higher simulation precision of dt =
0.01ms can be performed only for neurons with time constants
τv <41ms, which already excludes some models found in the
Allen Institute’s Cell Types Database. This shortcoming of this
Loihi 1 platform is being addressed by Intel in subsequent
hardware like Loihi 2 (Intel, 2022), and the new Lava SDK.
Similarly affected are potential spike propagation delays (not

used here). Loihi supports ranges from 1 to 62 time steps, which
translate to dt to 62dtms of physical time. This is a minor
constraint for dt = 1ms, but quickly becomes a significant

constraint for short dt.

4.2.2. Simulation Using Varied Voltage Precision
We repeat the precision study by changing the voltage precision

values using the re-scaling parameter Vs. To check different

precision results, we try 1K/mV, 10K/mV and 100K/mV (state

level/mV) by using Vs = 1.0× 10−3, 1.0× 10−4 and 1.0× 10−5

FIGURE 9 | Error comparison for different membrane potential precisions—(A) Membrane potential error. (B) Current error. In both panels, the RMSE for the

corresponding state is plotted against the –log of the voltage scale Vs.

FIGURE 10 | Loihi replicates various neuron class responses of BMTK. (A) BMTK simulation of 20 neuron classes. (B) Loihi simulation of 20 neuron classes.
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respectively. Figure 8 illustrates the neuron state simulations
based on different voltage precisions.
Error Comparison for Voltage Precision As can be seen from
Figure 9, for membrane potential—error decreases significantly
as the precision increases from Vs = 1.0 × 10−3 to Vs =

1.0× 10−4. However, the error is extremely small for the current
simulation and remains the same for Vs = 1.0 × 10−4 and
Vs = 1.0× 10−5.

4.2.3. Effects of State Precision on Simulations
In conclusion, the effect of precision on both scales depends
on the model parameters and the information needing to
be preserved. However, there are important performance
differences. Increased voltage precision is essentially free, as
it does not tax the hardware resources any further, and the
sole risk is from computation overflow in cases of the Loihi
voltage state nearing the capacity of the voltage register.
Increased time precision on the other hand has two important
drawbacks: it increases simulation time (proportionately to
increased precision), and it decreases the range of voltage
decay timescales that can be represented (again, proportionately
to increased precision). Thus, the choice of simulation time
step and corresponding precision should be weighed against
these tradeoffs.

4.3. Simulation of Different Neuron Classes
After establishing and verifying the calibrated Loihi parameters
for a single neuron, we extend our simulation to an ensemble

TABLE 4 | Correlation and RMSE for different neuron classes.

Neuron class Correlation RMSE

Excitatory 0.999989 0.532× 10−4 mV/ms

Inhibitory 0.999982 0.612× 10−4 mV/ms

of neurons comprising of different neuron classes with
varying parameters.

Figure 10 illustrates an equivalent simulation for 20 different
neuron classes between BMTK and Loihi indicating that Loihi
is capable of emulating BMTK results in spite of varying
parameters. Here, we found an average correlation of 0.99985
with an RMSE of 0.57 ×10−4 mV/ms (Table 4). This also
validates the fact that the calibration of parameters for a single
neuron done earlier is valid.

The scatter plots in Figure 11 capture the range of the
parameters—Figure 11(A) Cm vs. τv and Figure 11(B) Ibias vs.
τv, in the (E)xcitatory and (I)nhibitory classes used for the
simulations. The size of the markers represents RMSE errors
for those models, with ranges as indicated on the legend. This
lays the foundation for building more complicated networks
encompassing different neuron classes.

We reiterate here that Loihi imposes certain bit constraints
on the parameters. For instance, membrane potential threshold
ranges from 0 to ± 223, membrane time constant allows 0
to 212 bits. The membrane capacitance is integrated with bias
current (Equation 18) with biasmantissa allowed a range between
[−212, 212] and bias exponent a range between [0, 7]. Thus,
a good range of parameters can be mapped well into Loihi
and a limit to the “exactness” can be attributed to the low-
fixed-precision nature of Loihi as most state and configuration
variables are in the range of 8–24 bits.

5. CONCLUSION AND FUTURE WORK

Inspired by the brain, neuromorphic computing holds great
potential in tackling tasks with extremely low power and high
efficiency. Many large-scale efforts including the TrueNorth,
SpiNNaker and BrainScaleS have been demonstrated as a tool
for neural simulations, each replete with its own strengths

FIGURE 11 | Scatter plots showing the range of parameters for the 20 neurons classes comprising of both excitatory and inhibitory neurons grouped by RMSE of the

simulations. (A) Scatter plot for membrane capacitance (Cm) vs. membrane time constant (τv ). (B) Scatter plot for bias current (Ibias) vs. membrane time constant (τv ).

The marker size is determined by the corresponding RMSE.
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and constraints. Fabricated with Intel’s 14 nm technology,
Loihi is a forward-looking and continuously evolving state-
of-the-art architecture for modeling spiking neural networks
in silicon. As opposed to its predecessors, Loihi encompasses a
wide range of novel features such as hierarchical connectivity,
dendritic compartments, synaptic delays and programming
synaptic learning rule. These features, together with solid SDK
support by Intel, and a growing research community, make
Loihi an effective platform to explore a wealth of neuromorphic
features in more detail than before.

In this work, we have demonstrated that Loihi is capable of
replicating the continuous dynamics of point neuronal models
with high degree of precision and does so with much greater
efficiency in terms of time and energy. The work comes with
its challenges as simulations built on the conventional chips
cannot be trivially mapped to the neuromorphic platform as its
architecture differs remarkably from the conventional hardware.
Classical simulations from the Brain Modeling Toolkit (BMTK)
developed by the Allen Institute of Brain Science (AIBS) serves as
the foundation of our neuromorphic validation.

For comparison between the conventional and the
neuromorphic platforms, we use both qualitative and
quantitative measures. It can be seen that Loihi replicates
BMTK very closely in terms of both membrane potential and
current, the two state variables on which the Loihi LIF model

FIGURE 12 | Performance comparison between BMTK and Loihi for network

sizes ranging from 1 to 20,000 for the simulation of 500 ms of dynamics. The

values for each curve are scaled by the respective smallest runtime. The Loihi

runtime units are in “milliseconds” and BMTK runtime is in “seconds”.

TABLE 5 | Simulation runtime in Loihi and BMTK.

Network size Loihi time (ms) BMTK time (s)

20 2.52 0.12

100 3.03 0.3

500 5.21 1.13

1,000 7.56 2.72

5,000 9.57 26.47

10,000 9.73 80.45

evolves. We use different validation methods and quantitative
measures to assess the equivalence and identify sets of parameters
which maximize precision while retaining high performance
levels. Furthermore, simulation results indicate Loihi is highly
efficient in terms of speed and scalability as compared to BMTK.

This work demonstrates that classical simulations based on
Generalized Leaky Integrate-and-Fire (GLIF) point neuronal
models can be successfully replicated on Loihi with a reasonable
degree of precision.

Our future work is motivated by runtime performance
comparisons for larger networks between the two platforms. As
Loihi and BMTK are based on very different hardware systems
that follow distinct dynamics and network-setup regimes, we
use the runtime of the simulations to compare the performance
of these implementations. As has been mentioned in the
introduction, performance of Loihi far exceeds that of BMTK.
Figure 12 compares the runtime of Loihi and BMTK, for running
a network of randomly connected neurons with the same
parameters. The network consists of excitatory and inhibitory
neurons in a 1:1 ratio driven by bias current, with connection
probability set at 0.1.

As can be seen from Figure 12 and Table 5, Loihi easily scales
up to larger network sizes with a minuscule rise in runtime

FIGURE 13 | Loihi runtime for a network of upto 250K neurons for the

simulation of 500 ms of dynamics.

TABLE 6 | Simulation runtime in Loihi for independent neurons vs. connected

network.

Network size Connected network (ms) Independent neurons (ms)

20 2.52 2.09

100 3.03 2.31

500 5.21 3.94

1,000 7.56 6.22

5,000 9.57 7.35

10,000 9.73 7.53

50,000 10.84 7.98

100,000 11.49 8.00

250,000 11.98 9.16
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whereas for BMTK the increase is quite rapid. While both seem
to exhibit a power-law scaling (string line on this graph), Loihi’s
scaling power is much smaller. It is also worth noting here that
for Loihi the unit for the runtime are in “milliseconds” whereas
for BMTK they are in “seconds”. Here we stop at 20,000 neurons
as it can be inferred from the graph that increasing the network
size would increase the time cost for BMTK substantially.

Furthermore, following the above outcome, we extend our
network size in Loihi only to 250K neurons in order to
investigate what potential Loihi holds to execute the final goal
of simulating about ∼250,000 neurons with ∼500M synapses
in the future, a simulation scale comprising much of the
experimentally observed dynamics in the mouse visual cortex
available to the AIBS.We record our observations for a randomly
connected network of neurons as well as an independent set
of unconnected neurons. From Figure 13 and Table 6, we can
infer that the runtime remains consistent with the above result,
with the independent set of neurons completing the simulation
marginally faster.

This shows that Loihi performs well for connected networks,
setting the stage for our main aim for neural simulations.
Additionally, it also works well for independent set of neurons
which contribute to solutions of problems that require on-chip
parameter and meta-parameter searches, e.g., for Evolutionary
Programming (Schuman et al., 2020).

We do not asses the state-based cost for these networks as
their large sizes require multi-chip simulations which we expect
to be better supported on Loihi 2 (Intel, 2022). Furthermore,
other research groups have firmly established that we cannot
expect exact replication of subthreshold network states between
simulators except for few very simple small networks (van Albada
et al., 2018; Crook et al., 2020). Thus, on the network level we
need to develop cost functions that capture appropriate network
activity details on different scales (e.g., average spike rates and
correlations on the coarsest levels, as in van Albada et al.,
2018).

In closing, we want to highlight that with the advent of
Loihi 2 (Intel, 2022), we aim to address the limitations of the
larger networks and carry out the next steps of our work in
this new hardware. We are planning to investigate the full GLIF
dynamics as we would have better support for more complex

network topology and spiking dynamics. In addition, we hope
to implement a connected network of 250K neurons with specific
synaptic variables as available in the AIBS dataset. We also plan
to investigate the control and performance of temporal precision
choices. Till date, our limited conclusion for these cases is that∼
1ms timestep is sufficient. This need not generalize to networks
in which other precision may be needed, with corresponding
tradeoffs to changes in the parameters. We intend to explore
this question further. Lastly, we are working on performing
a sensitivity analysis on the GLIF parameters to assess the
robustness of the model.

DATA AVAILABILITY STATEMENT

The original contribution in the study are included in the
article. The datasets used are available in https://github.com/
srijanie03/bmtk_loihi_utils. Further inquiries can be directed to
the corresponding author/s.

AUTHOR CONTRIBUTIONS

SD andAD contributed to conception and design of the study. SD
performed the simulations and analysis and wrote the first draft
of the manuscript. AD wrote parts of the manuscript, edited, and
reviewed. All authors contributed to manuscript revision, read,
and approved the submitted version.

FUNDING

This work received support from WSU Vancouver Office of
Research and Graduate Education to SD.

ACKNOWLEDGMENTS

We thank Dr. Kael Dai for his helpful suggestions and advice
regarding the use of BMTK.We thank Intel for providing us with
access to Loihi and the Intel technical support team for helpful
feedback on technical issues. This work used resources from
the Center for Institutional Research Computing at Washington
State University (CIRC and WSU, 2021).

REFERENCES

AIBS (2020). Allen Brain Atlas. Available online at: https://celltypes.brain-map.

org/ (accessed February 22, 2022).

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,

P., et al. (2015). Truenorth: Design and tool flow of a 65 mw 1

million neuron programmable neurosynaptic chip. IEEE Trans. Comput.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.24

74396

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S.,

Chandrasekaran, A. R., Bussat, J.-M., et al. (2014). Neurogrid:

a mixed-analog-digital multichip system for large-scale neural

simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.2014.

2313565

Bhuiyan, M. A., Nallamuthu, A., Smith, M. C., and Pallipuram, V. K. (2010).

“Optimization and performance study of large-scale biological networks

for reconfigurable computing,” in 2010 Fourth International Workshop on

High-Performance Reconfigurable Computing Technology and Applications

(HPRCTA) (New Orleans, LA), 1–9. doi: 10.1109/HPRCTA.2010.5670796

Brette, R., Lilith, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al. (2008).

Simulation of networks of spiking neurons: a review of tools and strategies. J.

Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

CIRC andWSU (2021).What Is Kamiak? Available online at: https://hpc.wsu.edu/

kamiak-hpc/what-is-kamiak/ (accessed February 22, 2022).

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 883360

https://github.com/srijanie03/bmtk_loihi_utils
https://github.com/srijanie03/bmtk_loihi_utils
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/HPRCTA.2010.5670796
https://doi.org/10.1007/s10827-007-0038-6
https://hpc.wsu.edu/kamiak-hpc/what-is-kamiak/
https://hpc.wsu.edu/kamiak-hpc/what-is-kamiak/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Dey and Dimitrov Point Neuron Model Simulations in Loihi

Crook, S. M., Davison, A. P., McDougal, R. A., and Plesser, H. E. (2020). Editorial:

reproducibility and rigour in computational neuroscience. Front. Neuroinform.

14, 23. doi: 10.3389/fninf.2020.00023

Dai, K., Gratiy, S. L., Billeh, Y. N., Xu, R., Cai, B., Cain, N., et al.

(2020). Brain modeling toolkit: an open source software suite for

multiscale modeling of brain circuits. PLoS Comput. Biol. 16, e1008386.

doi: 10.1371/journal.pcbi.1008386

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

DeBole, M., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk, W., et al.

(2019). Truenorth: Accelerating from zero to 64 million neurons in 10 years.

Computer 52, 20–29. doi: 10.1109/MC.2019.2903009

Dey, S. (2022). BMTK-Loihi Data. Available online at: https://github.com/

srijanie03/bmtk_loihi_utils (accessed February 22, 2022).

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.

doi: 10.1017/CBO9780511815706

Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., and Schemmel, J. (2020).

Verification and design methods for the brainscales neuromorphic hardware

system. J. Signal Process. Syst. 92, 1277–1292. doi: 10.1007/s11265-020-01558-7

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: statistical methods for model

validation on the level of network activity data. Front. Neuroinform. 12, 90.

doi: 10.3389/fninf.2018.00090

Herz, A. V.M., Gollisch, T.,Machens, C. K., and Jaeger, D. (2006).Modeling single-

neuron dynamics and computations: a balance of detail and abstraction. Science

314, 80–85. doi: 10.1126/science.1127240

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural

ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The NIH BRAIN initiative.

Science 340, 687–688. doi: 10.1126/science.1239276

Intel (2022). Intel Lab’s Loihi 2 Chip. Technical report, Intel Corporation.

Jin, X., Furber, S. B., and Woods, J. V. (2008). “Efficient modelling of spiking

neural networks on a scalable chip multiprocessor,” in 2008 IEEE International

Joint Conference on Neural Networks (Hong Kong: IEEE World Congress on

Computational Intelligence), 2812–2819. doi: 10.1109/IJCNN.2008.4634194

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E.,

et al. (2008). “Spinnaker: mapping neural networks onto a massively-parallel

chip multiprocessor,” in 2008 IEEE International Joint Conference on Neural

Networks (Hong Kong: IEEE World Congress on Computational Intelligence),

2849–2856. doi: 10.1109/IJCNN.2008.4634199

Knight, J. C., and Furber, S. (2016). Synapse-centric mapping of cortical models

to the spinnaker neuromorphic architecture. Frontiers in Neuroscience 10.

doi: 10.3389/fnins.2016.00420

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.

(2017). Nest 2.12.10. Zenodo.

Lein, E., Hawrylycz, M., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al. (2007).

Genome-wide atlas of gene expression in the adult mouse brain. Nature 445,

168–176. doi: 10.1038/nature05453

Linssen, C., Lepperød, M. E., Mitchell, J., Pronold, J., Eppler, J. M., Keup, C., et al.

(2018). NEST 2.16.0. Zenodo. doi: 10.5281/zenodo.1400175

Löhr, M. P. R., Jarvers, C., and Neumann, H. (2020). “Complex neuron dynamics

on the IBM truenorth neurosynaptic system,” in 2020 2nd IEEE International

Conference on Artificial Intelligence Circuits and Systems (AICAS) (Genao),

113–117. doi: 10.1109/AICAS48895.2020.9073903

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,

et al. (2011). Introducing the human brain project. Proc. Comput. Sci. 7, 39–42.

doi: 10.1016/j.procs.2011.12.015

Michaelis, C., Lehr, A. B., Oed, W., and Tetzlaff, C. (2021). Brian2Loihi:

an emulator for the neuromorphic chip loihi using the spiking

neural network simulator brian. arXiv preprint arXiv:2109.12308.

doi: 10.48550/ARXIV.2109.12308

Mikaitis, M., Lester, D., Shang, D., Furber, S., Liu, G., Garside, J., et al. (2018).

“Approximate fixed-point elementary function accelerator for the spinnaker-

2 neuromorphic chip,” in 2018 IEEE 25th Symposium on Computer Arithmetic

(ARITH) (Amherst, MA). doi: 10.1109/ARITH.2018.8464785

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable

multicore architecture with heterogeneous memory structures for

dynamic neuromorphic asynchronous processors (DYNAPs). IEEE

Trans. Biomed. Circ. Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.

2759700

Nandi, A., Chartrand, T., Geit, W. V., Buchin, A., Yao, Z.,

Lee, S. Y., et al. (2020). Single-neuron models linking

electrophysiology, morphology and transcriptomics across

cortical cell types. bioRxiv [Preprints]. doi: 10.1101/2020.04.09.

030239

Nawrocki, R. A., Voyles, R. M., and Shaheen, S. E. (2016). A mini

review of neuromorphic architectures and implementations. IEEE

Trans. Electron Dev. 63, 3819–3829. doi: 10.1109/TED.2016.

2598413

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N.,

Voelker, A. R., et al. (2019). Braindrop: a mixed-signal neuromorphic

architecture with a dynamical systems-based programming

model. Proc. IEEE 107, 144–164. doi: 10.1109/JPROC.2018.

2881432

Ou, Q.-F., Xiong, B.-S., Yu, L., Wen, J., Wang, L., and Tong, Y. (2020). In-memory

logic operations and neuromorphic computing in non-volatile random access

memory.Materials 13, 3532. doi: 10.3390/ma13163532

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y.,

et al. (2022). The brainscaleS-2 accelerated neuromorphic system with hybrid

plasticity. Front. Neurosci. 16, 795876. doi: 10.3389/fnins.2022.795876

Rhodes, O., Peres, L., Rowley, A., Gait, A., Plana, L., Brenninkmeijer, C. Y. A., et al.

(2019). Real-time cortical simulation on neuromorphic hardware. Philos. Trans.

Ser. A Math. Phys. Eng. Sci. 378:20190160. doi: 10.1098/rsta.2019.0160

Rossant, C., Goodman, D., Platkiewicz, J., and Brette, R. (2010). Automatic

fitting of spiking neuron models to electrophysiological recordings. Front.

Neuroinform. 4:2. doi: 10.3389/neuro.11.002.2010

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant

linear systems with applications to neuronal modeling. Biol. Cybernet. 81,

381–402. doi: 10.1007/s004220050570

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Schuman, C. D., Mitchell, J. P., Patton, R. M., Potok, T. E., and Plank, J. S. (2020).

“Evolutionary optimization for neuromorphic systems,” in Proceedings of the

Neuro-inspired Computational Elements Workshop, NICE ’20 (New York, NY:

Association for Computing Machinery), 1–9. doi: 10.1145/3381755.3381758

Sharp, T., and Furber, S. (2013). “Correctness and performance of the spinnaker

architecture,” in The 2013 International Joint Conference on Neural Networks

(IJCNN) (Dallas, TX), 1–8. doi: 10.1109/IJCNN.2013.6706988

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., et al. (2018).

Generalized leaky integrate-and-firemodels classifymultiple neuron types.Nat.

Commun. 9, 709. doi: 10.1038/s41467-017-02717-4

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,

et al. (2018). Large-scale neuromorphic spiking array processors: a quest to

mimic the brain. Front. Neurosci. 12, 891. doi: 10.3389/fnins.2018.00891

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).

Rigorous neural network simulations: a model substantiation methodology for

increasing the correctness of simulation results in the absence of experimental

validation data. Front. Neuroinform. 12, 81. doi: 10.3389/fninf.2018.00081

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2018). Performance comparison of the digital neuromorphic

hardware SpiNNaker and the neural network simulation software NEST

for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.

doi: 10.3389/fnins.2018.00291

Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., et al. (2020). The allen

mouse brain common coordinate framework: a 3D reference atlas. Cell 181,

936.e20–953.e20. doi: 10.1016/j.cell.2020.04.007

WikiCommons (2018). Core Top-Level Microarchitecture. Available

online at: https://commons.wikimedia.org/wiki/File:Core_Top-Level_

Microarchitecture.png (accessed March 17, 2022).

Winnubst, J., Bas, E., Ferreira, T. A., Wu, Z., Economo, M. N., Edson, P., et al.

(2019). Reconstruction of 1,000 projection neurons reveals new cell types

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 883360

https://doi.org/10.3389/fninf.2020.00023
https://doi.org/10.1371/journal.pcbi.1008386
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://github.com/srijanie03/bmtk_loihi_utils
https://github.com/srijanie03/bmtk_loihi_utils
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1126/science.1127240
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1126/science.1239276
https://doi.org/10.1109/IJCNN.2008.4634194
https://doi.org/10.1109/IJCNN.2008.4634199
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.1038/nature05453
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.1109/AICAS48895.2020.9073903
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.48550/ARXIV.2109.12308
https://doi.org/10.1109/ARITH.2018.8464785
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1101/2020.04.09.030239
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.3390/ma13163532
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.3389/neuro.11.002.2010
https://doi.org/10.1007/s004220050570
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1145/3381755.3381758
https://doi.org/10.1109/IJCNN.2013.6706988
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1016/j.cell.2020.04.007
https://commons.wikimedia.org/wiki/File:Core_Top-Level_Microarchitecture.png
https://commons.wikimedia.org/wiki/File:Core_Top-Level_Microarchitecture.png
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Dey and Dimitrov Point Neuron Model Simulations in Loihi

and organization of long-range connectivity in the mouse brain. Cell 179,

268.e13–281.e13. doi: 10.1016/j.cell.2019.07.042

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dey and Dimitrov. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 883360

https://doi.org/10.1016/j.cell.2019.07.042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
	1. Introduction
	2. Comparison Between Classical and Neuromorphic Platforms
	2.1. The Brain Modeling Toolkit (BMTK)
	2.2. Loihi
	2.3. Leaky Integrate and Fire Model (LIF)
	2.4. Loihi LIF Model

	3. Methods
	3.1. Model Setup and Integration
	3.1.1. Mapping Between BMTK and Loihi Models
	3.1.2. Bit Constraints

	3.2. Validation Methods
	3.2.1. Data
	3.2.2. Cost Functions
	3.2.3. Other Methods


	4. Results
	4.1. Simulations of a Single Neuron
	4.2. Simulation Using Varied Precision
	4.2.1. Simulation Using Varied Temporal Precision
	4.2.2. Simulation Using Varied Voltage Precision
	4.2.3. Effects of State Precision on Simulations

	4.3. Simulation of Different Neuron Classes

	5. Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


