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Biomedical image registration refers to aligning corresponding anatomical

structures among di�erent images, which is critical tomany tasks, such as brain

atlas building, tumor growth monitoring, and image fusion-based medical

diagnosis. However, high-throughput biomedical image registration remains

challenging due to inherent variations in the intensity, texture, and anatomy

resulting from di�erent imaging modalities, di�erent sample preparation

methods, or di�erent developmental stages of the imaged subject. Recently,

Generative Adversarial Networks (GAN) have attracted increasing interest in

both mono- and cross-modal biomedical image registrations due to their

special ability to eliminate the modal variance and their adversarial training

strategy. This paper provides a comprehensive survey of the GAN-based

mono- and cross-modal biomedical image registration methods. According

to the di�erent implementation strategies, we organize the GAN-basedmono-

and cross-modal biomedical image registration methods into four categories:

modality translation, symmetric learning, adversarial strategies, and joint

training. The key concepts, the main contributions, and the advantages and

disadvantages of the di�erent strategies are summarized and discussed. Finally,

we analyze the statistics of all the cited works from di�erent points of view and

reveal future trends for GAN-based biomedical image registration studies.

KEYWORDS

cross-modal, biomedical image registration, Generative Adversarial Networks, image

translation, adversarial training

Introduction

The goal of biomedical image registration (BIR) is to estimate a linear or non-linear

spatial transformation by geometrically aligning the corresponding anatomical

structures between images. The images can be acquired across time, modalities, subjects,

or species. By aligning the corresponding structures or mapping the images onto a

canonical coordinate space, the registration allows quantitative comparison across the
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subjects imaged under different conditions. It enables the

analysis of their distinct aspects in pathology or neurobiology

in a coordinated manner (Oliveira and Tavares, 2014). In

addition, image registration is also fundamental to image-guided

intervention and radiotherapy.

In recent years, there has been a steady emergence of high-

resolution and high-throughput biomedical imaging techniques

(Li and Gong, 2012; Chen et al., 2021). Some commonly used

macroscale imaging techniques include magnetic resonance

imaging (MRI), computed tomography (CT), positron emission

tomography (PET), and single photon emission computed

tomography (SPECT) (Gering et al., 2001; Staring et al., 2009).

However, mesoscale and microscale imaging techniques, such

as serial two-photon tomography (STPT) (Ragan et al., 2012),

fluorescence micro-optical sectioning tomography (FMOST)

(Gong et al., 2016), volumetric imaging with synchronous on-

the-fly scan and readout (VISOR) (Xu et al., 2021), and the

electron microscope (EM) (Ruska, 1987), play pivotal roles

in various neuroscience studies. The resulting exploration

of the number, resolution, dimensionality, and modalities

of biomedical images not only provides researchers with

unprecedented opportunities to study tissue functions, diagnose

diseases, etc. but also poses enormous challenges to image

registration techniques.

A large number of image registration methods, ranging

from the traditional iterative method to the one-shot end-

to-end method (Klein S. et al., 2009; Qu et al., 2021), from

the fully supervised strategy to the unsupervised strategy

(Balakrishnan et al., 2019; He et al., 2021), have been developed

to take full advantage of the rapidly accumulating biomedical

images with different geometric and modalities. According

to the different acquisition techniques of the images, these

methods can also be classified into two main categories:

mono-modal (intra-modal) registration and cross-modal (or

inter-model) registration. Generally, the images of different

modalities often vary substantially in their voxel intensity, image

texture, and anatomical structures (e.g., due to uneven brain

shrinkage resulting from different sample preparationmethods).

Therefore, cross-modal registration is even more challenging

to achieve.

To the best of our knowledge, few studies focus on cross-

modal medical image registration. Among the available reviews

(Jiang S. et al., 2021), traditional feature-based cross-modal

alignment methods have been reviewed in detail. Most of

these traditional registration methods are based on iterative

training, which is time consuming. The supervised alignment

methods are limited by insufficient labels among the learning-

based methods. However, unsupervised methods are proposed

with various loss functions due to the absence of ground truth

and supervision.

Additionally, these unsupervised methods do not perform

as well as unimodal on cross-modal images due to too

much variation between cross-modal appearances. Nevertheless,

efforts are being directed toward removing themodal differences

between cross-modalities. Among these various deep-learning-

based methods, the Generative Adversarial Networks (GAN)

(Goodfellow et al., 2014) have received increasing attention

from researchers for their unique network structures and

training strategies. In addition, the GAN-based methods have

shown extraordinary potential in dealing with cross-modal

registration. In particular, the conditional GAN (CGAN) can

realize transformation between different styles of images, which

provides a new solution to the difficult cross-modal registration

method, which has been plagued by the different modality

characteristics for a long time.

Since it was proposed, the GAN has been widely used for

biomedical image analysis, such as classification, detection, and

registration. Its outstanding performance in image synthesis,

style translation (Kim et al., 2017; Jing et al., 2020), and

the adversarial training strategy has attracted attention in

many areas (Li et al., 2021). GAN has been applied to image

registration tasks since 2018 (Yan et al., 2018). However,

compared with other deep-learning-based registration methods,

the GAN-based methods are still in their infancy, and their

potential needs further exploration. To the best of our

knowledge, there has not yet been a specific review on GAN

in biomedical image registration. Therefore, we hereby try to

provide an up-to-date and comprehensive review of existing

GAN applications in biomedical image registration.

In the survey, we focus on both the GAN-based mono- and

cross-modal biomedical image registrations but may highlight

more on the contribution of the GAN-based cross-modal image

registration. Cross-modal biomedical image registration is still

facing many challenges compared with mature mono-modal

biomedical image registration.

This review is structured as follows: Section Common

GAN structures briefly introduces the basic theory of common

GAN related to image registrations; Section Strategies

of GAN based biomedical image registration provides a

comprehensive analysis of four GAN-based registration

strategies; in Section Statistics, we analyze the ratio distribution

of some important characteristics of these studies, and in

Section Future perspectives, we discuss some open issues and

future research perspectives.

Common GAN structures

This section gives a brief introduction to the GAN structures

used for image generation. The structures considered are

often used directly or indirectly in the cross-modal biomedical

image registration model. We summarize this literature,

which considers GAN structures, in Tables 2–5. The section

emphasizes the overall architecture, data flow, and objective

function of GAN. The differences between the various methods

are also presented.
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Original GAN

The framework of the original GAN is shown in Figure 1.

The original GAN consists of two networks, the generator (G)

and the discriminator (D), both of which are fully connected.

The input to the generator is a random noise vector from the

noise distribution ∼p(z) (random noise is Gaussian noise or

uniform noise). The generator can learn a mapping from the

low-dimensional noise vector space to the high-dimensional

data space. The input of the discriminator is the real data∼Pr(x)

and the synthetic data ∼Pg (x) by the generator. If the input to

the discriminator is real data x, the purpose of the discriminator

is to represent the probability that x comes from ∼Pr(x) rather

than∼Pg (x), and the discriminator should classify it as real data

and return a value close to 1.

Conversely, if the input is synthetic data, the discriminator

should classify it as false data and return a value close to 0. The

false signal output from the discriminator is back propagated to

the generator to update the network parameters. This framework

is trained in an adversarial strategy corresponding to a two-

player minimax game. The minimax GAN loss is equivalent to

the game’s rules, while the generator and the discriminator are

equivalent to the two players. The goal of the generator is to

minimize the loss by generating synthetic images that look as

similar to the real images as possible to fool the discriminator.

In contrast, the discriminator maximizes the loss to

maximize the probability of assigning the correct label to both

the training examples and the samples from the generator. The

training improves the performance of both the generator and the

discriminator networks. Their loss functions can be formulated

as follows:

LD = max
D

Ex∼pdata(x)

[

logD (X)
]

+Ez∼pz(z)[log (1− D (G (Z)))]

LG = minGEz∼pz(z)[log (1− D (G (Z)))] (1)

where LD and LG are the loss functions of D and G, respectively,

and D is the binary classifier; it is expected that the data

distribution generated by G(z) is close to the real data when the

model is optimized.

DCGAN

Compared with the original GAN, the deep convolutional

generative adversarial networks (DCGAN) (Radford et al., 2015)

add specific architectural constraints to GAN by replacing all

the full-connected neural networks with CNN, which results in

stable training. Figure 2A illustrates the structure of DCGAN,

in which there are three important changes in the convolutional

neural network (CNN) architecture. Firstly, the pooling layers

in the discriminator and the generator are replaced by the

stridden convolution and the fractionally strung convolutions,

respectively, which allow the generator to learn the specific

spatial upsampling from the input noise distribution to the

output image. Secondly, batch normalization (Ioffe and Szegedy,

2015) is utilized to regulate poor initialization to prevent the

generator from collapsing from all samples to a single point.

Thirdly, the LeakyReLU (Maas et al., 2013) activation is adopted

to replace themaxout activation in all layers of the discriminator,

promoting the output of higher-resolution images.

CGAN

The structure of CGAN (Mirza and Osindero, 2014) is

illustrated in Figure 2B. The CGAN performs the conditioning

for the output mode by feeding the auxiliary information related

to the desired properties y and noise vector z to the generator

and the discriminator. The objective function of the CGAN can

be formulated as follows:

LD = max
D

Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1− D(G(z|y)))]

LG = minGEz∼pz(z) [log
(

1− D
(

G
(

z|y
)))

] (2)

where y is the auxiliary information, which could be a class

label, an image, or even the data from different modes. For

instance, Pix2Pix (Isola et al., 2017) translates the label image

or edge image to an image with another style. InfoGAN (Chen

et al., 2016) is regarded as a special CGAN whose condition is

a conditional constraint on the random noise z for guiding the

thickness, slope, and other features of the generated image.

Pix2Pix

Pix2Pix (Isola et al., 2017) is the first GAN framework

for image-to-image translation, which can learn a mapping

that transforms an image from one modality to another based

on paired-wise images. The structure of Pix2Pix is depicted

in Figure 2C. A paired-wise image means that the internal

structures in the image pair are accurately aligned, while their

texture, brightness, and other modality-related features differ.

The objective loss combines CGAN with the L1 loss so that the

generator is also asked to generate images as close as possible to

the ground truth:

LcGAN (G,D) = Ex,y
[

logD
(

x, y
)]

+Ex,z
[

log
(

1−D
(

x,G(x, z)
))]

(3)

LL1(G) = Ex,y,z[
∥

∥y− G(x, z)
∥

∥

1] (4)

G∗ = arg
min

G

max

D
LcGAN (G, D) + λLL1 (G) (5)

where x and y represent the images from the source and

the target domain, respectively; the L1 loss is a pixel-level

metric between the target domain image and the generated

image to impose a constraint on G, which could recover the
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FIGURE 1

The architecture of the original GAN.

low-frequency part of the image; the adversarial loss could

recovery the high-frequency part of the image, and λ is the

adjustable parameter.

Cycle-GAN

CycleGAN (Zhu et al., 2017) contains two generators and

two discriminators, which are self-bounded by an inverse loop

to transform the image between the two domains. The structure

of Cycle-GAN is illustrated in Figure 2D. One generator, G,

translates the source domain image X to the target domain

image Y. Another generator, F, learns the inverse mapping of

G, which brings G(X) back to its original image X., i.e., x →

G(x)→ F[G(x)] ≈ x. Similarly, for y from the domain Y, F and

G also satisfy the cycle-consistent, i.e., y → F(y) → G[F(y)]

≈ y. The cycle-consistent loss Lcycle measures the reconstructed

image and the real image by pixel-level loss calculation to

constrain the training of G and F, ensuring the consistency of

its morphological structure in the transformation process. Two

discriminators distinguish between the reconstructed image and

the real image. The adversarial loss and the cycle-consistent loss

are as follows:

LGAN (G,DY ) = E y∼pY(y)[logDY (y)]

+E x∼pX(x)[logDX(x)] (6)

Lcyc(G, F) = E x∼pX(x)[||F
(

G (x) − x||1
)

]

+ E y∼pY(y)[||G(F(y)− y||1) (7)

L(G, F,DX ,DY ) = LGAN (G,DY )+ LGAN (F,DX)+ λ Lcyc(G, F)

(8)

The training procedure uses the least squares and replays buffer

for training stability. UNET (Ronneberger et al., 2015) and

PatchGAN (Li and Wand, 2016; Isola et al., 2017) are used to

build the generator and the discriminator.

UNIT

UNIT (Liu et al., 2017) can also perform unpaired

image-to-image transformation by combining two variational

autoencoder generative adversarial networks (VAEGAN) (Xian

et al., 2019), with each responsible for one modality but sharing

the same latent space. The UNIT structure is illustrated in

Figure 2E, which consists of six subnetworks: two domain image

encoders, E1 and E2, two domain image generators, G1 and G2,

and two adversarial domain discriminators, D1 and D2. The

encoder–generator pair {E1, G1} constitutes a VAE for the X1

domain, called VAE1. For an input image x1∈X1, the VAE1 first

maps x1 to a code in a latent space Z via the encoder E1 and then

decodes a random-perturbed version of the code to reconstruct

the input image via the generator G1. The image x2 in X2 can

be translated to an image in X1 by applying G1(Z2). For real

images sampled from the X1 domain, D1 should output true,

whereas, for images generated by G1(Z2), it should output false.

The cycle-consistency constraint exists in x1 = F2−1[F1−2(x1)],

where F1−2 = G2[E1(X1)].

Strategies for GAN-based
biomedical image registration

Cross-modal biomedical image registration using GAN has

given rise to an increasing number of registration algorithms
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FIGURE 2

The architecture of the variant GANs. (A) The architecture of DCGAN, (B) the architecture of CGAN, (C) the architecture of Pix2Pix, (D) the

architecture of CyclGAN, and (E) the architecture of UNIT.
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to solve the current problems mentioned in the introduction

section. Based on the different strategies, the algorithms are

divided into four categories: modality translation, symmetric

learning, adversarial strategies, and joint training. A category

overview of the biomedical image registration methods using

GAN is shown in Table 1. In the table, we describe the key ideas

of the four categories, respectively, and summarize the different

implementation methods for each strategy. In the subsequent

subsections, we review all the relevant works as classified in

Table 1.

To present a comprehensive overview of all the relevant

works on GANs in biomedical image registration, we searched

science datasets, including Google Scholar, SpringerLink, and

PubMed, for all relevant published articles from 2018 to 2021.

The keywords included medical image registration/matching

alignment, GAN (Generative Adversarial Networks),

multimodal (cross-modality) medical image registration,

GAN, adversarial medical image registration, segmentation,

and registration. About 300 papers are indexed, including

36 papers that completely match our criteria. There are two

requirements for our inclusion in the articles. The first is that

the topic of the papers is image registration, and the second is

that the method is of GAN based on and used to implement the

registration strategy. To verify the comprehensiveness of the

search, we also searched them separately in the International

Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI), the IEEE International

Symposium on Biomedical Imaging (ISBI), and SPIE Medical

Imaging to compare with the already searched papers. During

the literature review process, we try to integrate all relevant

papers to reach a reasonable conclusion; however, because this

topic is still in its infancy, the number of published papers is

minimal. Therefore, we are unable to conduct an experimental

review on this topic because most of the searched articles have

no open-source code, and the data are private.

Modality-Independent based strategy

Biomedical image registration algorithms of modality-

independent based strategies mainly focus on cross-modal

images. The key idea of the strategy is to eliminate the

variance between modalities so that cross-modality registration

can be performed on modality-independent data. A modality-

independent strategy can be implemented by translating

cross-modality, image disentangling, and latent representation

methods. This strategy can avoid the design of cross-modal

similarity loss. It only uses robust mono-modal similarity loss to

guide the optimization of the model. In Table 2, we provide an

overview of the important elements of all the reviewed papers.

Among these papers, 12 directly use Cycle-GAN as the baseline

model, and seven are applied to the registration tasks ofMRI-CT,

with the organs covered by the brain, liver, retina, and heart.

Modality translation

To register MRI to CT, Tanner et al. (2018) make the

first attempt at modality translation using Cycle-GAN and

subsequently perform the mono-modality registration on two

images in the same domain. The Patch-GAN uses N×Npatches

instead of a single value as the output of the discriminator

for spatial corresponded-preservation. This pioneering work

assessed the feasibility of this strategy. However, the mono-

registration significantly relies on the quality of synthetic images.

In a subsequent study, to constrain the geometric changes

during modality translation, Wei et al. (2020) designed the

mutual information (MI) loss to regularize the anatomy and

between the classic mono-modal registration method ANTS

(Avants et al., 2008, 2009) as the registration network. Xu

et al. (2020) combined the deformation field from uni- and

multimodal stream networks by dual stream fusion network

for cross-modality registration. The uni-modal stream model

preserves the anatomy during modality translation using the

Cycle-GAN by combining several losses, including the modality

independent neighborhood descriptor (MIND) (Heinrich et al.,

2012), the correlation coefficient loss (CC), and the L2 loss.

The basic structures of these methods are shown in Figure 3D.

To further solve the uni-modal mismatch problem caused by

the unrealistic soft-tissue details generated by the modality

translation, the multimodal stream network is proposed on

the UNET-based cross-modal network to learn the original

information from both the fixed and moving images. The dual

stream fusion network is responsible for fusing the deformation

fields of the uni-modal and multimodal streams. The two

registration streams’ complementary functions preserve the

edge details of images. However, the multimodal stream also

learns some redundant features, which is not beneficial to the

alignment. Unlike the aforementioned methods, Zhou et al.

(2021) translate the CBCT and MRI to the CT modality by

Cycle-GAN. The UNET-based segmentation network is trained

to get the segmentation map of the synthetic CT image for

guiding the robust point matching (RPM) registration. The

systems combine the synthesis and segmentation networks

to implement cross-modality image segmentation. Arar et al.

(2020) assume that a spatial translation network (STN)

(Jaderberg et al., 2015) registration network (R) and the CGAN-

based translation net (T) are commutative, i.e., T ◦ R=R ◦ T.

Based on this assumption, the optimized L1-reconstruction loss

Lrecon (T,R) =
∥

∥ORT − Itarget
∥

∥

1 +
∥

∥OTR − Itarget
∥

∥

1, which

encourages T to be geometrically preserved. Benefited from the

anatomy-consistency constraints, the registration accuracy can

be improved. However, the training of GAN may suffer from

non-convergence, which may pose certain additional difficulties

to the training of the registration network. Lu et al. (2021)

assessed what role image translation plays in the cross-modal

registration based on the performance of Cycle-GAN, which also

shows the instability of this approach and the overdependence

on the data.
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TABLE 1 A category overview of biomedical image registration methods using GAN.

Category Key idea Method Publication

Modality independent Translate two different modal-image to the Modality translation Tanner et al., 2018; Wei et al., 2019

same domain, then perform mono-modal Wei et al., 2020; Xu et al., 2020

registration Zhang et al., 2020; Zhou et al., 2021

Lu et al., 2021

Latent representation Mahapatra and Ge, 2020; Yang

et al., 2020

Image decomposition Qin et al., 2019; Wu and Zhou,

2021

Symmetric Learning The accuracy of bidirectional registration is

optimized by making transformation inverse

consistency

GAN Zheng et al., 2021

Cyclic-consistency Lu et al., 2019, 2020

Adversarial learning Adopt the way of adversarial training to

perform image registration. The generator is

regarded as registration, and similarity loss is

instead of the discriminator

Semi-supervised Hu et al., 2018; Elmahdy et al.,

2019; Li and Ogino, 2019; Luo

et al., 2021

Knowledge distillation Tran et al., 2022

Attention mechanisms Li M. et al., 2021

Adversarial training Fan et al., 2018, 2019; Yan et al.,

2018

Joint learning Segmentation, synthesis, and registration

network jointly train to improve the

performance of each other

Multitask Mahapatra et al., 2018; Liu et al.,

2020; Zhou et al., 2021

Image disentangling

Qin et al. (2019) try to learn a registration function inmodal-

independent latent shape space in an unsupervised manner.

The proposed framework consists of three parts: a disentangling

image network via unpaired modality translation, a deformable

registration network in the disentangled latent space, and a GAN

modal to learn a similarity metric in the image space implicitly.

Several losses are used in the network to train the three parts,

including the self-reconstruction loss, the latent reconstruction

loss, the cross-cycle consistency, and the adversarial loss with

similarity metrics defined in latent space. The work is capable of

translating cross-modal images by image disentangling to obtain

shape latent representation related to the image alignment.

This method can alleviate unrealistic image generation from

the Cycle-GAN-based approaches. However, the deformation

field generated by latent shape representation introduces

unsmooth edges. Wu and Zhou (2021) propose a fully

unsupervised registration network through image disentangling.

The proposed registration framework consists of two parts: one

registration network aligns the image from x to y, and the

other aligns the image from y to x. Each part consists of two

subnetworks: an unsupervised deformable registration network

and a disentangling representation network via unpaired

image-to-image translation. Unlike Qin et al. (2019), the

representation disentangling model aims to drive a deformable

registration network for learning the mapping between the

two modalities.

Latent representation

Mahapatra and Ge (2020) use a convolutional autoencoder

(CAE) network to learn latent space representation for different

modalities of images. The generator is fed into latent features

from CAE to generate the deformation fields. The intensity

and shape constraints are achieved by content loss, including

the normal mutual information (NMI), the structural similarity

index measure (SSIM) (Wang et al., 1987, 2004), and the visual

graphics generator (VGG) (Simonyan and Zisserman, 2014)

with L2 loss. The cycle consistency loss and the adversarial loss

are used to constrain the deformation field consistency, which is

calculated as follows:

L
(

G, F,DIFlt ,DIRef
)

= Ladv + Lcontent + λLcyc(G, F) (9)

Lcontent

(

ITrans, IRef
)

= NMI
(

IRef , ITrans
)

+
[

1− SSIM
(

IRef , ITrans
)]

+ VGG(IRef , ITrans)
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TABLE 2 Overview of the modality-independent based strategy.

Publications Organ Method Modality Evaluation metrics Loss Dataset

Han et al. (2021) Brain Cycle-GAN MRI-CT M1, 2 L3 –

Fu et al. (2020) Head and neck Cycle-GAN MRI-CT M2 –

Lu et al. (2020) Heart Cycle-GAN CT-TEE M1, 3, 4 L1 –

Wei et al. (2020) Liver Cycle-GAN MRI-CT M1, 2 L3 –

Wei et al. (2019) Liver Cycle-GAN MRI-CT M1, 2 L3 –

Arar et al. (2020) / Cycle-GAN / M5 L1, 2 –

Zhang et al. (2020) Brain Pix2Pix T1–T2 L1, 2, 5 D3

Tanner et al. (2018) Retina and heart Cycle-GAN MRI-CT M1 L1, 3 –

Zhou et al. (2021) Liver Cycle-GAN MRI-CBCT M1, 10 L3, 4, 5, 6, 8 D8,9

Yang et al. (2020) Brain VAE+GAN MRI-CT M7, 9 L2, 3 –

Lu et al. (2021) / Cycle-GAN, Pix2Pix, Drit, StarGAN-v2 / M5 / –

Xu et al. (2020) Kidney Cycle-GAN CT-MR

Qin et al. (2019) Lung and brain CycleGAN T1–T2 M1, 3, 13 L1, 2, 5, 10 D24

Wu and Zhou

(2021)

Brain CyclegGAN T1–T2 M14 L1, 3, 9 D25

Mahapatra and Ge

(2020)

Lung, brain, retinal GAN X-rays- X-rays/T1-T2 M1, 3 L1, 5, 10 D23

Lin et al. (2021) Brain RevGAN MRI-PET ACC L1 –

Some brief descriptions of the loss, dataset, and evaluation metrics can be found in Tables 6–8. The symbol–in the last column means that the data used in the paper is a private dataset.

Lcyc (G, F) = Ex ‖F (G (x)) − x‖1 + Ey
∥

∥G (F (x)) − y
∥

∥

1 (10)

Ladv = LcycleGAN
(

G,DIRef
)

+ LcycleGAN
(

F,DIFlt
)

+ log(1−MSENorm(I
Def−APP, IDef−Recv)) (11)

where (G, F) represents the two generators, DIFlt and DIRef

represent IFlt and IRef as the real data of the discriminator,

x and y represent the original images of the two modalities,

and MSENorm is the MSE normalized to [0, 1]. Yang et al.

(2020) transform image modality through a conditional auto-

encoder generative adversarial network (CAE-GAN), which

redesigns VAE (Kingma and Welling, 2013) and GAN to

form the symmetric UNET. The registration network uses a

traditional nonparametric deformable method based on local

phase differences at multiple scales. The overall structure of the

latent representation method is shown in Figure 3A.

Symmetric learning-based strategy

Table 3 lists two papers about using the symmetric learning-

based GAN methods. Both of them perform image registration

for CT-MRI. One is used on the brain, and another on the heart.

Cyclic-consistency

From the perspective of cyclic learning, symmetric learning

can assist and supervise each other. The CIRNet (Lu et al., 2019)

uses two cascaded networks with identical structures as the

symmetric registration networks. The two cascaded networks

share the weights. The L2 loss is used as Lcyc to enforce image A

translating through two deformation fieldsφ1 andφ2, and A(φ1,

φ2)= A. Lcyc is defined as follows:

Lcyc (A (ϕ1,ϕ2) ,A) =
1

N

∑

i∈�

(A (ϕ1,ϕ2) (i),A(i))
2 (12)

where N represents the number of all the voxels, and � refers to

all the voxels in the image. The total loss of the two registration

networks is represented by Equations (13, 14), respectively:

LR1 (A,B) = −LNCC (A (ϕ1) ,B) + αLreg (ϕ1)

+ βLcyc (A (ϕ1,ϕ2) ,A) (13)

2 (A (ϕ1) ,A) = −LNCC (A (ϕ1,ϕ2) ,A) + αLreg (ϕ2)

+ βLcyc (A (ϕ1,ϕ2) ,A) (14)

Lreg (ϕ1) =
∑

i∈�

∇ϕ(i)2 (15)

where A (ϕ1) denotes a warped image produced by the module

R1, A (ϕ1,ϕ2) denotes a warped image produced by the module

R2, and Lreg (ϕ1) is the smooth regularization Lreg .

SymReg-GAN (Zheng et al., 2021) proposes a GAN-

based symmetric registration to resolve the inverse-consistent

translation between cross-modal images. A generator performs

the modality translation, consisting of an affine-translation

regressor and a non-linear-deformation regressor. The
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FIGURE 3

Overall structures of existing cross-modal image registration methods. (A) The overall structure of the latent representation method. (B) The

overall structure of joint learning-based strategy. (C) The overall structure of adversarial learning-based strategy. (D) The basic structures of

modality translation.

TABLE 3 Overview of symmetric learning-based methods.

Publication Organ Method Modality Evaluation metrics Loss Dataset

Zheng et al. (2021) brain GAN CT-MRI M1 L1, 2 D3, 4, 5, 6, 7

Lu et al. (2019) heart Cycle-GAN MRI-CT M1 L3, 7 D2

Some brief descriptions of the loss, dataset, and evaluation metrics can be found in Tables 6–8.

discriminator distinguishes between the translation estimation

and the ground truth. The SymReg-GAN is trained by jointly

utilizing labeled and unlabeled images. It encourages symmetry

in registration by enforcing a condition that in the cycle

composed of the transformation from one image to the other,

its reverse transformation should bring the original image

back. The total loss combines the symmetry loss, registration

loss, and supervision loss into one. This method takes full

advantage of both labeled and unlabeled data and resolves

the limitation of iterative optimization by non-learning

techniques. However, the spatial transformation and the

modality transformation may not be the same, and even if the

spatial transformation is symmetric, the transformation error

may still be cyclic.

Adversarial learning-based strategy

Biomedical image registration algorithms of adversarial

learning-based strategies utilize adversarial loss to drive the

learning of registration networks such as GAN. Adversarial

loss consists of two parts: the training aim of the generator

is to generate an image that makes the discriminator consider

it real, and the optimization objective of the discriminator is
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TABLE 4 Publications of adversarial strategy based.

Publications Organ Method Modality Evaluation metrics Loss Dataset

Tran et al. (2022) Liver, brain GAN CT-CT/MRI-MRI M1, 11 L1, 2 D8, 9, 10, 11,

12, 13, 14, 15,

16, 17

Li and Ogino (2019) Liver GAN / M1, 2 L1, 2, 5

Hu et al. (2018) Prostate GAN MRI-TRUS

Bessadok et al.

(2021)

Brain GAN MRI-MRI M5, 12 L1 D15

Li M. et al. (2021) Brain GAN MRI-PET M1 L2, 5 D29

Fan et al. (2018) Brain GAN MRI-MRI M1, 4 L1 D18

Fan et al. (2019) Brain GAN MRI-MRI M1, 4 L1 D18

Yan et al. (2018) Rectum GAN MRI-TRUS M1, 2 L1

Tran et al. (2022) Prostate cancer GAN MRI-TRUS M2 L1

Luo et al. (2021) Lung GAN X-rays-X-rays M1, 3, 4, 11 L6, 7, 9 D20

A brief description of the loss, dataset, and evaluation metrics can be found in Tables 6–8. The symbol–in the last column means that the data used in the paper is a private dataset.

TABLE 5 Joint learning-based methods and publications.

Publication Organ Method Modality Evaluation metrics Loss Dataset

Liu et al. (2020) Liver tumor CGAN CT-CT M1, 3, 4 L1,2 –

Zhou et al. (2021) Liver tumor CycleGAN MRI-CBCT M1, 10 L3, 4, 5, 6, 8 D8

Mahapatra et al.

(2018)

Lung CycleGAN X-rays- X-rays M1, 10 L1, 3, 9 D23

A brief description of the loss, dataset, and evaluation metrics can be found in Tables 6–8. The symbol–in the last column means that the data used in the paper is a private dataset.

to distinguish between an image generated by the generator

and a real image in the dataset as accurately as possible.

Based on this strategy, several methods, as shown in Table 1,

including semi-supervised, knowledge distillation, attention

mechanisms, and adversarial training, are implemented to

improve registration performance. The similarity loss is instead

by learning a discriminator network. Although GAN can be

trained unsupervised, paired training data may be more helpful

for model convergence for the cross-modal registration modal.

An overview of the crucial elements of all the reviewed papers

is shown in Table 4. Five papers are for mono-modal image

registration and four for cross-modal registration. The overall

structure of this strategy is shown in Figure 3C.

Adversarial training

For image registration tasks, the effect of adversarial loss

is to make the warped image closer to the target image

(Yan et al., 2018). The role of the generator is to generate a

deformation field, and the task of the discriminator is to identify

the alignment image. For more stable loss, Wasserstein GAN

(WGAN) is adopted. Since a discriminator can be considered a

registration image quality assessor, the quality of a warped image

can be improved with cross-modal similarity metrics. However,

the training of GAN may suffer from non-convergence, which

may pose additional difficulties in training the registration

network. Compared to Fan et al. (2018, 2019) and Yan et al.

(2018) select more reasonable reference data for training the

discriminator for better model convergence.

Semi-supervised

Hu et al. (2018) use a biomechanical simulation deformation

field to regularize the deformation fields formed by the

alignment network. The generator is fed into simulated motion

data to form a translation. The discriminator tries to distinguish

the dense displacement field from ground truth deformation.

Another similarity loss metric warps moving labels and fixed

labels in a weakly supervised manner. Li and Ogino (2019)

propose a general end-to-end registration network in which a

CNN similar to UNET is trained to generate the deformation

field. For better guiding, the anatomical shape alignment and

masks of moving and fixed objects are also fed into the

registration network. The input of the discriminator net is a

positive and negative alignment pair, consisting of masks and

images of the fixed and warped images for guiding a finer

anatomy alignment. In addition, an encoder extracts anatomical

shape differences as another registration loss. The studies by
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TABLE 6 A brief summary of di�erent losses used in the reviewed

publications in Tables 2–5.

Abbre Loss Name Remark

L1 Ladv 23 adversarial

learning loss

The discriminator introduces the

adversarial loss to distinguish

synthetic data from real data,

consisting of cross-entropy loss

and least squares loss

L2 Lpix Pix-level

supervision loss

Pix-level loss evaluates the different

intensity values, consisting of L1,

L2, and Frobenius norm

L3 Lcyc Cycle consistency

loss

Element-wise loss measures the

self-similarity of the image of

cycled translation to the source

domain image when training with

an unpaired image from two

domains

L4 Lmind Modality-

independent

neighborhood

descriptor

The pixel-level similarity metric is

used to measure the structural

similarity between two different

modal images

L5 Lcc Correlation

coefficient loss

Structural similarity metrics

between two different modal

images

L6 Lseg Segmentation loss Measuring the difference between a

segmented prediction label and a

ground truth label

L7 LNcc Normalized

cross-correlation

Used for mono alignment tasks to

measure the level of alignment of

the warped image to the fixed

image

L8 Lidt Identity loss Identity loss regularizes the

generators to be near an identity

mapping when real samples of the

target domain are provided

L9 DM Hamming distance Pix-level similarity metrics for

image feature focus on a hash value

L10 Llat Latent

reconstruction loss

Similarity measure of latent spatial

features

L11 LLeastsquares Least squares loss Used in generators and

discriminators as adversarial loss

The L in the first column represents the loss.

Elmahdy et al. (2019) and Luo et al. (2021) are similar to that

of Li and Ogino (2019), in which the adversarial learning-based

registration network joint segmentation and registration with

segmentation label information as the input of the generator and

the discriminator. The dice similarity coefficient (DSC) and the

normalized cross-correlation (NCC) are added to the generator

to avoid slow convergence and suboptimal registration.

TABLE 7 A brief summary of di�erent metrics, which are all in respect

to the ground truth.

Abbr Metrics Remarks

M1 DICE, Median DSC The dice coefficient calculates the degree

of overlap between the aligned image

and the ground truth

M2 TRE (Targeted

registration error)

TRE represents the distance sum of the

corresponding landmark point between

the target image and the aligned image

M3 HD (Hausdorff distance) HD computes the distance between the

contour of the predicted segmentation

region and the ground truth to measure

shape similarity

M4 ASD, ASSD (Average

symmetric surface

distance)

Average symmetric surface distance

metrics for measuring image alignment

M5 AE (Average euclidean) Pixel-level description of the distance

between the aligned image and the fixed

image to measure the similarity

M6 RMSE (Root mean

square error)

Used in alignment to describe the

deviation of pixels between the aligned

image and the real image

M7 MI (Mutual

information)

A metric commonly used for

cross-modal registration

M8 NMI (Normal mutual

information)

Used to measure intensity consistency of

images

M9 SLPD (Sum of local

phase differences)

Measure the similarity by the sum of

local phase differences

M10 Mean± Std Means and standard deviations between

two images

M11 Jcd (Jaccard) Used in alignment tasks to describe the

dissimilarity between images

M12 PCC (Pearson

correlation coefficient)

Like M5, but is more suitable in higher

dimensions

M13 MCD (Mean contour

distance)

Measure the similarity of images by

Mean Contour Distance

M15 MNCC (Mean

normalized cross

correlation)

Mean Normalized correlation between

two images

M16 SSIM Metrics the structural similarity with

respect to a given ground truth

The M in the first column indicates metrics.

Knowledge distillation

Knowledge distillation is a process of transferring knowledge

from a cumbersome pre-trained model (i.e., the teacher

network) to a light-weighted one (i.e., the student network).

Tran et al. (2022) used knowledge distillation by adversarial

learning to streamline the expensive and effective teacher

registration model to a light-weighted student registration
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model. In their proposed method, the teacher network is the

recursive cascaded network (RCN) (Zhao et al., 2019a) for

extracting meaningful deformations, and the student network

is a CNN-based registration network. When training the

registration network, the teacher network and the student

network are optimized by Ladv = ϒ lrec + (1 − ϒ)ldis, where

lrec represents the reconstructed loss and the discriminator loss,

and lrec and ldis are expressed as follows:

lrec

(

Ihm, If

)

= 1− CorrCoef [Ihm, If ] (16)

ldis =
∥

∥Dθ (∅s)− Dθ (∅t))
∥

∥

2
2 + λ(

∥

∥

∥
∇
∅̂s

Dθ

(

∅̂s
)

∥

∥

∥

2
− 1)

2

(17)

∅̂s = β∅t + (1− β)∅s (18)

where Ihm denotes a warped image by the student network,

CorrCoef [I1 − I2] is the correlation between images I1 and

I2, ∅s and ∅t denote the deformation of the teacher and

the student networks, respectively, and ∅̂s denotes the joint

deformation. Applying knowledge distillation by means of

adversarial learning provides a new and efficient way to reduce

computational costs and achieve competitive accuracy.

Attention mechanisms

To reduce feature loss of the upsampling process in a

registration network, Li M. et al. (2021) proposed a GAN-based

registration network combining UNET with dual attention

mechanisms. The dual attention mechanisms consist of the

channel attention mechanism and the location attention

mechanism.Meanwhile, the residual structure is also introduced

into the upsampling process for improving feature restoration.

Joint learning-based strategy

Joint learning of segmentation, registration, and synthesis

networks can improve their performance for each other. An

overview of the essential elements of all the reviewed papers is

shown in Table 5. Two of which are for mono-model registration

methods. The overall structure is shown in Figure 3B.

Multitask

Existing experiments show that a segmentation map can

help registration by joint learning. However, in real registration

tasks, segmentation labels may not be available. Liu et al.

(2020) propose a joint system of segmentation, registration,

and synthesis via multi-task learning. The objectives of the

CGAN-based synthesis model and the registration model are

optimized via a joint loss. The segmentation network is trained

in a supervised manner. The segmentation module estimates

the segmentation map for the moving, fixed, and synthesized

images. During the training procedure, a dice loss is optimized

between the segmentation maps of the warped moving image

and the fixed image. The result proves that the segmentation

task can improve registration accuracy. Zhou et al. (2021) take

advantage of each other through the joint Cycle-GAN and

UNET-based segmentation network to solve the missing label

problem via Cycle-GAN’s translating of the two modalities to

the third one with a large number of available labels. Thus,

the synthesis network improves the segmentation accuracy

and further improves the accuracy of the RPM registration.

Mahapatra et al. (2018) have trained the generation network

to complete the alignment of the reference and moving images

by combining the segmentation map that is used directly

as the input to the generator, with no need to train an

additional segmentation network. Segmentation and alignment

are mutually driven. The ways of joining image registration

task and image segmentation task may improve the accuracy by

sharing the result of learning, which can expand the goal of the

registration research.

Statistics

It is essential to conduct relevant analyses from a global

perspective after a detailed study of each category of biomedical

image registration strategies. In the past 4 years, more than half

of the reviewed works have used the modality-independent-

based strategy to solve cross-modal biomedical registration—

the methods of Adversarial Learning Based Strategy account

for 32%. From 2020 to 2021, the number of articles published

on the modality-independent-based strategy was higher than

others, peaking in 2020. However, there is a drop-down trend

in 2021. As noted, no paper on the adversarial learning-based

strategy was published in 2020. In the other years, the works

on the adversarial learning-based strategy are published in

a balanced proportion, with the detailed percentages shown

in Figures 4, 5. In addition to analyzing the trends in the

published number of papers and the popularity of the four

strategy categories, we also analyzed the percentage distribution

of the other characteristics, which is shown in Figure 6. A

total of 75% of the works aim to solve the problem of the

cross-modal domain of biomedical image registration, among

which 46 and 42% adopt direct or indirect Cycle-GAN and

GAN are part of the important structure of the registration

framework. Cycle-GAN is utilized only for the cross-modal

domain of biomedical image registration, whereas GAN is

utilized for both cross-modal and uni-modal image registration.

In the cross-modal bioimage registration, 33% of the works

perform image registration between CT and MRI. The number

of articles using MRI accounts for 97%. Regarding the region

of interest (ROI), the brain and liver are the most studied

sites. The brain is the top registration target in all works. The

reason for the wide adoption of the brain consists of its clinical
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TABLE 8 Common datasets used in the reviewed literature.

Abbre Dataset Anatomy Purpose Modality

D1 Abdomen

(ABD)

Kidney Healthy abdominal organ segmentation CT, MR

D2 (Bernard et al., 2018) ACDC Heart Heart segmentation MRI

D3 (Bakas et al., 2018) (BraTS) 2018 Brain Brain tumor segmentation MRI

D4 (Gousias et al., 2012) ALBERTs Newborn

brain

Manual segmentation of labeled atlases MRI

D5 LPBA40 Brain Medical image registration for Continuous Registration Challenge MRI

D6 IBSR18 Brain Medical image registration for Continuous Registration Challenge T1-weighted

D7 CUMC12 and

MGH10

Brain Medical image registration for Continuous Registration Challenge MRI

D8 (Bilic et al., 2019) LiTS Liver Liver segmentation CT

D9 (Kavur et al., 2021) CHAOS Liver Liver segmentation CT

D10 (Antonelli et al.,

2022)

MSD Liver Liver tumor segmentation CT

D11 (Zhao et al., 2019b) BFH Liver Liver tumor segmentation CT

D12 (Heimann et al.,

2009)

SLIVER Liver Liver segmentation CT

D13 LSPIG Liver Liver Segmentation of Pigs CT

D14 (Mueller et al.,

2005)

ADNI Brain Brain MRI MRI

D15 (Di Martino et al.,

2014)

ABIDE Brain Toward a large-scale evaluation of the intrinsic brain architecture

in autism

R-FMRI

D16 (Bellec et al., 2017) ADHD Brain Brain MRI MRI

D17 (Shattuck et al.,

2008)

LPBA Brain Brain MRI MRI

D18 (Klein A. et al.,

2009)

• LPBA40

• IBSR18

• CUMC12

• MGH10

Brain Medical image registration for Continuous Registration Challenge MRI

D20 (Shiraishi et al.,

2000)

JSRT Chest

radiographs

Radiologists’ detection of pulmonary nodules x-ray

D2 (Candemir et al.,

2013)

MONT Chest

radiographs

Lung segmentation x-ray

D22 (Jaeger et al., 2013) SHEN Chest

radiographs

Automatic tuberculosis screening x-ray

D23 (Wang et al., 2017) NIH

ChestXray14

Chest Classification studies x-ray

D24 (Menze et al., 2014) BraTS’2017 Brain The Brain Tumor Segmentation MRI

D25 IXI Brain Analysis of brain development MR

D27 • RIRE

• Atlas

Brain image registration evaluation CT, MR

D28 (LaMontagne et al.,

2019)

OASIS-3 Brain Cognitive Dataset for Normal Aging and Alzheimer’s Disease MR
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FIGURE 4

Proportional distribution pie chart of the number of publications on di�erent implementation strategies.

FIGURE 5

Contrast bar graph of the number of publications on the four strategies for the GAN-based biomedical image registration over the last 5 years

from 2018–2022.

importance, availability in public datasets, and relative simplicity

of registration.

In addition, the metrics used in the cross-modal registration

methods are shown in Figure 7. As seen in the figure, dice and

TRE are the top two most frequently used metrics. The Dice

coefficient calculates the degree of overlap between the aligned

image and the ground truth, and the confusion matrix formula

is as follows:

Dice =
2∗

(

ref ∩ w
)

ref ∪ w
(19)

where “ref” refers to the reference image, and “w” represents a

warped image. Obviously, when the two images overlap exactly,

the Dice coefficient is 1. TRE represents the distance sum of

the corresponding landmark between the target image and the

aligned image and is expressed as follows:

TRE =
1

n

n
∑

i=1

|dri − dwi | (20)

where n is the number of landmarks, r is the reference image,

w is the aligned image, i is the i-th corresponding point, and d

indicates the Euclidean distance.

Future perspectives

Exploring in-between representatives of
two modalities

Many existing modality-translation-based methods for

cross-modality biomedical image registration rely on synthetic
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FIGURE 6

Percentage pie chart of various attributes of the GAN-based biomedical image registration methods.

images to train the mono-modal registration network because

it is difficult to develop cross-modality similarity measures.

Although such a training scheme does not need to perform

cross-modal similarity metrics to improve the image synthesis

performance, it is still necessary to design various losses to

constrain other feature changes. Additionally, is the synthetic

modality useful for improving registration performance? As far

as we know, this intensity information does not play a key role

in improving image performance. Some shape features, such as

edges and corners, are essential for image registration. An in-

between representation was found (Lu et al., 2021), i.e., COMIR,

which maps the modalities to their established “common

ground.” An in-between representative with characteristics

relevant to the accurate alignment would be good. In the future,

more workers are expected to be carried out in this direction to

find the in-between representatives.

Exploring quality assessment guided
modal translation network

The image quality generated by the mode translation

network directly affects the accuracy of the registration

algorithm. Therefore, an important research direction is how

to effectively and reasonably evaluate the quality of images

generated by the GAN network. Additionally, an effective

generated image quality evaluation method can be used to

constrain the mode translation network’s training process

and improve the modal translation’s effectiveness. There have

recently been quality evaluation methods for images generated

by GAN (Gu et al., 2020), but there is still a lack of quality

evaluation methods for synthetic biomedical images.

Designing large-scale biomedical image
generation GAN network

The size of images existing image generation networks

can generate is minimal (Brock et al., 2019), but biomedical

images are generally of high resolution, especially biological

images used in neurological research. The training process of

the existing GAN network is difficult to converge, especially

with the increase in image size. The dimension of data space

will dramatically increase. This challenge is difficult with

current hardware levels and GAN-based image-synthesized

methods. Therefore, designing an image synthesis network
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FIGURE 7

Performance metrics statistics of existing registration methods.

capable of synthesizing large-scale biomedical images is also a

future direction.

Designing prior knowledge-guided
registration methods

Traditional image registration models often use some

standard landmarks like points and lines as guidance

to optimize the model. Several recent studies have

shown that a segmentation mask can be utilized in the

discriminator (Luo et al., 2021) or generator (Mahapatra

et al., 2018) for guiding the edge alignment. However,

their works simply use only a segmentation mask as

the edge space correspondence guidance. More space

correspondence features are expected to be explored

and verified.

Conclusions

This paper provides a comprehensive survey of cross-

modal and mono-modal biomedical image registration

approaches based on GAN. The commonly used GAN

structures are summarized, followed by the analyses of

the biomedical image registration studies of the modality-

independent based strategy, the symmetric learning-based

strategy, the adversarial learning-based strategy, and the

joint learning-based strategy from different implementation

methods and perspectives. In addition, we have conducted

a statistical analysis of the existing literature in various

aspects and have drawn the corresponding conclusions.

Finally, we outline four interesting research directions for

future studies.
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