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Graphics processing units (GPUs) are widely available and have been used with

great success to accelerate scientific computing in the last decade. These advances,

however, are often not available to researchers interested in simulating spiking neural

networks, but lacking the technical knowledge to write the necessary low-level code.

Writing low-level code is not necessary when using the popular Brian simulator, which

provides a framework to generate efficient CPU code from high-level model definitions

in Python. Here, we present Brian2CUDA, an open-source software that extends the

Brian simulator with a GPU backend. Our implementation generates efficient code

for the numerical integration of neuronal states and for the propagation of synaptic

events on GPUs, making use of their massively parallel arithmetic capabilities. We

benchmark the performance improvements of our software for several model types and

find that it can accelerate simulations by up to three orders of magnitude compared

to Brian’s CPU backend. Currently, Brian2CUDA is the only package that supports

Brian’s full feature set on GPUs, including arbitrary neuron and synapse models, plasticity

rules, and heterogeneous delays. When comparing its performance with Brian2GeNN,

another GPU-based backend for the Brian simulator with fewer features, we find that

Brian2CUDA gives comparable speedups, while being typically slower for small and

faster for large networks. By combining the flexibility of the Brian simulator with the

simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate

spiking neural networks with minimal effort and thereby makes the advancements of

GPU computing available to a larger audience of neuroscientists.

Keywords: spiking neural networks, simulator, GPU, CUDA, Python, software, open-source, parallel algorithm

1. INTRODUCTION

In computational neuroscience, there is high demand for computationally efficient simulations
allowing for realtime applications or exhaustive parameter explorations. Efficient simulations
require both optimized simulation software and powerful hardware. In practice, there is always
a trade-off between the performance of the hardware and its price and accessibility. A promising
technology with a very beneficial performance–cost trade-off are graphics processing units (GPUs)
with their massively parallel arithmetic capabilities.While they were initially designed for computer
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graphics, they have since become commonly used for general-
purpose computing, leading to their designation as general-
purpose graphics processing units (GPGPUs). The most popular
framework is the Compute Unified Device Architecture (CUDA;
NVIDIA Corporation, 2007–2022) which allows users to
write parallel code for GPUs in an extension of the C/C++
programming languages. To make efficient use of GPUs,
simulation code has to perform computations in a highly parallel
way. This parallelization is rather straightforward to implement
for some aspects of neuronal models, e.g., the numerical
integration of neuronal state variables over a simulation time
step, but is non-trivial for other aspects, e.g., spike propagation
with synaptic delays (cf. Brette and Goodman, 2012).

The earliest attempts at using the GPU (e.g., Bernhard and
Keriven, 2006; Nageswaran et al., 2009) explored the general
feasibility of accelerating simulations of spiking neural networks,
and described many of the challenges that are still relevant today.
To benefit from the capabilities of a GPU, a simulation needs to be
parallelized efficiently, parallel memory access to shared memory
has to be handled carefully, and synaptic connections have to be
stored in sparse data structures to fit into the limited memory
of GPUs (Nageswaran et al., 2009). The earliest implementations
were typically technology demonstrations, but not released as
software packages to be used by other researchers. This changed
in the following years, as a number of general-purpose simulators
such as NEMO (Fidjeland et al., 2009; Fidjeland and Shanahan,
2010), CNS (Mutch et al., 2010), CARLsim (Richert et al., 2011;
Chou et al., 2018), and NCS6 (Hoang et al., 2013) were released.
While these simulators could be adapted to a researcher’s needs,
they typically only supported specific neuron models or network
structures: The NEMO, CARLsim, and NCS6 simulators were
built to simulate networks of leaky integrate-and-fire or quadratic
integrate-and-fire model (Izhikevich, 2003) neurons, and the
CNS simulator was built to simulate networks structured in
cortical layers. Extending these simulators to other models
requires a researcher to write CUDA code and is therefore not
accessible to many researchers without the necessary technical
background.

Most recent simulators (e.g., Abi Akar et al., 2019; Panagiotou
et al., 2021; Ben-Shalom et al., 2022) do not come with predefined
neuron models, but instead translate neuron model definitions
created for the NEURON simulator (Carnevale and Hines, 2006)
or model definitions exported to NeuroML (Cannon et al., 2014)
by a compatible simulator. An advantage of this approach is
that it makes it possible to immediately reuse a large number
of existing neuron models. On the other hand, this workflow is
not ideal for researchers that want to adapt and change existing
models, or introduce completely new ones. For these use cases,
the fact that the model description and its simulation require
more than one software package can be a major hurdle.

A number of simulators addressed this issue by using code
generation (Goodman, 2010; Blundell et al., 2018). In such a
framework, the model description in a convenient high-level or
domain-specific language is an integral part of the simulator
itself. When starting a simulation, these model descriptions are
translated into efficient low-level code, compiled, and executed.
Two simulators that have used this approach to generate code

for GPUs are ANNarchy (Vitay et al., 2015), which specializes
in networks that mix rate and spike-based elements, and GeNN
(Yavuz et al., 2016), where model descriptions have to be specified
in a variant of C++ (but note that the main simulation code can
be written as a Python script via the PyGeNN interface; Knight
et al., 2021b).

The Brian1 simulator (Stimberg et al., 2019a) is a widely used
neural simulator that provides a user-friendly system for model
descriptions based on mathematical equations, as well as an
extensible code generation framework. So far, this framework was
only capable of generating C++ code for multithreaded execution
on central processing units (CPUs). Recently, Brian’s framework
has been extended to generate code for the GeNN simulator
(Brian2GeNN; Stimberg et al., 2020b), making it finally possible
to run Brian simulations on the GPU. However, this approach
limits simulations to the common feature set provided by Brian,
GeNN, and the Brian2GeNN interface: some of Brian’s features
(e.g., multicompartmental models) are not supported by GeNN
at all, and the support for other features (e.g., heterogeneous
synaptic delays) was added after the creation of the Brian2GeNN
interface, and they are therefore also unsupported at this time.

Here, we present a new approach to GPU code generation with
the Brian simulator. This interface, named Brian2CUDA, directly
generates CUDA code for the GPU, and supports the full set of
features that the Brian simulator offers. It can therefore be used
as a drop-in replacement in all situations where multithreaded
CPU code generation was used previously, including simulations
of detailed network models of neurons, synapses, and glia cells
(Stimberg et al., 2019b), or when optimizing neuronal models
with the brian2modelfitting toolbox (Teska et al., 2020).

We describe how our approach exploits non-trivially
parallelizable simulation parts, in particular the data structures
and algorithms for the propagation of neuronal spikes through
a network taking into account – potentially hetereogeneous
– synaptic delays. For several relevant generic model classes,
we compare the performance of Brian2CUDA with Brian’s
built-in multithreaded execution on CPUs and – where possible
– with the Brian2GeNN interface. The results show that
Brian2CUDA strongly outperforms the multithreaded execution
on CPUs, sometimes by orders of magnitudes. Its performance
is comparable to the performance of Brian2GeNN. For large
networks, Brian2CUDA is faster, while for smaller networks
slightly slower.

Our code is available as open source software under a free
license at GitHub: https://github.com/brian-team/brian2cuda.

2. METHOD

Brian2CUDA implements a new Brian backend, which runs
spiking neural network simulations on NVIDIA graphics
processing units (GPUs). It makes use of Brian’s code generation
system to generate C++/CUDA code based on a user’s model
definition in Python.

1Note that while its Python package is named “brian2,” we will use the name
“Brian” in this paper for simplicity.
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In the following, we provide in Section 2.1 background
on the Brian simulator and describe how our proposed
CUDA backend can be used. In Section 2.2, we outline GPU
programming essentials. Section 2.3 contains the algorithms
implemented in Brian2CUDA including neuronal state updates,
spike propagation, and synaptic effect application. Section 2.4
summarizes the alternative CUDA-based simulator Brian2GeNN
and in Section 2.5 we specify the benchmark models and
experimental procedure.

2.1. Brian Simulation and Code Generation
Brian is a simulator for spiking neural networks written in
Python (Stimberg et al., 2014, 2019a). It is designed to be highly
flexible and easy to use by using its own domain language to
define models. This allows users to define arbitrary differential
equations in Python strings. As an example, consider the model
(Brunel and Hakim, 1999) depicted in Figure 1A. It consists
of a population of N leaky integrate-and-fire (LIF) neurons
with sparse random recurrent inhibitory connections, which are
driven by Gaussian white noise. This model can be described
by the differential equation depicted in Figure 1B. Since the
inhibitory feedback is strong enough, the model exhibits fast
global oscillations in the population firing rate while the single
neuron firing rates remain small (see Figure 1C). A Python script
that implements this model in Brian is shown in Figure 1D. By
changing two lines of code, the simulation can be switched from
Brian’s C++ backend to our new Brian2CUDA backend.

Both backends generate simulation code in their target
language (C++ or CUDA) which is then compiled and
executed. The generated code implements the simulation loop,
memory management, and all computations; it can be executed
independently of Python. Figure 1E illustrates the Brian C++
backend, showing a simplified example of the generated C++
code for updating all neuronal states at a single time step of the
simulation. In our example, one central processing unit (CPU)
thread sequentially updates the membrane voltage Vi for each
neuron i. To speed up simulations, the Brian C++ backend
can be configured to use OpenMP to parallelize computations
over multiple CPU threads (not shown here). Our Brian2CUDA
backend extends the C++ backend to generate C++/CUDA code.
The simulation loop and memory management are implemented
in C++ and executed on a single CPU thread, while most
computations are implemented in CUDA and are parallelized
on the GPU. Figure 1F shows the same neuronal state updates
as before, but now implemented in CUDA. The voltages of all
neurons are updated in parallel by all available threads on a GPU.

2.2. GPU Programming With CUDA
To implement software that runs on NVIDIA GPUs, the
Compute Unified Device Architecture (CUDA) programming
model is used. CUDA works with multiple programming
languages, and here we use the CUDA API implemented in C++.

2.2.1. CUDA Programming Logic

2.2.1.1. Thread Hierarchy
A typical C++/CUDA program is executed on a single CPU
thread, which calls special GPU functions that are executed on

the GPU (see Figure 2A). These functions are called CUDA
kernels. When called, kernels execute their code in parallel by
multiple CUDA threads (see Figure 2B), which are grouped into
CUDA blocks (see Figure 2C). The number of threads per block
Nthreads and the number of blocks Nblocks in this thread hierarchy
is set when calling the kernel (see Figures 2A,D).

2.2.1.2. Memory Hierarchy
Each GPU has its own memory, which is separate from the
CPU’s memory. GPU memory is split into different types,
which are hierarchically organized (see Figures 2B–D). Global
memory is large (several gigabytes depending on specific
hardware) and accessible by all threads, but memory access
is very slow. Shared memory is accessible by all threads
within the same thread block. This memory is much faster
to access, but limited in size (up to a few megabytes split
across all blocks). And finally, each thread has its own
registers with the fastest access time, but which are also
limited in number (up to a few megabytes split across all
threads). Threads use registers to store the intermediate results
during their computations, shared memory to communicate
intermediate results during kernel execution between threads of
the same block and global memory to communicate between
threads in different blocks and to store results between kernel
calls.

2.2.2. Execution Control Logic
On the hardware level, NVIDIA GPUs consist of multiple
streaming multiprocessors (SMs). During the execution of
CUDA kernels, thread blocks are assigned to streaming
multiprocessors (SMs) (see Figure 2). Each SM can execute a
limited number of blocks concurrently, which are referred to
as active blocks. All remaining thread blocks are queued for
execution on the next available slot on any of the SMs. The
maximal number of active blocks per SMdepends on the resource
requirements of the executed kernel and resource limits per SM
(e.g., howmany registers are required vs. available).When a block
is executed on an SM, its threads are executed in groups of 32
threads, which are called warps. Each thread of a warp executes
the same instructions at each clock cycle, which implements the
single instruction multiple threads (SIMT) paradigm.

2.2.3. Performance Considerations

2.2.3.1. Occupancy
Occupancy per SM is defined as the ratio of active warps on
an SM to the maximum number of active warps supported
by the SM. Given the number of threads and blocks of a
kernel and its resource requirements, an upper occupancy
limit can be determined, the theoretical occupancy. There are
multiple hardware limits that determine how well a kernel
can be parallelized on the GPU. Here, we will only introduce
a few of them which are relevant for our algorithms. Each
SM has a limit on the number of threads in all active
blocks, a limit on registers available to all threads in all
active blocks, and a general limit on the number of active
blocks. If any of these limits is exceeded, the number of
active blocks per SM is automatically reduced such that the
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FIGURE 1 | Brian model definition and C++/CUDA code generation. (A) Population of leaky integrate-and-fire (LIF) neurons with recurrent inhibitory coupling J,

average number of random synapses per neuron C and synaptic transmission delays dij between neurons j and i. The neurons are driven by external Gaussian white

noise with mean µext and standard deviation σext (model from Brunel and Hakim, 1999). (B) Corresponding stochastic differential equation defining the dynamics of

the membrane potential Vi of a single LIF neuron i [with i = 1, . . . ,N; membrane time constant τ ; unit Gaussian white noise process ξi (t) that is uncorrelated across

neurons; j ∈ pre(i) runs over all neurons j that are presynaptic to neuron i; tj are all spike times of neuron j; Dirac delta function δ(x)]. When the voltage Vi crosses

threshold 2, the neuron spikes and is set to the reset voltage Vr for a refractory period τref. (C) Network dynamics from simulating the model with N = 5000 LIF

neurons in Brian. Top panel: voltage trace for one exemplary neuron i. Middle panel: raster plot of the spike times for all neurons in the network. Bottom panel:

instantaneous mean firing rate across all neurons. (D) A Python script implementing the model in Brian, either with its C++ backend (black blox) or with Brian2CUDA’s

CUDA backend (red box). In this example, the synaptic transmission delays are independently sampled from a uniform distribution dij ∼ U(0, 4)ms. (E) Simplified

version of generated C++ code to update all neuronal states defined by the voltages Vi when using the C++ backend in Brian. (F) The same for the CUDA backend in

Brian2CUDA. Here the CUDA kernel gpu_stateupdater is launched with Nblocks × Nthreads parallel threads.
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FIGURE 2 | CUDA programming model. (A) A simplified, exemplary C++/CUDA program that is executed on a single CPU thread. The CPU manages memory on the

GPU and calls CUDA kernels that are executed on the GPU. (B–D) GPU resources and CUDA execution and memory hierarchy when running CUDA kernels on the

GPU. (B) Each CUDA thread on a GPU has access to its own memory registers. (C) Each CUDA block groups together multiple CUDA threads. All threads of the

same block have access to the same shared memory. (D) CUDA kernels can be executed with different numbers of blocks Nblocks, threads per block Nthreads and

shared memory per block. The kernels called in (A) are executed sequentially on the GPU, while multiple CUDA blocks are executed in parallel on the streaming

multiprocessors (SMs) of the GPU. The example program in (A) calls kernel 0 without any shared memory and kernel 1 with enough shared memory to store one

floating point number per thread. This memory could e.g., be used to calculate the sum of a variable over all threads in a block, using fast shared memory instead of

slow global memory.

limits are fulfilled, reducing the theoretical occupancy of the
kernel. Table 1 lists these limits for the GPUs used in this
work.

2.2.3.2. Coalesced Memory Access
Memory accesses are issued in warps or half-warps (depending
on the GPU and the memory request). When accessing
global memory, always chunks of 32, 64 or 128 bytes
are transferred – even if less memory was requested. That
means, if a single thread wants to read 4 byte from global
memory, a 32 byte transfer will be issued (the smallest
transfer possible). If multiple threads read 4 byte from
different non-contiguous memory addresses in global memory,
there will be one 32 byte transfer per thread. But if all
threads in a warp request 4 byte memory from contiguous
memory addresses, a single 32 × 4 byte = 128 byte
transfer will be issued to transfer all memory requested

by all threads. This is called a coalesced memory access,
which reduces latencies (i.e., waiting time) for global memory
accesses significantly. Hence, it is crucial to layout data
structures such that as many memory accesses as possible are
coalesced.

2.3. Brian2CUDA Algorithms
Brian is a clock-driven simulator, which performs the same
set of computations after each discrete time step 1t of a
simulation. In this section, we will explain the algorithms and
data structures used in Brian2CUDA by going through the
different simulation steps necessary to simulate one time step
of the recurrent LIF network from Figure 1. All data structures
introduced in the following reside in global GPU memory
and all kernels introduced are executed sequentially on the
GPU.
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TABLE 1 | Hardware limits relevant to determine theoretical occupancy of GPU kernels.

GPU (cc) Active threads Threads Active blocks Registers Registers per thread

per SM per block per SM per SM for 100% occupancy

A100 (8.0) 2,048 1,024 32 65,536 32

RTX2080 Ti (7.5) 1,024 1,024 16 65,536 64

The values are the same for all GPUs with the same compute capability (cc) and represent upper limits. To get the maximal registers per thread for 100% occupancy, we divided the

maximal registers per SM by the maximally active threads per SM. Only GPUs used in our experiments are listed.

2.3.1. Neurons
In Brian, neurons are defined in populations, where each
neuron is described by the same set of dynamical equations and
hence the same set of state variables (e.g., Vi in Figure 1B).
In Brian2CUDA, for each neuronal population typically three
separate CUDA kernels are defined: one for integrating the
neuronal states (see Figure 1F), one for detecting spikes
and one for resetting state variables of spiking neurons2.
Since these computations are independent for all neurons,
parallelization on the GPU is trivial: Each thread performs all
computations for a single neuron. Nevertheless, it is important
to coalesce global memory access (see Section 2.2.3.2). This
is ensured in the integration kernel by storing neuronal state
variables in contiguous global memory arrays (one entry per
neuron) and accessing those such that consecutive threads
access consecutive entries of the state variable arrays. In the
spike detection kernel, the threshold crossing (typically of the
membrane voltage) can be detected efficiently in parallel in
the same way as in the integration kernel. The challenge
here is to select and count the spiking neurons of the
current timestep which naturally involves serialization. The
implemented solution relies on a method from the CUDA
programming API: threads that detect a spike perform an
atomic increment of a population spike counter and use
the counter value to store their neuron ID in a spiking
neuron array. An atomic operation is an operation on a
single variable that can be safely called by multiple threads,
guaranteeing that all updates get applied correctly. These atomic
increments limit the parallelization in the spike detection
kernel when multiple threads try to increment the counter
at the same time, and the writing of spiking neuron IDs
into the spiking neuron array is generally not coalesced.
The reset kernel is parallelized over spiking neurons and
therefore the reading of spiking neuron IDs is coalesced,
but the reset updates of the neuronal state variables are
generally not. Since for the majority of models in computational
neuroscience, the number of spikes per time step is much lower
than the number of neurons per population, the potentially
inefficient computations in the spike detection and reset
kernels often contribute only little to the total computation
time3.

2Note that using separate kernels allows us to support Brian’s flexible execution
scheduling, e.g., synaptic effect application between threshold detection and reset.
3In a population of neurons firing at 1 s−1 and a simulation time step of 1t =

0.1ms, on average only 0.01% of the neurons spike at each time step.

2.3.2. Synapses
A population of synapses in Brian is defined between a pre- and
a postsynaptic population of neurons (for the recurrent synapses
defined in Figure 1D, pre- and postsynaptic populations are the
same). The simulation of synapses can generally be separated into
synapse generation, synaptic state updates, spike propagation
and synaptic effect application. The synapse generation in
Brian2CUDA is performed on the CPU, using the same algorithm
as Brian’s C++ backend and thereby supporting all of Brian’s
connection methods. Synaptic state updates in Brian can be
clock-driven or event-driven. Clock-driven updates are performed
at every time step and are implemented in Brian2CUDA in
a separate kernel in the same way as neuronal state updates.
Event-driven updates are performed only when the pre- or
postsynaptic neuron of a synapse spikes. These are performed
during the synaptic effect application of the corresponding
spike. With spike propagation, we refer to the processing of
synaptic delays, which can be either homogeneous (the same for
all synapses) or heterogeneous (varying across synapses). With
synaptic effect applications, we refer to the modifications of
synaptic target variables based on spikes (e.g., the reduction
of the postsynaptic voltage potential by J for each presynaptic
spike in the model from Figure 1). In Brian, both the pre-
and postsynaptic spikes can have synaptic effects on pre- and
postsynaptic neurons and the synapse itself. In the following, we
will illustrate how Brian2CUDA implements spike propagation
and synaptic effect application for different delay types and
for the case of presynaptic neurons that modify postsynaptic
variables, but the algorithms generalize to all other synaptic effect
types. For both, spike propagation and effect application, kernels
are parallelized over synapses in Brian2CUDA.

2.3.2.1. Connectivity Information
Consider the example connectivity for our recurrent LIF network
shown in Figure 3A, where synaptic effects are triggered by
presynaptic spikes. The (sparse) connectivity matrix of synapse
IDs sorted by presynaptic neuron ID is stored in YALE format
(Figure 3B; Eisenstat et al. 1982). This connectivity matrix can
optionally (via a Brian2CUDA preference) be split into multiple
partitions of postsynaptic neurons, in which case synapses
per presynaptic neuron are sorted by partition (Figure 3C).
This creates synapse groups defined by presynaptic neuron
and postsynaptic partition (different colors in Figure 3C). If
synaptic effects are triggered by postsynaptic spikes, e.g., for
models with spike-timing dependent plasticity (STDP), a separate
connectivity matrix is created, sorted by postsynaptic neurons
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and partitioned by presynaptic neurons (not shown here). To
access the neurons connected by a synapse, two additional arrays
store the pre- and postsynaptic neuron IDs for all synapses, sorted
by synapse ID (Figure 3D).

2.3.2.2. Synapses Without Delays
When synapses have no transmission delay, there is no need
for a separate spike propagation phase, and synaptic effects
can be applied directly after spike detection. Effect application
is parallelized over all synapses of all spiking neurons, where
each CUDA block processes the synapses of one synapse
group (Figure 3E). Each thread reads one synapse ID from the
connectivity matrix, uses it as an index to read the postsynaptic
neuron ID of that synapse, which is then used to index the
postsynaptic membrane voltage. The synaptic effect (decreasing
Vpost by J in our inhibitory LIF network example) is performed
using atomic operations to avoid race conditions from multiple
threads writing to the same memory location, cf. Figure 3E.
Reading synapse IDs from the connectivity matrix is coalesced,
while reading the corresponding postsynaptic neuron IDs and
membrane voltages is generally not. Partitioning the connectivity
matrix can increase occupancy for networks with homogeneous
delays if the overall number of spikes per time step is small
enough (less than the limit on maximally active CUDA blocks;
see Table 1) and the number of synapses per neuron is large
enough (more than there are threads in each CUDA block).
Under such conditions and without partitioning, there are
too few active blocks with too many threads to parallelize all
synaptic effects. Partitioning the connectivity matrix then moves
threads from too full blocks into new active blocks, increasing
parallelization.

2.3.2.3. Synapses With Homogeneous Delays
When synapses have homogeneous delays d = k1t, the spiking
neuron array is stored for k time steps before the synaptic
effects are applied. This results in a circular list of k + 1
spiking neuron arrays. Figure 3F shows an example for k =

2. The synaptic effect application algorithm is the same as
for the no delay case (see Figure 3E), but using the neurons
that spiked k time steps ago. Spike propagation for networks
with homogeneous delays amounts to incrementing the circular
list index referencing the spiking neuron array that is due
for synaptic effect application. Therefore, adding homogeneous
delays to a network comes at close to no computational cost at
each time step, but increases memory requirements for storing
multiple spiking neuron arrays.

2.3.2.4. Synapses With Heterogeneous Delays
In networks with heterogeneous synaptic delays, synapses
connected to spiking neurons are sorted into spike queues based
on their synaptic delay. Analogously to the spiking neuron arrays
used in the homogeneous delays case (cf. Figure 3F), k+ 1 spike
queues are created, which are arranged in a circular list and
where k is the number of time steps in the highest delay in the
network max(dij) = k1t. As before, the connectivity matrix
can be partitioned by postsynaptic neurons, in which case each
partition gets its own spike queues. To reduce the number of

elements that need to be inserted into spike queues, the synapses
with the same delay that would be propagated together, are
grouped into synapse bundles and those bundles are inserted
into the spike queues instead of synapses. Figure 4A shows the
example network from Figure 3, but now with heterogeneous
delays and additionally with synapse bundle IDs (instead of
just synapse IDs). Figure 4B shows how the spike propagation
algorithm sorts bundle IDs into spike queues. Since the maximal
number of synapse bundles that will be stored in any of the
spike queues is generally not known before a simulation, a
custom dynamic vector implementation is used, which allows
increasing spike queue sizes in GPU kernels on demand. This
resizing requires reallocating spike queue contents in global
GPU memory. While this is generally very expensive, it only
happens at the beginning of a simulation until the spike queues
are large enough and hence has an overall negligible effect on
performance.

During spike propagation, parallelization is over synapse
bundles, where each CUDA block operates on a different
bundle group (different colors in Figure 4B; analogous to
the synapse groups in Figure 3C). All CUDA blocks for the
same postsynaptic partition and for different spiking neurons
collect synapse bundles in the same spike queues. To avoid
race conditions from potential memory reallocation, a critical
section code allows only one CUDA block per partition to
add bundle IDs into the spike queues at any time. All
threads of this block can parallelize the pushing of synapse
bundle IDs into the spike queues over threads, since each
bundle with a different delay will be added to a different
queue. Note that CUDA blocks from different postsynaptic
partitions operate on different spike queues and can be
executed concurrently. Therefore, increasing the number of
partitions decreases the amount of serialization during spike
propagation of heterogeneous delays. This can lead to better
performance as long as the additional CUDA blocks don’t
exceed the maximal number of active CUDA blocks on the GPU
(see Table 1).

During synaptic effect application, the synaptic effects of all
synapses in the bundles in the 01t spike queue are applied. In
our toy example, where we only consider a single time step, these
are all synapses without delays (Figure 4C). In general, multiple
different synapses from neurons that spiked at different times
are collected in each spike queue. Figure 4D shows how the
synaptic effect application parallelizes over synapses. The number
of CUDA blocks during effect application equals the number of
partitions. A fixed number of CUDA threads per synapse bundle
performs the effect application for all synapses of each bundle. In
the present work, the largest bundle size is used as the number
of threads per bundle, but this can be set by the user. Bundle
sizes depend on the delay distribution and number of synapses
per neuron in the network. If all bundles have the same size,
each thread applies the synaptic effects of one synapse. The more
bundle sizes vary, the less efficient is the parallelization given a
fixed number of threads per bundle. In general, spike propagation
performance benefits from partitioning the connectivity matrix
as long as the typical size of the spike queue is larger than the
number of threads per CUDA block.
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FIGURE 3 | Synaptic algorithm for networks with no or homogeneous delays. (A) Example connectivity for the recurrent network from Figure 1, restricted to

homogeneous synaptic transmission delays d and N = 5 neurons. Colored neurons 1 and 4 are spiking in the current time step. Color of their synapse IDs correspond

to the parallelization over CUDA blocks in (E). (B) Connectivity stored in compressed form (YALE format) in global GPU memory as one concatenated array of synapse

IDs sorted by presynaptic neuron ID (bottom view). Top view shows this array split by presynaptic neurons for visualization. Two additional arrays (not shown) store the

start indices and number of synapses in the synapse array for each presynaptic neuron. Coloring correspond to the parallelization over CUDA blocks in (E). (C)

Connectivity matrix for two postsynaptic neuron partitions, visualized as in (B). Each color shows one synapse group, defined by presynaptic neuron (red or blue) and

postsynaptic partition (bright or dark). The synapse array is sorted in memory first by presynaptic neuron ID and then by partition (bottom view). (D) Pre- and

postsynaptic neuron IDs for all synapses are stored in two arrays, sorted by synapses IDs. (E) Fully parallelized synaptic effect application for the network from (A)

without delays (d = 01t) and with the partitioned connectivity matrix from (C). Each of the 4 CUDA blocks (cf. colors) applies synaptic effects for all synapses of its

respective synapse group. Membrane voltage updates are performed using CUDA’s atomic operations to avoid race conditions. Potential atomic conflicts at the same

memory location are marked in green. Without connectivity matrix partionioning (B), only two CUDA blocks (one per spiking neuron) would process the synapses (not

shown). (F) Circular list of spiking neuron arrays for the network from (A) with homogeneous delays d = 21t. Spiking neuron arrays are labeled with the time in which

their synaptic effects are due for application. Spiking neurons of the current time step are stored in the array labeled with d = 21t. Synaptic effects are applied for the

neurons in the array labeled with 01t. After each time step, all array labels are rotated clockwise and the applied spiking neuron array will be overwritten by the new

spikes of the next time step.

2.4. CUDA Code Generation With
Brian2GeNN
Our benchmarks compare Brian2CUDA’s performance with the
performance obtained when using the Brian2GeNN interface

(Stimberg et al., 2020b). Since both are implemented as backends
for the Brian 2 simulator, the exact same models can be run
and easily compared. Note that the Brian2GeNN interface

does not support synaptic connections with heterogeneous
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FIGURE 4 | Spike propagation and synaptic effect application for synapses with heterogeneous delays. (A) Same connectivity as shown in Figure 3A, but with

heterogeneous delays dij from neuron j to i. Neurons spiking in the current time step and their outgoing synapses are colored. Colors of synapse labels correspond to

the parallelization over CUDA blocks during spike propagation in (B). Bundles group together synapses with same presynaptic neuron, postsynaptic partition as

shown in (B) and delay value. All bundles for the same presynaptic neuron and postsynaptic partition define a bundle group (same color), each with a different delay. In

this toy example, only bundle 0 has two synapses (0 and 5), the other bundles contain only one synapse. Additionally only the bright red bundle group consists of two

bundles (2 and 4), while the other bundle groups contain only one bundle. (B) Spike propagation step. Bundles for all spiking neurons are sorted into spike queues

based on their delay value and postsynaptic partition. Maximal delay in (A) is d0,4 = 31t, requiring 4 spike queues per partition. Each of the 4 CUDA blocks

propagates all bundles of its respective bundle group. A critical section code ensures that only one CUDA block per partition (red or blue) has access to the spike

queues of its partition at any time. Two CUDA blocks of different partitions (dark and light) can operate concurrently on separate spike queues. For each partition,

delay queues are constructed as a circular list of arrays and their labels are rotated at the end of each time step [after (D)] analogously to the circular list of spiking

neuron arrays in the case of homogeneous delays in Figure 3F. (C) Synaptic effect application. Same connectivity as in (A). Colors now indicate neurons receiving

synaptic effects in the current time step (yellow) and their incoming synapses (red and blue, these are the synapses from (A) without delay). Colors of synapse labels

correspond to the parallelization over CUDA blocks during effect application in (D). (D) Effect application step. Synaptic effects of all synapses in all bundles in the 01t

spike queues are applied to their targets. One CUDA block per partition processes all bundles of its partition. Bundles are unpacked and each thread applies the effect

on one synapse (e.g, two threads are processing the two synapses in bundle 0).

delays, therefore the corresponding benchmarks only compare
Brian2CUDA to CPU performance.

The Brian2GeNN interface uses Brian’s C++ framework
to generate synaptic connections, initialize variables, and to
generate the numerical update steps based on the given model

equations. In the next step, the interface converts synaptic data
structures and model descriptions to the GeNN format, and
runs GeNN’s own code generation process. Finally, the generated
code gets integrated into a run loop running on the CPU that
also takes care of exchanging memory between CPU and GPU
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when necessary (for details see Stimberg et al., 2020b). The
internally used data structures and algorithms are identical to
running a simulation with the GeNN simulator (for details
see Yavuz et al., 2016). GeNN allows the user to choose data
structures and algorithms most adapted to their model, and
many of these choices are exposed in the Brian2GeNN interface.
All benchmarks presented in this paper use GeNN’s sparse
connectivity method, and chose the—for the respective model
configuration—faster of its two parallelization modes: pre mode,
i.e., parallelization over pre-synaptic sources and sequential loops
over post-synaptic targets, or post mode, i.e., parallelization over
post-synaptic targets and sequential loops over pre-synaptic
sources.

2.5. Benchmarks
2.5.1. Benchmark Models
To assess the runtime performance of Brian2CUDA in
comparison to Brian2 on CPU and Brian2GeNN we use as
benchmarks different models that cover popular types used in
computational neuroscience. Here, we give an overview of the
model characteristics and behaviors. The simulation code with all
model implementations, parameters and benchmark procedures
that were used to generate the results of this paper are available in
our Brian2CUDAGitHub repository4 and archived as Alevi et al.
(2022).

2.5.1.1. HH Benchmark: Hodgkin-Huxley Type Neurons

With Static Synapses
For the first benchmark, we use a model of excitatory
and inhibitory conductance-based Hodgkin-Huxley (HH) type
neurons (also used in Brette et al. 2007; Stimberg et al. 2020b
and based on Traub andMiles 1991). This neuron model consists
of six coupled ordinary differential equations describing the
dynamics of the membrane voltage, three gating variables, and
excitatory and inhibitory synaptic conductances. We initialized
membrane voltages and synaptic conductances independently
from Gaussian distributions, such that all neurons had slightly
different initial conditions (for details see Stimberg et al., 2020b).
We simulated populations of N neurons (80% excitatory and
20% inhibitory) with random recurrent synapses. Synapses from
spiking presynaptic excitatory and inhibitory neurons modify
postsynaptic excitatory and inhibitory conductances based on
their synaptic weights wE and wI , respectively. Connectivity was
randomly Bernoulli-sampled for each pair of neurons (including
self-connections) with fixed probability p =

C
N , where C =

1,000 is the average number of synapses per neuron. For N <

1,000, all neuron pairs were connected. The model is identical
to the COBAHH benchmark in Stimberg et al. (2020b), where a
mathematical description of the model and a list of parameters
can be found.

For Figure 5A, we simulatedN neurons without any synapses,
i.e., an uncoupled HH-type population. For an example of
the activity in this network, see Supplementary Figure S2. For
Figure 5B, we simulated the model with an average of C =

4https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/
benchmarking.

1,000 synapses per neuron and with random synaptic weights
uniformly sampled from wE,wI ∼ U(0,wmax) with wmax =

10−18 S. The weights are chosen small enough to have no
substantial effect on postsynaptic conductances such that the
network activity does not change when increasing the population
size, but synaptic propagation and effect application is still
performed during the simulation (same procedure as in Stimberg
et al., 2020b).

2.5.1.2. LIF Benchmark: Noisy Integrate-and-Fire Neurons

With Synaptic Transmission Delays
The LIF benchmark consists of a population of N noise-driven
LIF neurons with recurrent inhibitory connections (based on
Brunel and Hakim, 1999). This is the same model we introduced
in Figure 1. The dynamics of each neuron are described by a
single ordinary differential equation for the membrane voltage
shown in Figure 1B. For all benchmark results, we simulated
the model with spike threshold 2 = 20mV, reset potential
Vr = 10mV, membrane time constant τ = 20ms and inhibitory
coupling J = 0.1mV. Neurons have a refractory period of τref =

2ms. Recurrent random connectivity is implemented in the same
way as in the HH benchmark, with connection probability p =

C
N

with the same average number of synapses per neuronC = 1,000.
Synapses from spiking presynaptic neurons modify postsynaptic
membrane voltages.

For the benchmark version with homogeneous delays
(Figures 5C, 7A), the synaptic transmission delay was dij = 2ms
for each synapse from neuron j to neuron i. The parameters
of the external drive (Gaussian white noise) were chosen
as µext = 25mV and σext = 1mV. For the benchmark
version with heterogeneous delays (Figures 6A, 7C), the synaptic
transmission delays were uniformly sampled from a uniform
distribution dij ∼ U(0, 4)ms. Resolved on the integration time
grid with 1t = 0.1ms, this resulted in up to 41 different delay
values. The external drive parameters were chosen as µext =

27mV and σext = 0.33mV. These parameters ensured that
both benchmark versions had the same mean synaptic delay and
that network activities showed qualitatively similar slow global
oscillations (see Brunel and Hakim 1999; example activity for the
heterogeneous version with N = 5,000 shown in Figure 1C).

2.5.1.3. STDP Benchmark: Dynamic Synapses With

Spike-Timing Dependent Plasticity
The spike-timing dependent plasticity (STDP) benchmark
consists of N Poisson generators with dynamic feedforward
synapses to a population of N

1,000 LIF neurons (for an example of
the activity in the network, see Supplementary Figure S3). The
Poisson generators have no dynamics that need to be integrated,
but produce random Poisson spike trains with a mean firing rate
of 15 s−1 (each generator performs one independent Bernoulli
trial per time step). The dynamics of the LIF neurons are
described by two differential equations, one for the membrane
voltage and one for an excitatory synaptic conductance. The
connection probability is p =

C
N , where C = 1,000 is the

average number of incoming synapses per LIF neuron (while each
Poisson generator has on average only one outgoing synapse).
Each synapse has a dynamic weight, which determines the
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synaptic effect that a presynaptic spike has on the postsynaptic
neuron. The dynamics of the weights implement an all-to-all,
additive STDP rule (Song et al., 2000; Morrison et al., 2008).
Each pre- and postsynaptic spike increases a corresponding
trace variable, stored for each synapse (necessary to support
heterogeneous delays). In the absence of spikes, these trace
variables decay exponentially, which is implemented through an
event-driven update (see Section 2.3.2), and is therefore only
calculated when necessary. When a presynaptic spike arrives, the
current postsynaptic trace is used to decrease the synaptic weight,
and conversely a postsynaptic spike triggers an increase in the
synaptic weight based on the current presynaptic trace. Together,
these changes implement the observed asymmetry of the STDP
rule, where a presynaptic spike followed by a postsynaptic spike
leads to synaptic facilitation, and the inverted sequence leads
to synaptic depression (Bi and Poo, 2001). The technically
challenging aspect of this model is that there aremultiple synaptic
effects triggered by pre- and postsynaptic spikes: synaptic
trace variables are bidirectionally affected and additionally
presynaptic spikes influence postsynaptic neurons via increasing
the excitatory synaptic conductance. In Brian2CUDA, for this
model, two separate connectivity matrices are generated, one for
pre- and one for postsynaptically triggered synaptic effects. Both
matrices are sorted differently, the former one by pre- and the
latter one by postsynaptic neurons (see Section 2.3.2.1).

We use two versions of this model for benchmarking: with
homogeneous delays (Figures 5D, 7B) and with heterogeneous
delays (Figures 6B, 7D). The delays are the same as in the LIF
benchmarks with the corresponding delay type. Note that the
transmission delays are implemented as axonal delays, i.e., they
only apply to synaptic effects triggered by the presynaptic
population, while the synaptic effects from the postsynaptic
population have no delays.

2.5.1.4. Mushroom Body Benchmark: Complex Model With

Multiple Neuronal Populations, Spike-Timing Dependent

Plasticity and Noise
As the final benchmark (for Figure 5E), we consider a more
“realistic,” complex model with multiple neuronal populations
and synapse types, that combines several of the features of the
previous benchmarks. For an example of the activity in the
network, see Supplementary Figure S4. This model is inspired
by the mushroom body of insects, based on the model by
Nowotny et al. (2005), and used as a benchmark in earlier
studies (Yavuz et al., 2016; Stimberg et al., 2020b). Briefly,
this model consists of three populations: the first population
consists of 100 pattern generators (i.e., does not simulate any
dynamics but replays a pre-defined spike pattern), connecting to
N HH-type neurons in the second population with a connection
probability of p = 0.15 for each possible connection (Bernoulli
sample). These connections are modeled as static, excitatory
synapses. The neurons of the second population are modeled
with the same equations (but different parameters) as in the HH
benchmark presented earlier, except that they have no inhibitory
conductance, which is not required without inhibitory synapses.
This second population connects further to a third population
of 100 HH-type neurons, with a connection probability of p =

10,000
N (with all-to-all connectivity for N < 10,000). These

connections are plastic, following the STDP rule presented in
the STDP benchmark. Finally, the third population has recurrent
synapses to itself with all-to-all connectivity and static inhibitory
synapses. For more details and parameters of this model, see
Yavuz et al. (2016) and Stimberg et al. (2020b).

2.5.2. Benchmark Procedure
All our benchmarks running on GPUs were executed on a single
A100 data-center GPU (40 GB global memory), except for some
results in Figure 9, which were executed on a single consumer-
level GeForce RTX2080 Ti GPU (11 GB global memory). Brian’s
C++ backend was executed on an Intel Xeon Gold 6226R CPU
with 16 physical cores, using 16 threads. Benchmarks were run
on Brian2CUDA commit-tag paper20225 (Alevi et al., 2022),
Brian version 2.4.2 (Stimberg et al., 2020a), GeNN version 4.5.1
(Knight et al., 2021a) and Brian2GeNN commit5f844d0 (based
on version 1.6; Stimberg et al., 2021). We modified the Brian
and Brian2GeNN versions with custom patches to execute our
benchmarks and to get more detailed profiling information than
available in the original implementations. Note that we ensured
that thesemodifications had no significant impact on the runtime
durations. The correct versions of these packages are stored as
Git submodules in our GitHub repository, together with the
necessary patch files and instructions on how to apply them.
C++ code was compiled with gcc version 9.3.0 and CUDA code
was compiled with nvcc version 11.2 based on CUDA toolkit
version 11.2. The operating system on the computers with the
A100 GPUs and Intel Xeon Gold 6226R CPUs was CentOS Linux
release 7.4.1708 and on the computers with RTX2080GPUs it was
Ubuntu Linux version 20.04.3 LTS.

For all benchmarks, we first recorded network activities for
different network sizes and inspected that network activities were
as expected. Additionally, we compared the results of Brian’s
C++ backend with the results of the Brian2CUDA backend for
validation. For the final computation time measurements, we
disabled the recording of any network activities. All benchmarks
were simulated once for 10 s biological time (except for Figure 8)
with a simulation time step of 1t = 0.1ms, and the computation
times were divided by 10 to produce computation times relative
to biological time (referred to as Time [comp / bio] in our
figures). Simulations that exceeded 1,000 s of total computation
time were interrupted before the end of the simulation (except
for Figure 8). The computation time for the entire simulation
was then linearly extrapolated based on the fraction of biological
time that was simulated (data points marked in all figures).
All figures except for Figure 8 show the computation time
only for the main simulation loop, which consists of all
simulation kernels that are executed at each time step of a
simulation. This time does therefore not include compilation,
network initialization, synapse generation, or result storage.
For the Brian2CUDA profiling simulations in Figure 7, the
CPU and GPU were synchronized after each kernel launch
(forcing the CPU to wait for the kernel to terminate before
continuing execution, which results in increased computation

5https://github.com/brian-team/brian2cuda/tree/paper2022
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time) and kernel times were measured using timing functions
in C++ code. For the Brian2GeNN profiling experiments,
Brian2GeNN’s own kernel timing preference was enabled, which
records kernel times with CUDA events and without additional
CPU/GPU synchronization. All Brian2CUDA simulations of
benchmarks with no or homogeneous delays were executed
without partitioning the connectivity matrix. For benchmarks
with heterogeneous delays, the number of connectivity matrix
partitions is shown in the figure labels or captions. In all
benchmarks with heterogeneous delays, synapse bundles are used
(and not individual synapses as Brian2CUDA can be configured
to do). For Figure 8, the STDP benchmark with homogeneous
delays was simulated for the biological times and network
sizes shown in the figure legends and simulations were not
interrupted after 1,000 s computation time. Code generation and
compilation times were recorded from within the Brian package.
Tomeasure the initialization and finalization times, we computed
the difference between the time spent within the main loop of
the generated code and the total execution time of the compiled
binary.

3. RESULTS

To illustrate how different model features affect simulation
performance on GPUs in Brian2CUDA and what speedup levels
are typical, we consider multiple benchmark models covering
various model types often used in computational neuroscience.
In Sections 3.1–3.4, we focus on the computation time needed
for the main simulation loop, which is the part of the simulation
that is executed at every simulation time step. In particular,
we summarize simulation performance for models without
synaptic delays or with homogeneous delays in Section 3.1
and for models with heterogeneous delays in Section 3.2. In
Section 3.3, we analyze the contributions of different algorithm
parts to the runtime and in Section 3.4, we illustrate how
recording of network activity and state variables influences
runtimes. Section 3.5 then quantifies the overhead of preparing
a simulation in terms of compilation and synapse initialization
runtime beyond the main simulation loop. Finally, we show
in Section 3.6 how the performance depends on the choice of
floating point precision (single vs. double) and specific GPU
hardware.

3.1. Benchmark Models Without Delays or
With Homogeneous Synaptic Delays
3.1.1. Hodgkin-Huxley Benchmark
To make efficient use of GPUs, simulation code has to perform
highly parallel computations. The independent integration
of neuronal state variables performed at each simulation
time step for all neurons is trivial to parallelize on a
GPU. In Brian2CUDA, each GPU thread computes the full
state update for a single neuron (see Section 2.3.1). For
a network of Hodgkin-Huxley (HH) type neurons without
synapses, Brian2CUDA achieves a speedup of 3 orders of
magnitude compared to Brian’s single-threaded C++ backend
for large enough network sizes (N > 105; Figure 5A). The

speedup of the GPU backend implemented in Brian2GeNN
is comparable to the speedup of Brian2CUDA. With single-
precision floats as shown here, Brian2CUDA performs slightly
better than Brian2GeNN for large network sizes (Figure 5A),
while for double-precision floats this difference is negligible
(shown in Supplementary Figure S1F). Both backends also
have comparable memory requirements, but Brian2GeNN is
slightly more efficient. For example, on an RTX2080 Ti with
11GB memory, Brian2GeNN can simulate a network that has
about 1.4 times the size of the biggest network that can be
simulated with Brian2CUDA (about 2.8 · 108 vs. 2.0 · 108

neurons).
Next we turn to networks with synapses, where the application

of postsynaptic effects is less trivial to parallelize, since the effects
of multiple spikes at the same target neuron cannot be applied at
the same time in GPUmemory (see Section 2.3.2.2).We therefore
extend our benchmarkmodel to a network of recurrently coupled
HH-type neurons with conductance-based synapses without
transmission delays (Figure 5B). In this model, each neuron has
on average 1,000 synapses. To analyze the particular effect of the
added recurrent synapses, we ensured that they do not change the
network activity. In this benchmark, Brian2CUDA still achieves
a speedup of 3 orders of magnitude compared to Brian’s single-
threaded C++ backend for large enough network sizes (N >

105; Figure 5B). Notably, Brian2CUDAperforms roughly 5 times
faster than Brian2GeNN for the largest investigated network size
(N = 106), while being 2–3 times slower for smaller network
sizes (N < 104). The performance differences for small networks
can be explained by the sequential execution from multiple small
kernels in Brian2CUDA compared to the execution of fewer
merged kernels in Brian2GeNN, see Section 4 for more details.
In comparison to the network without synapses, the speedups
gained through parallel computations in the multithreaded C++
backend and the GPU backends are reduced by a factor of 2–5
when including synapses (see Figures 5A vs. 5B). This illustrates
that synaptic computations are generally less parallelizable than
neuronal computations.

3.1.2. Leaky Integrate-and-Fire Benchmark
The speedups of the GPU backends for the HH benchmarks
demonstrate that neuronal computations benefit much more
from parallelizations on the GPU than synaptic computations.
Consequently, models for which the single-threaded C++
backend spends relatively less time for neuronal computations,
should benefit less from computations on the GPU. To illustrate
this effect, we next consider a population of noise-driven
recurrently connected leaky integrate-and-fire (LIF) neurons
with homogeneous synaptic transmission delays (based on
Brunel and Hakim, 1999). This benchmark has the same number
of synapses per neuron as the HH benchmark, but its neurons
are described by only one dynamic state variable, compared
to six state variables in the HH neuron model. Therefore, the
single-threaded C++ backend spends relatively less of the overall
computation time for neuronal computations when using LIF
neurons. While Brian2CUDA still achieves a speedup of almost
3 orders of magnitude compared to Brian’s single-threaded C++
backend for large enough network sizes (N > 105; Figure 5C),
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FIGURE 5 | Benchmark results for networks without delays or with homogeneous delays. (A) Hodgkin-Huxley (HH) population without synapses. (B) Sparsely

coupled recurrent HH network with 80% excitatory and 20% inhibitory neurons, without synaptic delays. (C) Leaky integrate-and-fire (LIF) network with sparse

random connectivity and homogeneous synaptic delays dij ≡ d = 2ms for all synapses. (D) Spike-timing dependent plasticity (STDP) benchmark with homogeneous

delays dij ≡ d = 2ms. (E) Mushroom body benchmark with non-plastic synapses in the first layer and synapses with STDP in the second layer, both randomly

connected and without delays. For all panels: The text annotations on the right of the axes show the factor by which each simulation was faster than Brian’s

single-threaded C++ backend (i.e., obtained speedup) at the largest displayed N. Brian2CUDA was simulated without partitioning the connectivity matrix in all

simulations (corresponding to Figure 3B). Brian2GeNN was simulated using its post parallelization strategy for (A–C) (dark blue) and pre parallelization strategy for

(D,E) (light blue), which was the respective faster simulation mode compared to the other (not shown). All simulations were run once for 10 s biological time. All times

shown are computation times for the main time loop (i.e., without code generation, compilation, synapse generation or network initialization/finalization) and are

relative to the simulated biological time. All simulations were interrupted if the main time loop took longer than 1,000s and the total computation time was extrapolated

based on the fraction of biological time that was simulated (simulations for which this was done are indicated by small circular markers). All simulations were

performed with Brian’s single-precision preference for floating point numbers, i.e., 32-bit arithmetic, on A100 GPUs.

the speedup is approximately halved compared to that of the
recurrent HH benchmark (Figures 5B vs. 5C). Note that the
addition of homogeneous synaptic transmission delays comes
at almost no additional computational cost in Brian2CUDA
(see Section 2.3.2.3). In relation to Brian2GeNN, Brian2CUDA
performs 3 − 4 times better for the largest network sizes (N ≥

106), while being 2 − 3 times slower for smaller network sizes
(N < 104). As observed previously, Brian2GeNN is more
memory-efficient than Brian2CUDA. It is able to simulate this
benchmark on an RTX2080 Ti for a network with more than
2.0 · 106 neurons, about 2.3 times the size supported by
Brian2CUDA (about 8.6 · 105 neurons).

3.1.3. Spike-Timing Dependent Plasticity Benchmark
The benchmarks presented so far are based on static synapses,
which do not change over the course of the simulation.
However, an important subfield of computational neuroscience
is interested in synaptic plasticity, where synaptic weights
continuously adapt. Of particular interest in spiking neural
networks are spike-timing dependent plasticity (STDP) rules,
where the change in synaptic weight depends on the precise
timing of pre- and post-synaptic spikes (Bi and Poo, 2001).
Such plasticity rules present particular challenges for GPU
acceleration, since they require more complex memory access
patterns during the spike effect application phase than common
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static synapse models (cf. Brette and Goodman, 2012). To
investigate the acceleration of models with STDP, we next
examine a network with dynamic feedforward synapses from
a large population of N Poisson generators to a much smaller
population of N

1,000 LIF neurons (Figure 5D). The synapses in
this network have (again) homogeneous transmission delays.
Brian2CUDA achieves here 2 orders of magnitude speedup
compared to Brian’s single-threaded C++ backend for large
enough network sizes (N > 106), but the speedup is reduced
by a factor of 3 compared to the LIF benchmark. This is due
to the increased relative computation time required for synaptic
computations from the STDP learning rule (as will be shown
in more detail below). Compared to Brian2GeNN, Brian2CUDA
is again slower for small network sizes (N ≤ 106) while being
slightly faster for the largest network size (N = 107).

3.1.4. Mushroom Body Benchmark
In the final benchmark on simulations without or with
homogeneous delays, we consider a model of an insect
mushroom body based on Nowotny et al. (2005), in an
implementation already used in Stimberg et al. (2020b). It is a
three-layer network with HH-type neurons and STDP in some
of its synapses (Figure 5E). Since this model includes HH-type
neurons with relatively few synapses, most of the computational
effort is spent on the integration of the neuronal state variables.
More precisely, there are two operational regimes: For smaller
network sizes (N ≤ 104), the number of synapses is 2 orders of
magnitude higher than the number of neurons in the network
and the performance is comparable to the HH benchmark with
synapses (cf. Figure 5B). For larger network sizes (N ≥ 105),
the number of synapses is only 1 order of magnitude higher
than the number of neurons and the performance is closer to
that of the HH benchmark without synapses (cf. Figure 5A).
Surprisingly, Brian2CUDA’s speedup for large network sizes in
the mushroom body model is even larger than for the HH
benchmark without synapses. This behavior is probably due
to an extra dynamic inhibitory conductance variable in the
neuron model of the HH benchmark, which requires additional
registers during the neuronal integration. Due to hardware limits
of available registers on the GPU, this decreases the maximal
theoretical occupancy of the neuronal integration kernel to
62.5% for the HH benchmark compared to 100% in the
mushroom body benchmark (48 registers per thread vs. 32
registers per thread; cf. Section 2.2.3.1 and Table 1). Note that the
number of registers needed by a kernel is not easily predictable,
and does not directly reflect the number of state variables.
The number of intermediate computation steps in the chosen
integration method, additional temporary variables introduced
by Brian’s code generation process, but also the CUDA compute
capability of the GPU and even seemingly irrelevant details such
as the order of variable declarations, all affect register usage. This
demonstrates that minor differences in a model can have large
effects on performance.

Note that for Brian2GeNN, which performs about 5x slower
for the largest network size, we again show the performance
of its pre parallelization mode, for which the performance
is better at larger network sizes. For smaller network sizes,

Brian2GeNN in post parallelizationmode performs slightly better
(see Supplementary Figure S1E).

All results in Figure 5 are from simulations with
single-precision floats and with preferences that gave the
best performance. Results for additional preferences and
simulations with double-precision floats are shown in
Supplementary Figure S1.

3.2. Benchmark Models With
Heterogeneous Synaptic Delays
Brian supports the simulation of networks with heterogeneously
distributed synaptic delays. To simulate such networks,
presynaptic spikes have to be sorted by delay and stored before
their synaptic effects are applied. This spike propagation is
challenging to parallelize efficiently on GPUs and additionally
influences the parallelization of the synaptic effect application
(Brette and Goodman 2012; Section 2.3.2.4). To evaluate the
performance of Brian2CUDA’s spike propagation and effect
application algorithms, we include heterogeneously distributed
synaptic delays in our LIF and STDP benchmarks, without
qualitatively changing their network dynamics. We further
evaluate Brian2CUDA’s performance when partitioning its
connectivity matrix (see Section 2.3.2.1).

Note that while the GeNN simulator has recently added
support for heterogeneously distributed synaptic delays, this
feature is currently not available in the Brian2GeNN interface.
We therefore compare Brian2CUDA’s performance only to
Brian’s C++ backends.

Figures 6A,B show the results for the LIF and STDP
benchmarks, respectively. The performance of Brian’s single-
threaded C++ backend is not significantly affected by the
presence of heterogeneous delays, while Brian2CUDA’s
performance drops by an order of magnitude for the LIF
benchmark and between one and three orders of magnitude
for the STDP benchmark (cf. Figures 5C,D), depending on
the partitioning of the connectivity matrix. Note that Brian’s
multithreaded C++ backend does not efficiently parallelize spike
propagation or the computations for Poisson generators, and
hence performs similarly as its single-threaded backend in the
STDP benchmark. Partitioning the connectivity matrix has little
effect on overall runtime for the LIF benchmark, but increases
performance by up to two orders of magnitude in the STDP
benchmark. This strongly depends on the number of partitions
and best performance was reached for 64 partitions (Figure 6C).
To understand the effects of partitioning the connectivity
matrix, we next consider profiling experiments to analyze the
contribution of different parts of the simulation to the overall
runtime.

3.3. Runtime Decomposition Into Different
Algorithm Parts
We examine the contributions of the different algorithm
parts by profiling the simulation. The following individual
runtimes are available: the computation times for (1) performing
neuron related computations (integration of dynamics and
spike detection), (2) spike propagation and (3) synaptic effect
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FIGURE 6 | Benchmark results for networks with heterogeneous delays.

(A) LIF benchmark model from Figure 5C but with heterogeneous delays.

(B) STDP benchmark from Figure 5D but with heterogeneous delays. Delays

for all synapses in both models (A,B) were uniformly sampled dij ∼ U(0, 4)ms.

The external drive for the LIF benchmark was additionally modified to maintain

the same regime of network activity as in the case of homogeneous delays

(see Section 2.5.1.2). (C) Computation times for LIF (blue line) and STDP

(green line) benchmarks for different numbers of connectivity matrix partitions

in Brian2CUDA, for the maximal network sizes from (A,B) [indicated with blue

and red triangular markers in (A,B)]. Triangular markers in (C) indicate the

number of partitions plotted in (A,B) in the corresponding colors. All

simulations were performed as described in Figure 5.

application (including the event-driven integration of synaptic
dynamics in the STDP benchmark). The decomposed runtimes
for the LIF and STDP benchmarks with homogeneous delays
are shown in Figures 7A,B, those for heterogeneous delays are
contained in Figures 7C,D.

Brian’s multithreaded C++ backend spends around half
the computation time for spike propagation and synaptic
effect application in the LIF benchmarks (Figures 7A,C
yellow), while spending almost all time in the neuronal
state updates and Poisson spike generation in the STDP
benchmarks (Figures 7B,D blue). This is because the ratio

of synapses to neurons (including Poisson generators) is
much lower in the STDP benchmark compared to the LIF
benchmark. The speedup of the GPU backends compared to the
multithreaded C++ backend comes mostly from parallelizing the
neuronal state updates and Poisson spike generation (including
random number generation) on the GPU. When comparing
Brian2CUDA and Brian2GeNN, both require similar times for
the neuronal state updates and Poisson spike generation, but
their efficiency for the synaptic effect applications differs for
both benchmarks with homogeneous delays (Figures 7A,B). For
the LIF benchmark, Brian2CUDA’s synaptic effect application
is more efficient compared to Brian2GeNN since the former
parallelizes CUDA threads over all synapses while the latter
parallelizes over postsynaptic neurons, requiring sequential
looping over presynaptic spikes (using the post parallelization
strategy of Brian2GeNN). In the STDP benchmark on the other
hand, Brian2CUDA is only slightly more efficient in the synaptic
effect application because Brian2GeNN’s pre parallelization
strategy is particularly suited to the case of many spiking neurons
and few postsynaptic partners as explained above.

For heterogeneous delays, Brian2CUDA spends most of the
computation time on spike propagation and synaptic effect
application relative to neuronal state updates (Figures 7C,D).
For the LIF benchmark with heterogeneous delays, increasing
the number of partitions increases spike propagation times but
decreases synaptic effect application times (Figure 7C). Each
neuron in this benchmark has on average 1,000 synapses grouped
into 41 synapse bundles per partition (see Section 2.3.2.4).
Without partitioning the connectivity matrix, each CUDA block
sorts all synapse bundles of one spiking neuron into spike queues,
using one CUDA thread per bundle. This results in small CUDA
blocks with only 41 active threads during spike propagation. For
the large network size here, the number of spikes per time step
is of the same order as the maximal number of active CUDA
blocks on the GPU (see Table 1). Partitioning the connectivity
matrix under these conditions reduces the size and increases the
number of the already small CUDA blocks without being able
to execute them concurrently. Consequently, spike propagation
times increase with partition number (Figure 7C, red). On
the other hand, the synaptic effect application profits from
partitioning the connectivity matrix.Without partitioning, only a
single CUDA block applies all synaptic effects of the spike queue
for the current time step. For large networks with large spike
queues, partitioning distributes synapses across multiple CUDA
blocks, significantly increasing effect application performance
(Figure 7C, yellow). Note that partitioning also has a small
impact on the memory usage: on an RTX2080 Ti, Brian2CUDA
can simulate a LIF network with heterogeneous synapses with
around 5.6 · 105 neurons when using a single partition, but with
only about 0.77 times the size (around 4.3 · 105 neurons) when
using 68 partitions.

For the STDP benchmark with heterogeneous delays,
increasing the number of partitions decreases both, the spike
propagation and the effect application times up to an optimal
number of 64 partitions (Figure 7D). Without partitioning, the
spike propagation is so inefficient that the total runtime exceeds
that of the single-threaded C++ simulation (cf. Figure 6B). For
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FIGURE 7 | Profiling results for benchmarks with homogeneous and heterogeneous delays. (A,B) Profiling results for LIF (A) and STDP (B) benchmarks with

homogeneous delays for the respectively largest population of Figures 5C,D. (C,D) Profiling results for LIF (C) and STDP (D) benchmarks with heterogeneous delays

for the largest population size of Figures 6A,B. For the STDP benchmarks in (B,D), the Poisson spike generators are included in the neuronal computation times

(blue). The gray shaded areas in the lower part of (A–D) contain zooms of the respective GPU simulations in the middle (indicated by the magnifying glass symbol). (C,

left) and (D, right) show profiling results for different numbers of partitions of the connectivity matrix in Brian2CUDA. Black lines are the total computation times for the

main time loop (cf. Figure 6C). In all panels, Brian C++ was simulated with 16 threads, Brian2CUDA was simulated without connectivity matrix partitioning if not

stated otherwise and Brian2GeNN was simulated in post mode for (A) and in pre mode for (B). For Brian2GeNN, only the combined time of spike propagation and

effect application (striped bars) was recorded since both are combined into a single CUDA kernel. All simulations were performed as described in Figure 5, but with

enabled profiling measurements leading to slightly higher total computation times.

this benchmark, every Poisson neuron has on average only 1
synapse. This is the worst-case scenario for Brian2CUDA’s spike
propagation algorithm, since all CUDA blocks have only a single
thread and the hardware limit on maximally active blocks per SM
strongly limits the number of synapse bundles that can be added
to the spike queues concurrently. Additionally, the resulting
small workload per SM leads to a low parallelization across active
CUDA blocks since only one CUDA block can access all spike
queues at any time. Increasing the number of partitions also
partitions the spike queues. Since concurrent access of different
CUDA blocks to different spike queues is possible, this increases
spike propagation performance. This benchmark shows that for

large neuronal populations with extremely sparse synapses (here
only 1 synapse per neuron), Brian2CUDA’s connectivity matrix
partitioning can have drastic benefits on performance.

3.4. Runtime Contribution of Network
Activity and State Variable Recordings
To analyze a spiking network model, Brian allows recording
spike times, state variables and population firing rates. In
Brian2CUDA, recorded variables are stored in GPU memory
during a simulation and are transferred to CPU memory and
written to disk at the end of a simulation. The contribution to
overall computation time of such recordings strongly depends on
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FIGURE 8 | Additional time required during a simulation with Brian2CUDA for

the STDP benchmark with homogeneous delays (Figure 5D). Code

generation and compilation times (yellow) are independent of network size and

biological time. Network initialization and finalization (blue) depend on network

size but not on biological time. Simulation of the main time loop (red) scales

with both, biological time (linearly) and with network size. Compilation was

performed in parallel on 16 CPU threads.

the details of a model (e.g., neuronal firing rates) and the number
of recorded variables.

Consider for example Figure 1C, which shows the results for
a simulation of the LIF benchmark with heterogeneous delays.
To record this data, a spike recorder records all spikes in the
network, a state variable recorder records the voltage of a single
neuron for all time steps of the simulation and a population rate
recorder records the fraction of spiking neurons at each time
step. When adding these recorders to the largest LIF network
with heterogeneous delays shown in Figure 6A (N = 3.2 · 105),
they require around 6% of the computation time in the main
simulation loop. Half of this additional time is spent on the
spike recordings. For networks with overall less computation
time per recorded unit, the contribution of recordings to total
computation time naturally increases. For the extreme case of
the HH benchmark without synapses (Figure 5A; recorded data
shown in Supplementary Figure S2), the same recordings as
above require around 40% of the computation time for N = 106

neurons. Of this additional time around 2/3 is spent on spike
recordings.

While Brian2CUDA stores recordings in GPU memory until
the end of a simulation, Brian2GeNN copies them at each time
step from GPU to CPU memory. Therefore, GPU memory can
be a limiting factor for recordings in Brian2CUDA, whereas
Brian2GeNN requires very little GPU memory. For the HH
benchmark above, spike and population rate recordings in
Brian2GeNN perform similarly to those in Brian2CUDA, while
state variable recordings perform significantly worse. This is
because of an inefficient implementation of the state variable
recorder in Brian2GeNN, which copies at each time step all state
variables of all neurons to the CPU, independent of the number

of recorded neurons. This results in up to 2 orders of magnitude
longer computation times when recording a single voltage trace
in the HH benchmark example above.

Compared to Brian’s C++ backends, absolute network
recording runtimes in Brian2CUDA are comparable for large
recordings (e.g., for the HH benchmark example), and can
be slower for smaller recordings (around 5 times slower for
LIF benchmark example). This is because memory copies in
GPU memory are slow, and Brian2CUDA benefits more from
parallelizing the copy process for larger recordings. Given the
large speedups for other computations in Brian2CUDA, network
activity and state variable recordings contribute relatively much
more to total computation times than in Brian’s C++ backends.

3.5. Additional Computation Time Factors:
Code Generation, Compilation,
Initialization, and Finalization
So far we have been analyzing the computation time needed for
the main simulation loop, i.e., only that part of the simulation
that is executed at every simulation time step. For long running
simulations of large networks or for real-time applications, this is
the most relevant performance measure. But in order to get from
a Brian model script to the results, the Python code needs to be
translated into the target language, which needs to be compiled
and executed and finally, the results need to be transferred back
into the Python environment. Furthermore, at the beginning
of the simulation, the model needs to be initialized, which
includes generating synapses, setting up connectivity matrices
in the necessary format and for GPU backends, transferring
data to GPU memory. Figure 8 shows how compilation and
network initialization contribute to the overall execution time
for the STDP benchmark with homogeneous delays simulated
with Brian2CUDA (cf. Figure 5D). The time spent in the
simulation loop is proportional to the simulated biological time
and also depends on the population size N of the network.
The initialization time during the simulation is independent of
the simulated biological time and increases with network size.
And finally, the compilation time is independent of both, the
simulated biological time and the network size.

Generally, for smaller networks (here N ≤ 106) with shorter
biological times (here T < 200 s), most of the computation time
is spent on compilation, while this becomes negligible for larger
networks simulating longer biological times. The compilation
time for Brian’s C++ backends Brian2GeNN and Brian2CUDA
is mostly comparable, but can differ for some models. Brian’s
C++ backends and Brian2CUDA generate separate (CUDAC++)
source files for each neuronal population object or synapse object.
This can increase compilation times for networks with many
objects, in particular for Brian2CUDA, which suffers from slower
CUDA code compilation. The mushroom body benchmark for
example requires almost twice the time for compilation as the
STDP benchmark shown here because it consists of twice asmany
neuronal populations and synapse groups. While Brian2GeNN
requires additional time for first generating GeNN code from the
Brian model, it can compile the final CUDA code faster because
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FIGURE 9 | Benchmark results for single- vs. double precision on consumer-grade vs. data-center GPUs. (A–E) Same benchmarks as shown in Figure 5. Simulated

without connectivity matrix partitioning in Brian2CUDA, with single-precision floats (dark colors) and double-precision floats (bright colors) and on A100 data-center

GPUs (red colors) and GeForce RTX2080 Ti consumer-grade GPUs (blue colors). Dark red lines show same data as in Figure 5.

it merges multiple computations into fewer CUDA kernels and
source files.

3.6. Dependence on Floating Point Number
Precision and GPU Hardware Choice
The results above stem from simulations using single-precision
floating point arithmetics on A100 data center GPUs. Here
we compare those results with Brian2CUDA’s performance
for simulations with double-precision floats on A100 GPUs
and using a more affordable hardware GeForce RTX2080 Ti
consumer-grade GPU (Figure 9). Consumer-grade GPUs are
typically optimized for single-precision arithmetic operations
and often have very low processing power on double-precision
floats. The processing power of the RTX2080 Ti for double-
precision floats is ∼32 times lower than for single-precision
floats, while for the A100 it is only ∼2 times lower. The
processing power of single-precision floats on the A100 is
∼1.66 times larger than on the RTX2080 Ti. However, the
performance differences between GPUs and between single-
precision and double-precision simulations don’t necessarily
reflect the difference in processing power. Additional factors
play a role, such as hardware limits on memory per SM or
available data transfer bandwidths. Specifically, the hardware
limits can have double effect when comparing single- to double
precision simulations. For the mushroom body benchmark,
the speedup from double- to single-precision simulations on

the RTX2080 Ti (Figure 9E, bright blue vs. dark blue) is
much higher than in the other benchmarks. This is not only
because of the increased processing power, but also because for
double-precision simulation the extended memory requirements
reach the hardware limits on available registers (see Table 1),
forcing the simulation to run with less active threads. With
single-precision floats, the reduced memory requirements allow
higher GPU occupancy on top of the higher processing
power for single-precision floats. Additionally, only computation
bound simulations will show strong performance differences
between floating point precisions and GPUs (e.g., in the HH
benchmarks; Figures 9A,B). For simulations which are bound by
communication tasks such as spike propagation, the performance
differences are much lower (e.g., in the STDP benchmark;
Figure 9D).

In summary, these results show that one does not need
extremely expensive data-center GPUs to benefit from GPU
computations in spiking neural networks, since much cheaper
consumer-grade GPUs can perform comparably for many model
types—at least for simulations with single-precision floats.

4. DISCUSSION

Building on the user-friendly simulator Brian and its code
generation framework, the Brian2CUDA package presented here
allows users with little technical expertise to simulate arbitrary
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neural and synaptic models on GPUs. As we have shown, this
can lead to an important acceleration of a wide range of model
simulations. The achievable speedup depends on the details of
the model and the size of the network. For a small network,
or a model with challenging features for parallelization such as
heterogeneous transmission delays, only a several-fold increase
in simulation speed might be possible. On the other hand,
for models that are more favorable to parallelization, such as
unconnected networks or networks with homogeneous delays
and complex neuron models, the simulation speed can increase
dramatically by several orders of magnitude. Our detailed
benchmarking has shown a number of possible routes to further
optimize the simulation speed for the challenging situations,
which we will discuss in the following section.

4.1. Limitations and Future Work
Efficiently simulating different types of synaptic models on
GPUs is challenging because there is no single algorithm that
is best for all situations (Brette and Goodman, 2012; Kasap
and van Opstal, 2018). Through partitioning the connectivity
matrix, Brian2CUDA can counteract performance degradation
for some cases where the default parallelization strategy would
be inefficient. For models with homogeneous transmission delays
and without partitioning the connectivity matrix, the effect
application of individual spiking neurons is parallelized over
CUDA blocks. Partitioning the connectivity matrix distributes
the synapses for each spiking neuron over additional CUDA
blocks. However, this increases performance only when the
number of synapses per spiking neuron is larger than the
maximal number of threads per CUDA block (1,024; cf. Table 1).
For all benchmark models here, the average number of
synapses per neuron is ≤1,000, for which partitioning does
not increase parallelization. For models with more synapses,
however, partitioning is expected to be beneficial as long
as the number of spiking neurons per time step is small
enough in order to keep the total number of CUDA blocks
below the hardware limit on active blocks on all SMs of
a GPU. For models with heterogeneous delays, partitioning
the connectivity matrix has a non-trivial effect on spike
propagation and synaptic effect application algorithms (see
Figure 7). For example, without partitioning, spike propagation
is very efficient while effect application is inefficient due to
only one CUDA block applying all synaptic effects. Future
work can further accelerate the simulation of models with
heterogeneous delays by parallelizing the effect application over
more CUDA blocks instead of using only one CUDA block per
partition.

The current implementation of Brian2CUDA is optimized
for large networks, where its speedups compared to Brian’s
C++ backends are the largest and where it outperforms
Brian2GeNN in simulating the benchmark models employed
here. For smaller network sizes, however, Brian2CUDA is often
outperformed by Brian2GeNN (see for example Figures 5B–D).
This can be at least partly explained by Brian’s modular
approach, inherited by Brian2CUDA. Each individual model
component—e.g., the numerical integration, the thresholding,
the resetting (cf. Section 2.3)—is contained in an individual

kernel, and all kernels are executed sequentially. For kernels
that don’t utilize all resources (e.g., small populations of
synapses/neurons), this leads to performance degradation. In
contrast, Brian2GeNN merges all calculations related to neurons
into one kernel and all updates of synapses in another kernel.
We are currently working on two features that are promising
to increase performance for smaller networks: (1) Using CUDA’s
concurrent kernel execution capabilities, kernels for separate
neuron and synapse objects can be executed in parallel while
keeping Brian’s modular approach. (2) Convenience functions
in Brian’s Python interface can be implemented that allow users
to easily merge multiple versions of the same (potentially small)
model into a single large model. This would not only allow
much easier parameter explorations of networks on a single
GPU but also benefit from Brian2CUDA’s optimizations for large
networks.

Brian2CUDA’s main focus is on optimizing the simulation
phase, since this typically dominates the overall time for larger
networks. To run smaller networks or simpler simulations,
however, the long code generation and compilation phase in the
beginning (cf. Figure 8), can be a major inconvenience. The long
compilation times partly stem from Brian’s modular approach
mentioned above. Each component of the simulation is contained
in a separate code file that needs to be compiled individually.
To reduce compile times, multiple code files could be combined
during code generation. It should be noted, however, that the
reported compilation times are the full compilation times for a
new simulation. If a user re-runs an existing simulation and only
changes some aspects of it, only the changed source code will be
re-compiled.

Another major future optimization for network simulations
that run for a short biological time, is the synapse generation in
the initialization phase of the simulation. At themoment, synapse
generation uses Brian’s C++ mechanism and therefore does not
benefit from the GPU at all.

Current data structures and algorithms for simulating
synapses are designed to handle all synaptic models and
connection structures supported by Brian. But they perform
better on some model types than on others. For example, for
homogeneous delays, our synaptic effect application algorithm
performs best when the number of connections is equally
distributed across neurons. For structured connectivity, variable
synapse group sizes can lead to unbalanced workloads across
CUDA blocks during effect application (cf. Figure 3E), which
can affect performance. Similarly, for heterogeneous delays,
our synaptic effect application algorithm for synapse bundles
performs best when bundle sizes are uniformly distributed
within each synapse group because the same number of threads
is assigned to each bundle (cf. Figure 4D). Strong variability
across bundle sizes would lead to unbalanced workloads across
groups of threads processing synapses of different bundles. In
order to avoid these unbalanced workloads, one future direction
could be to optimize our connectivity matrix scheme based
on connectivity details. This could allow distributing workloads
more evenly or exploiting local connectivity structures in our
algorithms (as has been done before by Fidjeland et al., 2009;
Fidjeland and Shanahan, 2010).
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The presented workmostly focussed on optimizing simulation
performance and less on memory usage. However, available
memory can be a major constraint, in particular on consumer-
grade GPUs. This is especially true when recording spike
times and state variables from many neurons or synapses,
which Brian2CUDA stores in GPU memory (see Section 3.4).
In future versions, we plan a recorder implementation that
allows transferring data in regular intervals from GPU to CPU
memory, and we will focus on optimizing further unnecessary
redundancies and memory inefficiencies. This should close the
gap to Brian2GeNN, which is currently more memory-efficient.

Brian2CUDA is designed to support all features of Brian2 that
are currently supported by its C++ backend and builds on the
same code generation framework. It is therefore considerably
less limited than the Brian2GeNN backend (discussed below),
and supports a large variety of models. We have focused
the development on spiking networks of single-compartment
models, since they are most likely to benefit from GPU
acceleration. Nevertheless, Brian2CUDA has support for other
types of models supported by Brian, such as multi-compartment
models, or rate-based models. This support is preliminary,
though, and using Brian2CUDAmight not give any performance
benefits prior to improving the respective parallel algorithms.

As a general note on the limitations above, we would like
to again emphasize that due to Brian2CUDA’s implementation
as a backend for the Brian simulator, a researcher does not
need to invest any additional time or effort to port a model
to Brian2CUDA. In contrast, porting a model to a simulator
that only targets the GPU carries the risk that the effort is not
worth the benefit. Due to the backend approach, researchers can
also easily switch between the CPU and GPU-based approaches
during development of a new model. For example, a researcher
can do the initial development and testing on a small-scale model
with the CPU, without having to pay the additional cost for the
CUDA compilation, and then switch to the GPU for the final
model, where the slower compilation is more than compensated
by the faster computation time.

The Brian2CUDA backend is currently only supported for
Linux operating systems (in contrast to Brian which supports
Windows, Linux, and OS X), but this limitation will be removed
in the future.

4.2. Comparison to Existing Approaches
Accelerating neural network simulations with the parallelization
capabilities of GPUs has been a promising approach for more
than a decade. The Brian2CUDA simulator presented here, builds
on the foundations laid by these earlier simulators. For example,
Brian2CUDA’s spike propagation algorithm groups synapses
based on their pre- and postsynaptic targets, as well as their
delays into synapse bundles, similar to the approach of the NEMO
simulator (Fidjeland et al., 2009; Fidjeland and Shanahan, 2010);
in the case of homogeneous delays, Brian2CUDA’s postsynaptic
update algorithm results in a similar parallelization over synapses
as in the dynamic parallelism approach described in Kasap and
van Opstal (2018).

In recent years, several new, general-purpose simulators have
seen the light of day, with each of them making different
tradeoffs between the requirements of ease-of-use, flexibility and

performance. To give a few recent examples: the Spike simulator
(Ahmad et al., 2018) has been optimized for speed, but is
implemented as a C++ library and therefore not easily useable for
many researchers; the EDEN simulator (Panagiotou et al., 2021)
runs arbitrary NeuroML v2 models (Cannon et al., 2014), which
means it inherits NeuroML’s focus on multi-compartmental
models but also its limitations with regard to networks of spiking
neurons; the NeuronGPU simulator (Golosio et al., 2021) comes
with a convenient Python interface, but implementing new
models requires editing the C++ source code of the simulator.

The Brian2CUDA interface and its general approach is
comparable to the ANNarchy simulator (Vitay et al., 2015) and
the GeNN simulator (Yavuz et al., 2016) when used together
with its PyGeNN interface (Knight and Nowotny, 2021). By
being a fully-featured backend for the Brian simulator, however,
Brian2CUDA provides additional benefits for researchers that
other simulators lack, such as a system of physical units, support
for multi-compartmental models, and the possibility to precisely
customize execution schedules. As we have shown in this article,
Brian2CUDA not only provides flexibility and convenience, but
also shows competitive performance for a wide range of network
models.

The most similar approach to the Brian2CUDA package
presented here is obviously the Brian2GeNN package, which
is also implemented as a backend for the Brian simulator.
Instead of generating CUDA code directly, the Brian2GeNN
backend generates code for the GeNN simulator, which then in
turn generates CUDA code. This approach has its advantages—
e.g., Brian2GeNN will automatically benefit from performance
optimizations in the GeNN package—but it also leads to a much
more restricted set of Brian features that are supported.While the
GeNN simulator provides a large amount of flexibility, it does
not go as a far as Brian and Brian2CUDA, for example it does
not allow for a customized execution order for all the elements
of a simulation. The Brian2GeNN interface adds a number
of additional restrictions. As a result, less common synapse
implementations, in particular those that need access to and
change variables both on the pre- and post-synaptic side, might
not be supported. Brian2GeNN is also behind in enabling features
added in newer versions of GeNN. Most importantly, GeNN
added support for heterogeneous synaptic delays with its version
3.2, but this support is not yet available via the Brian2GeNN
interface. The benchmark results for Brian2GeNN presented in
this study should therefore be interpreted with caution and not
necessarily be taken as indicative of GeNN’s performance. For
example, it appears as if the Brian2GeNN performance does
not improve as much as expected when switching from double
to single precision floats (Supplementary Figure S1), but that
might be due to a suboptimal conversion of the model by
Brian2GeNN.

5. CONCLUSION

By combining the flexibility of the Brian simulator with the
simulation speed of GPUs, Brian2CUDA enables researchers
to efficiently simulate spiking neural networks with minimal
effort and thereby makes the advancements of GPU computing
available to a larger audience of neuroscientists.
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