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Despite being composed of highly plastic neurons with extensive positive

feedback, the nervous system maintains stable overall function. To keep

activity within bounds, it relies on a set of negative feedback mechanisms

that can induce stabilizing adjustments and that are collectively termed

“homeostatic plasticity.” Recently, a highly excitable microdomain, located at

the proximal end of the axon—the axon initial segment (AIS)—was found to

exhibit structural modifications in response to activity perturbations. Though

AIS plasticity appears to serve a homeostatic purpose, many aspects governing

its expression and its functional role in regulating neuronal excitability

remain elusive. A central challenge in studying the phenomenon is the

rich heterogeneity of its expression (distal/proximal relocation, shortening,

lengthening) and the variability of its functional role. A potential solution is

to track AISs of a large number of neurons over time and attempt to induce

structural plasticity in them. To this end, a promising approach is to use

extracellular electrophysiological readouts to track a large number of neurons

at high spatiotemporal resolution by means of high-density microelectrode

arrays (HD-MEAs). However, an analysis framework that reliably identifies

specific activity signatures that uniquely map on to underlying microstructural

changes is missing. In this study, we assessed the feasibility of such a task

and used the distal relocation of the AIS as an exemplary problem. We used

sophisticated computational models to systematically explore the relationship

between incremental changes in AIS positions and the specific consequences

observed in simulated extracellular field potentials. An ensemble of feature

changes in the extracellular fields that reliably characterize AIS plasticity

was identified. We trained models that could detect these signatures with

remarkable accuracy. Based on these findings, we propose a hybrid analysis

framework that could potentially enable high-throughput experimental studies

of activity-dependent AIS plasticity using HD-MEAs.

KEYWORDS

homeostatic plasticity, AIS plasticity, HD-MEAs, biophysical modeling, random forest
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1. Introduction

Neurons in the brain are highly adaptive and alter their

behavior in response to learning and development-related

changes. Yet, the nervous system is able to maintain stable

overall function. The balance between flexibility and stability is

maintained by an array of homeostatic plasticity mechanisms

that allow individual neurons to regulate their synaptic inputs

and/or intrinsic excitability (Turrigiano and Nelson, 2004;

Turrigiano, 2011; Yin and Yuan, 2015).

Recent studies have proposed that one of the ways in which

neurons regulate their intrinsic excitability may involve activity-

dependent structural modulation of a specialized microdomain

called the axon initial segment (AIS; Kuba et al. 2010; Grubb and

Burrone 2010; Lezmy et al. 2017). The AIS is a highly excitable

region of the neuron, being densely populated by voltage-gated

sodium and potassium channels (Kole et al., 2008).

Structural plasticity, observed at the AIS, includes changes in

AIS length (Evans et al., 2013) and position (Grubb and Burrone,

2010; Lezmy et al., 2017) along the proximal axon. These

changes were observed in response to activity perturbations in

the network: for example, chronic depolarization of cultured

hippocampal neurons was found to lead to a distal relocation of

the AIS and was accompanied by a loss of intrinsic excitability

(Grubb and Burrone, 2010). Conversely, following a loss of

cochlear afferent innervation, increased AIS lengths and higher

levels of intrinsic excitability were observed in neurons in the

nucleus magnocellularis of birds in vivo (Kuba et al., 2010).

Structural modifications of the AIS appear to help restore

the neuron to excitability levels prior to the activity perturbation

(Lezmy et al., 2017). It is hence thought to serve a homeostatic

function. Disruption of the molecular organization of the

AIS could, thus, lead to neurological abnormalities. Indeed,

several neurological disorders, such as epilepsy, Alzheimer’s

disease, neuroinflammatory or demyelination pathologies,

bipolar disorder and schizophrenia are thought to impact

AIS function (Buffington and Rasband, 2011; Hsu et al.,

2014; Sun et al., 2014; Hamada and Kole, 2015). Hence, an

understanding of the principles underlying AIS plasticity may

help to better understand the pathological deficits resulting

from AIS dysfunction and to guide the development of effective

therapeutic interventions.

However, many aspects of AIS plasticity and its functional

role in regulating neuronal and network excitability remain

elusive. One of the challenges is the rich heterogeneity in its

expression and the influence of a number of uncontrollable

factors including neuron types, morphological parameters like

soma size, axon diameter, and baseline AIS geometry (Gulledge

and Bravo, 2016). Hence, there tends to be wide variability in the

expression of the phenomenon within a network.

Current approaches to investigate structural plasticity of the

AIS have several important limitations. Most studies compare

the statistics of the AIS’s structural metrics between snapshots

of control networks and networks that have been perturbed

and allowed to homeostasize over a fixed duration (Dumitrescu

et al., 2016). The use of summary measures fails to account for

neuronal heterogeneity present in each population—in terms

of cell types, structural parameters of the cell, and initial AIS

locations—and obscures the contribution of individual neurons

to network effects (Gulledge and Bravo, 2016; Wefelmeyer et al.,

2016). Moreover, histological studies generally target structural

components of the AIS and not the channels themselves and

may thus be inadequate to capture changes in the length and

location of the “functional AIS.” The whole-cell patch-clamp

technology, prevailingly used to study the functional impacts

of AIS plasticity, does not permit long-term tracking of the

same neuron due to its invasiveness. Long-term simultaneous

access to both, subcellular structures of multiple neurons and

activity in the entire network, is desirable to extract a multiscale,

time-resolved picture of the phenomenon.

High-density microelectrode arrays (HD-MEAs), feature

large enough spatiotemporal resolution and could be a powerful

tool for high-throughput investigations of AIS plasticity. The

recorded extracellular signals at each electrode represent the

superposition of the activity of multiple neurons in each

electrode’s neighborhood. These complex signals need to

be post-processed and assigned to putative signal-generating

neurons by using sophisticated data-analysis techniques to

extract neurophysiologically relevant information. A commonly

used technique, called ‘spike sorting’, aims to infer the spiking

activity of single neurons from the recorded signals (Buccino

et al., 2022a). At the network scale, spike sorting not only

provides a readout of the spiking activity of several hundreds

of neurons in the network but also enables to extract average

extracellular footprints (templates) corresponding to each

putative unit (inferred neuron).

The AIS is thought to be the dominant contributor to

a neuron’s extracellular footprint, i.e., the distribution of the

extracellular electrical potentials of the neuron across the array

electrodes during action potential generation (Bakkum et al.,

2019). Therefore, we hypothesize that plastic changes of the

AIS will yield complex but systematic changes in a neuron’s

extracellular footprints. Analyzing long-term trends in the

extracellular footprint could pave the way to track AIS plasticity

simultaneously in multiple neurons.

However, reliably inferring subtle microstructural changes

from long-term changes in extracellular footprints is a

formidable data-analysis challenge. Changes in the extracellular

footprint, arising from structural modifications of the AIS, are

difficult to predict without prior knowledge of the morphology

of the proximal axon and its distance and orientation relative to

the electrodes.

Further, factors like neuronal drift and movements relative

to the electrodes may also lead to extracellular footprint

changes that are potentially misleading. Neurons in primary

dissociated cultures in vitro exhibit activity-dependent
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migration throughout development. Such “drifts” are dominant

at early stages of development but tend to decay during

development (Sun et al., 2011; Okujeni and Egert, 2019). Apart

from spontaneous drifts, we presume that inadvertent shifts

in cell positions (“movements”) may be induced by external

perturbations, for example, during exchange of growth media or

during experimenter handling. Together, drifts and movements

presumably contribute to the variability of extracellular

electrical footprints measured over long durations. In extreme

cases, footprint changes could confound the detection of AIS

plasticity based on extracellular recordings.

Hence, it is hitherto unclear if it would be feasible

to infer structural plasticity from extracellular footprints.

Sophisticated computational models could help to address

this open issue by systematically elucidating the association

between neuronal microstructures and measured extracellular

field potentials.

In this study, we characterized changes in the extracellular

electrical-potential landscape arising from structural changes

of the AIS. We specifically focused on distal relocation—the

phenomenon of spatial translocation of the AIS to a distal

domain farther from the soma—and explored the feasibility of

reliably inferring this structural modification from simulated

extracellular electrical potentials. To this end, we used detailed

multi-compartment models of single neurons with varying

morphologies: a minimal ball-and-stick model and two different

detailed morphology models.

We equipped a section of the proximal axon of each neuron

with AIS-specific ion-channel conductances, whose positions

along the axon were systematically altered. We generated action

potentials by stimulating each neuron model with constant

currents and generated the corresponding extracellular signals

for the HD-MEA probe model using the LFPy package (Hagen

et al., 2018).

Our results suggest that microstructural changes in the

AIS may be reliably inferred by tracking long-term changes in

extracellular footprints. Based on our in silico characterization,

we propose two hybrid methods (combining simulations

and experimental data) that could potentially facilitate high-

throughput experimental studies of activity-dependent AIS

plasticity. Although further studies are necessary to rigorously

validate our findings using ground-truth experiments, our work

demonstrates how computational modeling could be a valuable

tool to augment the interpretational value of extracellular

electrophysiology.

2. Methods

2.1. Neuron models

Ball-and-stick-model:Aminimal biophysical ball-and-stick

model was created with the following geometry: a 1 mm-long

cylindrical dendrite with a diameter of 2 µm, a spherical soma

with a diameter of 16µm, and a thin cylindrical axon 1 mm long

and 1 µm in diameter. A proximal section of the axon of 30 µm

length was designated as the AIS. The distance between the soma

and the proximal AIS was systematically varied between 5 and

40 µm.

Detailed morphology-1: For the detailed morphology

model-1 (DM1) we built a conductance-based detailed

multi-compartment neuron model whose morphology was

reconstructed from an in vitro labeled L5b rat neocortical

pyramidal neuron and was reported in Hay et al. (2011).

In short, the neuron in a brain slice was filled with

biocytin and reconstructed under a light microscope with

the Neurolucida software (MicroBrightField, Magdeburg,

Germany). To insert an AIS to the morphology model,

we removed the original axon, connected a new segment

representing the axon hillock to the soma, connected the

AIS segment to the axon hillock and finally connected a

straight cylindrical axon of length 500 µm to the distal end of

the AIS.

Detailed morphology-2: For the detailed morphology

model-2 (DM2) we built a conductance-based detailed

multi-compartment neuron model whose morphology was

reconstructed from a neuron in a primary rat dissociated

cortical culture, prepared as described in Xue et al. (2022). All

experimental protocols involving animals were approved by the

Basel-Stadt veterinary office according to Swiss federal laws on

animal welfare, and were carried out in accordance with the

approved guidelines.

An individual neuron was filled with the fluorescent dye

Alexa Fluor 594 via a patch-clamp microelectrode at 22 days in

vitro (DIV). To achieve this, we used a patch-clamp setup that

comprised a MultiClamp 700B amplifier (Axon Instruments)

and an Axon Digidata 1440A (Axon Instruments). The cell

culture was perfused with BrainPhysTM Neuronal Medium

(Stem Cell Technologies), heated to approximately 32–34◦C

throughout the experiment. The internal patch-clamp solution

contained (in mM): 110 potassium-gluconate, 10 KCl, 10 Hepes,

4 MgATP, 0.3 GTP, 10 phosphocreatine, (pH 7.2-7.3; 280-290

mOsmol/l). On the day of the experiment, Alexa Fluor 594

(50 µM) was added to the internal solution. The neuron was

patched with a standard borosilicate glass micropipette (4–5

M�) and loaded for more than 30 min in whole-cell current-

clamp mode.

Subsequently, the culture was transferred to an upright

confocal microscope (Nikon NiE) equipped with a spinning

disk scan head (Yokogawa W1). An excitation laser of 561 nm

and an emission filter of 609/54 nm was used for imaging.

The neuron was imaged at 60x magnification (60x/1.00 NA

water-objective, Nikon) with 6 x 4 tiles covering the entire

morphology. For each tile, a z-stack (66 z images) was acquired

with a 0.4 µm z-step. The x-y pixel size of the images

was 112.55 nm.
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Huygens Professional1 (version 21.10, Scientific Volume

Imaging, The Netherlands) was used to perform the image

deconvolution and stitching. Specifically, images were first

deconvolved using the Classic Maximum Likelihood Estimation

algorithm, with SNR:12 and 40 iterations. Subsequently, the

deconvolved images were stitched with an overlap of 10%, using

the circular vignetting correction model. The SNT plugin in

Fiji was employed to reconstruct the 3D morphology of the

neuron (Arshadi et al., 2021). All branches originating from

the soma were merged into the same root to indicate the

soma position with a single point. We then tagged the neurites

as “soma,” “dend,” and “axon” accordingly. We preprocessed

the raw morphology with a custom Python function that

interpolated missing radii (below or equal to 0.1 µm) and

smoothed the radii of each path with a 15-sample moving

average. We followed a similar procedure as in DM1 to insert

an AIS into the morphology. However, to accommodate the

orientation of the axon hillock in this specific neuron, the

axonal cylinder with the AIS was inserted at an orientation of

−115.6◦. The angle was computed based on an assessment of

the morphology of the proximal axon.

Biophysical Parameters: We used the same biophysical

parameters for our three neuronal models. Ion channel densities,

conductances, and kinetics were set as in the study by

Hallermann et al. (2012).

Briefly, sodium (gNa) and potassium (gK ) channel current

densities were set to 50 pS/µm2 and 100 pS/µm2 at the

soma. The AIS was assigned high channel densities: gNa =

7,000 pS/µm2 and gK = 2,000 pS/µm2. Their equilibrium

potentials were set to 55 and -98 mV respectively. In addition

to these sodium and potassium channel models, both soma

and AIS compartments contained low voltage-activated non-

inactivating Kv7 channels at a density of 1 and 7 pS/µm2. In the

dendrites, gNa was set to 20 pS/µm
2, gk to 0.3 pS/µm

2, and gKv7

to 1 pS/µm2.

2.2. MEA model

All neurons were simulated on a 30 x 30 grid of an HD-MEA

with an electrode pitch of 17.5 µm (Figures 1A,C,E, orange).

Individual electrodes were rectangular and of dimensions 9.3 ×

5.45 µm. Out of this block, we used the central 12 x 12

electrodes for in-depth analysis of the neuron’s extracellular

“footprints,” i.e., representations of the extracellular electrical

potential landscape measured across the array electrodes during

action potential generation (Figures 1A,C,E middle panels). The

electrode specifications were chosen to match that of the CMOS

high-density microelectrode arrays (HD-MEAs) developed in

our group (Ballini et al., 2014). The probe was designed and

1 Huygens Professional: http://svi.nl.

imported using the Python package, MEAutility2 (Buccino and

Einevoll, 2021).

2.3. Simulation of neuronal activity

Action potentials were evoked in all models by injecting

current steps (0.3–2 nA; duration, 20 ms) to the soma. Neuronal

activity was simulated in Python using the Neuron-Python

interface (Hines et al., 2009). The corresponding extracellular

signals were simulated for the HD-MEA probe model using the

LFPy package (Hagen et al., 2018). Simulations were run for 30

ms in time steps of 2−5s.

Extracellular footprint features are sensitive to the relative

distances of neuronal compartments to the nearest electrodes.

To average out this variability, we repeated the simulations

corresponding to each AIS position with a slight soma positional

translation. This jitter was restricted to within one electrode

pitch owing to the periodic symmetry of the array. The

four soma positions chosen were (0, 0), (8.75, 0), (0, 8.75), and

(8.75, 8.75) where (0, 0) corresponds to the position at the

mid-point of the square, formed by four adjacent electrodes

(Figure 2A). All units were in µm and 8.75 was chosen because

it was half the electrode pitch. The positional jitter also

ensured that there were multiple slightly different electrical

footprints in our training data, associated with a given AIS

position and axonal orientation. This strategy adds to the

robustness of the algorithm against natural footprint variability

observed under experimental conditions as a consequence of

small drifts/movements over the course of long recording

durations (Supplementary Figure S6). Additionally, for each

soma position, the entire neuron was rotated 360◦ around

an axis centered at the soma. For the ball-and-stick model,

we ran simulations in 1◦ increments. For each positional and

rotational implementation, extracellular signals were generated

for various AIS positions in 1 µm steps between 5 and 40 µm.

This led to a family of 4 (positions) × 360 (angles) = 1,440

simulations for each of the 36 AIS positions. In the case of the

detailed morphology models DM1 and DM2, to offset the added

computational load, we chose 5◦ increments for the rotation and

2 µm steps of the AIS position, i.e., a family of 4 (positions) ×

72 (angles) = 288 simulations for each of the 18 selected AIS

positions. The neuron models, used in this study, and the scripts

to generate the figures can be found on GitLab3.

2.4. Feature extraction

First, a short time snippet around the extracellular spike

was cut out of each electrode of an extracellular footprint.

2 MEAutility: https://meautility.readthedocs.io/.

3 GitLab: https://git.bsse.ethz.ch/srkumar/tracking-ais-plasticity.git.
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FIGURE 1

The three distinct neuron models used in this study: (A) A minimal model consisting of a spherical soma (blue), a long cylindrical dendrite (green)

and a cylindrical axon (gray), (C) a detailed neuronal model (DM1) whose morphology was reconstructed from an L5b neocortical rat pyramidal

neuron, and (E) another detailed neuronal model (DM2) whose morphology was based on that of a neuron from a in vitro 2D rat primary

dissociated cortical culture. In each case, a 30 µm section of the proximal axon was defined as the axon initial segment (AIS; in red) and was

assigned a high density of inactivating sodium and non-inactivating potassium channels. In the extracellular space around each neuron, we

simulated a 30 x 30 HD-MEA with an electrode pitch of 17.5 µm. A 12 x 12 electrode block at the center (zoomed-in region) was chosen for a

detailed analysis of extracellular “footprints”, i.e., the extracellular electrical potential landscape of a neuron across electrodes. (B,D,F) In each

model, the AIS was the site of spike initiation. Intracellular voltages computed at various locations along the neuron revealed a clear temporal

order with the initial peak at the AIS (red), followed by delayed peaks at the distal axon (gray), soma (blue) and the dendrite (green). Moreover,

spike shapes at the AIS had a steeper slope during depolarization (B, lower inset). The somatic AP had a characteristic “kink” at its onset, which is

observable as a break in the monotonous rise in the slope of the waveform [(B), lower inset, zoomed in].

We used a 96-sample (3 ms) cutout window for the ball-

and-stick model, and a 177-sample (ca. 5.5 ms) cutout

window for DM1 and DM2. The electrode that registered

the earliest signal trough in each extracellular footprint was

selected to compute the indices of the cutout window,

and the same indices were used for each waveform of an

extracellular footprint.

For each baseline extracellular footprint, amplitudes of the

negative signal troughs were extracted based on the waveform

cutouts. The top 26 electrodes, ranked by amplitudes, were
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FIGURE 2

Representation of the cell on the simulated HD-MEA. (A) We

simulated the neuron at four di�erent somatic positions to

account for extracellular footprint variability due to slight

di�erences in the positions of the neural compartments relative

to the electrodes. Neuron positions are indicated by the blue

dashed circles, and the black dots represent the center of the

soma. Additionally, the entire neuron was rotated 360 ◦ at 1◦

increments for each cell position to simulate the extracellular

footprints pertaining to various possible neuronal orientations.

(B) Simulated extracellular footprint of a cell with the baseline

AIS starting 5 µm from the soma (left) and the farthest simulated

AIS position being at 40 µm distance from the soma (right). (C)

Extracellular footprint with the same soma position as in (B), but

with the neuron rotated clockwise by 30◦ relative to the

baseline. Scale bar: 3 ms (horizontal) and 100 µV (vertical).

selected. For cutouts from these channels, additional feature

metrics were extracted including half-width, latency to earliest

peak, peak-to-peak amplitude and slopes at half-maximum. The

26 selected electrode IDs were then sorted by latencies. This was

done to preserve a rough sequential order of electrodes across

extracellular footprints, with electrodes close to the AIS arranged

early in the list.

A vector of feature changes as a result of AIS relocation (e.g.,

1 amplitudes, 1 latencies, etc.) was computed relative to the

corresponding baseline extracellular footprint and between pairs

of corresponding electrodes. For each feature change vector,

a sham vector was computed by shuffling the feature vector

before subtracting the baseline from it. A sham feature change

vector would not correspond to a biophysically relevant signal

and was labeled as an invalid AIS relocation. Shuffled footprints

span a much larger possibility space, since it would also include

physiologically implausible footprint configurations. Natural

variability would, hence, be a proper subset of this space. Each

vector was assigned a binary label depending on whether it was

associated with a valid AIS relocation. Each valid feature-change

vector was also labeled with the magnitude of the AIS relocation

that it was associated with.

2.5. Detection of AIS plasticity and
prediction of relocation magnitude

We first performed feature selection on the 1 feature vector

using the neighborhood component analysis (NCA), a distance-

based, supervised, non-parametric feature-selection technique

(Goldberger et al., 2004; Yang et al., 2012). We computed

the stochastic gradient-descent-based feature weights using a

regularization parameter of λ=3 × 10−5. The resulting feature

weights were thresholded at 10% of the maximum weight to

eliminate features with low weights. Using the reduced set of

features, we trained a random forest classifier to detect the status

of AIS relocation (Breiman, 2001).

For predicting the magnitude of AIS relocation, we trained

a regression model using the full feature vectors (without NCA).

Wide neural networks with a single hidden layer of 100 RelU

units were used for the task owing to their superior performance

in hold-out data.

For both models, 60% percent of the simulated data were

used for training, 20% for model validation, and the remaining

20% were held out to test the performance of the trained model.

For the ball-and-stick model, hold-out validation was performed

owing to the large size of the training set. For the detailed

models, 5-fold cross-validation was performed.

Feature selection, machine learning, analyses, and data

visualization were performed using custom scripts written in

MATLAB R© (Version 9.11 (R2021b); MathWorks, Natick, MA).

2.6. Computation of kernel functions

AIS relocation systematically alters the extracellular

electrical footprint around the neuron. Individual electrodes

could be thought of as linear time-invariant (LTI) filters
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operating on baseline waveforms. An LTI system is completely

characterized by its impulse response, and the output of each

filter may be expressed as the convolution of the baseline

waveform, x[n], with the impulse response, h[n] (eq.(1)). The

impulse response is also known as the kernel function of the

convolution sum.

y[n] = (h ∗ x)[n]=

+∞
∑

m=−∞

h[m]x[n−m] (1)

where x[n] is an individual waveform cut-out at an electrode of

the baseline extracellular footprint and y[n], the corresponding

transformed waveform after AIS relocation, both of length N

samples, and n ∈ W. h[n] is the discrete impulse response with

finite support (kernel function) corresponding to that electrode.

Kernel functions were computed for pairs of extracellular

footprints of the ball-and-stickmodel. OnlyM=26 electrodes per

extracellular footprint, selected as described in Section 2.4, were

used.

Since transformed waveforms are necessarily of finite length,

kernels of finite length should be sufficient to describe these

filters. The kernel length L reflects the complexity of the filter.

Empirically, we determined that L=25 was sufficient to capture

the waveform changes observed in our simulations.

To estimate kernel functions of length L, we recast the

convolution operation as a matrix multiplication by defining a

convolution matrix X such that:

y[n] = Xh[n]

X is then of size N × L and has a non-symmetric Toeplitz

structure as shown below:

X =
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h[n] was then estimated as:

ĥ[n] = X−1y[n]

In rare cases where X was ill-conditioned, we computed the

Moore-Penrose pseudoinverse:

ĥ[n] = (XTX+ δI)−1XTy[n]

where XT is the transpose of the convolution matrix, I is

the identity matrix, and δ = 0.01 was added for numerical

stability. The pseudoinverse was computed only for the ill-

conditioned matrices to mitigate the computational load. For

the well-conditioned cases, ĥ[n] was computed using Gaussian

elimination without explicitly forming the inverse.

Using ĥ[n], and the baseline waveform for each electrode,

a transformed waveform, ŷ[n], was estimated using the

corresponding convolution matrix, X:

ŷ[n] = Xĥ[n] (2)

The normalized root-mean-squared (RMS) error, E between

actual and estimated traces for a single electrode, given a kernel

function, was computed as:

E
∣

∣ ĥ[n] =
1

(ŷmax − ŷmin)

√

√

√

√

1

N

N−1
∑

n=0

(ŷ[n]− y[n])2 (3)

where ŷmax (resp. ŷmin) is the maximum (resp. minimum) value

of the estimated waveform.

Using the entire set of simulations, a kernel library was

compiled as a discrete functional, H[m, dais, θ], parameterized

by the electrode index, m, AIS position, dais, and rotation

of the neuron, θ . That is, for each combination of the three

parameters, H[ · ] was a mapping between the parameter space

and impulse response functions pertaining to the extracellular

footprint transformation at electrode m, corresponding to an

AIS position, dais, of a neuron model that was rotated by an

angle θ . The waveforms at dais= 5 µm were used as the baseline

condition for all transformations.

When estimating waveforms at the mth electrode for a

detailed morphology model, we could not directly use a kernel

function corresponding to electrode m of the extracellular

footprint. This was because the kernel functions were computed

only based on the ball-and-stick morphology and there was no

electrode-by-electrode morphological correspondence between

the models. Ideally, an electrode in the ball-and-stick model,

m∗ that matches the morphological compartment close to a

given electrode m in the detailed morphology model should

instead be chosen. Mapping such a selection manually would be

tedious and would presume full morphological knowledge of the

neuron being studied. Although, in our case, full morphological

details were available, this may generally not be the case

in a high-throughput experimental setting. Hence, instead of

relying on the available morphology, we estimated m∗ on

the fly for each electrode m in extracellular footprints of the

detailed morphology models, for a given AIS position, dais, by

searching in the kernel library over all angles for the electrode

corresponding to the lowest prediction error:

m∗ = argmin
m

E
∣

∣H[m, dais, · ] (4)
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The mean normalized RMS error given an AIS position

and orientation, Ē
∣

∣ dais, θ , was then computed by averaging the

normalized RMS error over all the M selected electrodes in the

extracellular footprint:

Ē
∣

∣ dais, θ =
1

M

M
∑

m=1

E
∣

∣H[m∗, dais, θ ] (5)

3. Results

3.1. The AIS is the site of action-potential
initiation in our models

We used three distinct neuron models in this study:

a minimal ball-and-stick model, and two detailed multi-

compartment models (detailed morphology-1 and 2,

abbreviated as DM1 and DM2). The minimal morphology

model consisted of a circular soma, a cylindrical dendrite

and a thin cylindrical axon (Figure 1A). A section of the

proximal axon was defined as the axon initial segment (AIS)

and was endowed with a highly uniform density of inactivating

sodium and non-inactivating potassium channels (Figure 1A,

red).

The two detailed multi-compartment models were based

on reconstructed morphologies. The morphology of DM1 was

reconstructed from an L5b neocortical rat pyramidal neuron.

The morphology of DM2 was reconstructed from a neuron in

a primary rat dissociated cortical culture in vitro at DIV 22 (see

Section 2). In all three models, we inserted a 30 µm long AIS

in the proximal axon. The AIS position, parameterized by the

distance between the soma and the proximal end of the AIS, was

systematically varied between 5 and 40 µm.

To verify the functional role of the modeled AIS in action-

potential initiation and as a major contributor to extracellular

electric fields, we injected a current pulse at the soma and studied

the triggered action potential waveform intracellularly at the

following sub-cellular compartments: within the first 70 µm of

the dendrite (green), soma (blue), the midpoint of the AIS (red),

and within the first 70 µm of the axon. In each of our models,

the earliest electrical signal peak—hence the action potential

initiation—was observed at the AIS, whereas the somatic AP

occurred with a delay (Figures 1B,D,F). Our observation is

in agreement with experimental observations of AP initiation

(Stuart et al., 1997). Consistent with previous reports, we also

observed a characteristic “kink” at the onset of the somatic AP,

which is thought to be the result of resistive coupling between

the AIS and the soma (Telenczuk et al., 2017). The kink is clearly

visible in the blue dashed line Figure 1B (lower inset), and can

be seen as a transient break in the monotonous rise in the time

derivative of the somatic voltage trace.

Moreover, intracellular voltage traces during the

depolarizing phase were steeper at the AIS than at the

soma (Figure 1B dashed lines; Supplementary Figure S2). In the

ball-and-stick model, the peak value of the voltage derivative

at the AIS (1,430 mV/ms) was more than twice that of the

somatic trace (557 mV/ms). This was also the case for both

detailed morphology models (>6- and >5-fold increase for

DM1 and DM2 respectively; Supplementary Figure S2). In

all three models, the AIS was thus the site of larger trans-

membrane current intensities and was—hence—likely a

dominant contributor to extracellular potentials around the

neuron (Bakkum et al., 2019).

3.2. AIS relocation was associated with
systematic changes in extracellular
footprints

Extracellular potentials at individual electrodes could

vary depending on the distance and orientation of individual

neurites relative to the electrodes. To capture this variability,

we simulated extracellular potentials at various soma positions

and neurite orientations (Figure 2A). For each positional

and rotational neuron implementation, extracellular

signals were generated for various AIS positions (see

Section 2).

Extracellular electric potentials around the neuron were

simulated with the LFPy package (Hagen et al., 2018).

Signals were computed at the locations specified by the

electrode design and consisted of 30 ms long traces of

activity concurrent to the injection of a current step at

the soma. The site of the earliest negative amplitude peak

was identified, and indices were computed around it that

corresponded to a ca. 3 ms cut-out. Array-wide snippets were

cut out using these indices and visualized as the extracellular

footprint.

Figures 2B,C illustrates the extracellular footprint for the

ball-and-stick neuron corresponding to various AIS positions

and neuronal orientations. In general, the AIS was the site of the

earliest occurrence of a electrical signal trough. For the ball-and-

stick model, it was also the site where the largest negative signal

amplitude occurred. The dominant sinks, corresponding to the

troughs in the waveform, can be seen to move in tandem with

distal shifts of the AIS position.

We analyzed specific waveform features at individual

electrodes during AIS relocation. For the ball-and-stick model,

4 electrodes along the soma and the neurites were selected

to illustrate these features (Figure 3A). AIS positions are

indicated as dots along the axon, and the dot color (light

to dark) represents increasing distances to the soma4. For

each of the selected electrodes, we studied the alterations

of the signal trough amplitudes, latencies relative to the

4 All colormaps from Crameri et al. (2020).
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FIGURE 3

Features in the extracellular footprint of the ball-and-stick model exhibited systematic changes in dependence of AIS relocation. (A) Waveforms

at selected electrodes (pink, green, blue, and purple) along the neuron are shown for various AIS locations. Proximal AIS locations are

(Continued)
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FIGURE 3 (Continued)

indicated as dots whose colors represent distances to the soma (see text footnote4). The dashed line represents the AIS length, when starting

from the final position. (B) Amplitudes along the dendrite (pink) and close to the soma (green) did not change with changes in AIS positions. AIS

relocation away from an electrode resulted in amplitude losses (blue), while the reverse was true when the AIS moved closer to an electrode

(purple). (C) AIS relocation away from the soma resulted in delayed peaks at the dendrite and soma, but earlier peaks (decreasing latencies) were

observed downstream of the AIS. (D) Proximity of the electrode to the AIS was generally associated with sharper spike shapes (blue, purple

electrodes). Amplitudes and half-widths were normalized to the respective baseline values (dais=5 µm), while latencies were computed relative

to the earliest detected signal peak for each AIS position (see Supplementary Figure S3 for non-normalized values). The log-scaled amplitude (E)

and latency (F) spatial maps over a 12 x 12 electrode block at various AIS positions reflect the trends described in (B,C) over multiple electrodes.

The respective soma position is indicated by the blue dot.

earliest trough, and waveform widths at half amplitudes

(half-widths). Amplitudes and half-widths were normalized to

values corresponding to the baseline position of the AIS (i.e.,

5 µm).

In peridendritic (pink) and perisomatic (green) electrodes,

signal amplitudes and half-widths were unaffected by

AIS relocation, though latencies increased with AIS

distance, which reflected the delay of the generated AP to

propagate back into these compartments (Figures 3B–D and

Supplementary Figure S3). In contrast, the blue electrode,

close to the baseline AIS position, recorded a substantial

drop in signal amplitude along with a broadening of the

waveform. Though initially it was the earliest peak position

(latency=0), latencies were found to increase, as the AIS

moved distally (Figure 3C). Conversely, at the purple electrode,

located in the movement direction of the relocating AIS

recorded progressively increasing signal amplitudes while

latencies steadily decreased to zero. The initial tendency for

the waveform to widen was quickly reversed, as the AIS moved

closer to the electrode (Figures 3B–D). In the meantime,

only modest changes in these signal features were observed

further down the axon (not shown). The spatial maps of

amplitudes and latencies, computed at 4 different AIS positions

over 144 electrodes in the 12 x 12 block summarize these

trends (Figures 3E,F). As the AIS relocated distally, the latency

map changed accordingly. A clear spatial separation of the

dominant sinks into two groups around the AIS and around

the soma was observed in the amplitude map (Figure 3E

right-most panel). The soma position is marked as a blue dot in

these maps.

Feature changes of a similar nature were observed

for the DM1 and DM2 models (Figures 4A,B and

Supplementary Figure S4). The waveform features on

peridendritic (pink) and perisomatic (green) electrodes

generally were preserved, while electrodes in the direction

of the AIS relocation recorded increasing amplitudes and

sharper spike shapes as observed on the blue electrode in DM1

(Figure 4A) and the purple electrode in DM2 (Figure 4B and

Supplementary Figure S5).

3.3. Feature changes in the extracellular
footprints are reliable predictors of AIS
plasticity

Next, we investigated if these systematic trends in the spatio-

temporal characteristics of the extracellular footprints could be

fruitfully exploited as reliable indicators of AIS plasticity.

To do so, we spawned a family of simulations for each

neuron model, as described in earlier sections. The simulated

signals were used to systematically construct a large possibility

space of extracellular footprint feature changes that could or

could not (i.e., sham cases) be associated with AIS relocation.

See Section 2 for a description of the generation of these feature

vectors. Each extracellular footprint pair was assigned a binary

label to indicate whether it involved AIS-relocation-mediated

changes.

Feature dimensions were reduced by pre-selecting the top

26 electrodes according to signal amplitude within the baseline

extracellular footprint. These electrodes were then sorted by

latency from the earliest to the latest occurrence of the signal

trough. Feature differences in corresponding electrodes were

stored in a vector. In a second step, we computed feature weights

using the neighborhood components analysis (NCA), a distance-

based, supervised, non-parametric feature-weighting technique.

The weights reflected the degree to which each feature was

relevant to detecting AIS relocation. We then selected the most

important features by thresholding feature weights and used

these to train our classifiers.

The procedure is illustrated for a pair of ball-and-stick

extracellular footprints that were associated with AIS relocation

(Figure 5). 1 amplitudes were used to construct the feature

vector in this example. Feature weights computed with NCA

were thresholded to select the most relevant features (7 in this

case; Figure 5C). The selected feature IDs are mapped on to the

example extracellular footprints (red) in Figures 5A,B. Notably,

electrodes with prominent changes in the footprint, shown in

Figures 5A,B, were not selected, presumably because they were

not reliable indicators of AIS plasticity. The pooled training data

contained footprints from various AIS locations. Consequently,
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FIGURE 4

Changes in spike waveform features for the two detailed morphology models were qualitatively similar to those observed in the ball-and-stick

model (Figure 3). The AIS locations are marked as colored dots along the axon (see text footnote4). The dashed line illustrates the 30 µm long

AIS, starting from the last position. Normalized extracellular amplitudes are shown in the bottom rows of (A,B). Movement of the AIS away from

an electrode along the axon led to extracellular amplitude attenuation [e.g., blue electrode and panel in (B)], whereas amplitudes increased for

electrodes in the direction of the AIS relocation [e.g., purple electrode and panel in (B)].

the positions and magnitudes of these electrodes featuring large

changes would be highly variable.

The feature vectors were used to train classifiers for

each morphology. Their performances were tested using

hold-out data sets that were not used to train or validate

the models. In each case, and independent of morphological

complexity, the trained model was able to detect with

near-perfect accuracy whether or not the given pair of

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2022.957255
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kumar et al. 10.3389/fninf.2022.957255

FIGURE 5

Models to reliably detect AIS relocation and predict its magnitude can be trained by using a family of extracellular activity simulations initialized

by the respective baseline morphologies. We pre-selected a subset of electrodes from the extracellular footprints to constrain the feature space

for statistical learning. 26 electrodes with the highest amplitudes in baseline configuration (initial AIS position) were pre-selected. Amplitude

changes at these electrodes were computed between baseline (A) and relocated (B) extracellular footprints. The footprints shown were based

on a ball-and-stick model with a 30◦ rotation with AIS positions at 5 µm (baseline) and 40 µm (relocated). (C) For the detection of AIS relocation,

an additional feature-selection step using neighborhood components analysis (NCA) was performed. Feature IDs marked in red (corresponding

electrodes in (A,B) are marked in red with arrowheads or the feature IDs) were selected to train the classifier (relocation status detector). (D) The

trained classifiers performed very well on the held-out test data sets for each of the three neuron models. True positive rates were high and false

positives were negligible or non-existent (blank fields). (E) Changes in amplitude were used to train a regression model to predict the magnitude

of AIS relocation. Trained models were tested using held-out data sets and showed remarkable predictive power for each neuron model.

extracellular footprints were associated with AIS relocation

(Figure 5D).

We then asked if the same features could be used to infer the

magnitude of relocation that was involved in the extracellular

footprint transformation. Only extracellular footprint pairs

associated with a valid AIS relocation were considered for

this task. To this end we trained regression models using

1 amplitude features. Since we did not observe significant
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differences in feature weights computed by NCA, we used

all available features to train the regression model. The

performance of the models was evaluated using held-out data:

it was possible to make reliable predictions based on pair-wise

features extracted from the extracellular footprints around the

respective neurons. The magnitude of AIS relocation associated

with each feature vector in the hold-out data set (true value),

predicted values based on the trained model, and the null-error

line (red) are shown in Figure 5E.

3.4. Extracellular footprint
transformations captured by kernel
functions can predict AIS plasticity even
in the absence of morphological
information

We showed that by instantiating a family of simulations

using the baseline morphology, it was possible to reliably detect

and predict the magnitude of AIS relocation using waveform

feature changes observed in simulated extracellular potentials.

However, to apply this method to a potential HD-MEA

based experimental setting, involving hundreds to thousands

of neurons, it would be necessary to collect morphological

information pertaining to each neuron and run customized

simulations to generate the simulated feature change vectors.

This could be a computationally expensive procedure. Hence,

we explored a scalable alternative where running simulations

customized by morphology for each unit would be unnecessary.

We attempted to capture extracellular footprint

transformations, specifically those associated with AIS

plasticity, in a mathematical description that could then be

efficiently generalized over neuronal morphologies. To this end,

we abstracted the phenomenon of AIS relocation as a linear

transformation that could then be completely characterized

by its impulse response. Ideally, kernel functions derived

from a simple ball-and-stick model should be translatable and

transferable across morphologies.

To test this idea, we estimated discrete kernels for each

electrode and AIS position—always on a pairwise basis—

relative to baseline extracellular footprints (i.e., AIS position at

5 µm; Figure 6A). In general, a longer kernel yielded a better

estimate of the transformation (Figure 6B). By assessing the

mean normalized root-mean-squared error between actual and

estimated waveforms, we chose to use kernels of length 25 for

further analyses (Figures 6B,C). A library of estimated kernels

was stored, which was parameterized by axonal orientation, and

the magnitude of AIS relocation that was used for the simulation

(Figure 6D).

We tested the kernel library that has been computed using

the ball-and-stick model on the two detailed neuronal models,

DM1 and DM2.We started with a pair of extracellular footprints

FIGURE 6

(A) Changes in each pair of extracellular footprints, associated

with AIS relocation, were modeled as a set of M linear

transformations, each associated with an impulse response,

hm[n], where m ∈ {1, · · · ,M} denotes the electrode number, and

M is the number of electrodes in the extracellular footprint.

Electrode-wise impulse responses of length L=25 were

estimated using the inverse of the convolution matrix (see

methods). (B) Illustration of the impulse response estimation for

a single electrode marked (black box) in (A). The baseline and

transformed waveforms are shown in black and gray

respectively. Overlays of transformed waveforms, estimated

using the impulse response of lengths L = 5 and 25, are shown

in orange and green, respectively. (C) The RMS error normalized

and averaged across electrodes decreased steadily with

increasing impulse-response lengths. We used a length of 25 for

further analyses (green triangle). (D) A sample impulse response

(L = 25), computed for the waveform transformation at the

electrode shown in (B).

of the detailed morphology model: a baseline extracellular

footprint and one after AIS relocation of unknown magnitude.

Next, we forward-estimated the transformed extracellular

footprint using each set of kernels, stored in our library, and

estimated the mean RMS error relative to the actual transformed

extracellular footprint (see Equation 3–5; Figures 7B,F). We

fitted a cubic polynomial to the computed errors and found that

they were convex over the tested interval, with a clear global

minimum, provided the extracellular footprint transformation

was associated with a ‘valid’ AIS relocation. The estimates,

made with the best fitting kernels, were overlaid with selected
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FIGURE 7

Kernel functions, derived from the minimal ball-and-stick model, may be used to detect and predict AIS relocation relative to baseline

extracellular footprints, even when the specific baseline morphology is unavailable. (A,E) Waveforms from 10 selected channels of the

extracellular footprint of the detailed morphology models corresponding to an AIS position of 15 µm (black) and traces estimated by the optimal

kernel functions (yellow: DM1, blue: DM2). (B,F) The mean RMS error between the actual and estimated extracellular footprint averaged over

electrodes and computed using kernel functions corresponding to various AIS positions. The error is lowest around the actual AIS position

(15 µm). A cubic polynomial was fitted (red) to the errors, and the putative AIS position was estimated as the one corresponding to the minimum

of this fitted function. The traces in [(A), yellow] and [(E), blue] were estimated using this optimal kernel. (C,G) Comparison of actual and

estimated AIS positions for a single orientation (θ =0◦). Each estimate was the mean over four jittered soma positions. (D,H) The mean and

standard deviation of each estimate, averaged over all rotations of the neuron model.

electrodes from the actual extracellular footprints, and we

observed a high degree of agreement (Figures 7A,E).

We found that the AIS position corresponding to the set

of best kernels could be used as a rough estimate of the AIS

relocation. For the case of no rotation and a single soma position,

we tested various extracellular footprints corresponding to

AIS positions between 5 and 40 µm. The kernel-based best

estimates aligned roughly along the null-error diagonal (red

dashed) for both DM1 (Figure 7C) and DM2 (Figure 7G).

Similar estimates were made for various axonal orientations

between 0◦ and 360◦, and the mean (std) of the estimated AIS

positions were reported for each model (Figures 7D,H). Overall,
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the kernel-based technique could be a promising approach for

efficient extracellular data-based high-throughput detection and

prediction of AIS relocation.

4. Discussion

We established an analysis framework to reliably detect and

track structural plasticity of the axon initial segment (AIS) in

simulated extracellular electrical readouts of HD-MEAs. We

proposed two computationally assisted methods with the goal

to enhance the throughput of experimental studies of AIS

plasticity, especially in in vitro models: i) a method based on

implementing a family of replicate simulations and ii) a method

based on linear systems theory.

The AIS was recently reported to exhibit structural

modifications in response to chronic alterations in neuronal

activity (Grubb and Burrone, 2010). These structural

modifications also appear to help restore initial excitability

levels of neurons and are, thus, thought to play a stabilizing role

(Lezmy et al., 2020). The AIS is a very versatile and complex

microdomain, and many aspects of its plasticity and functional

role are still poorly understood. One of the reasons is the large

variety of the possible structural alterations—distal/proximal

shifts, shortening and lengthening have all been reported (Grubb

and Burrone, 2010; Kuba et al., 2010; Evans et al., 2013; Chand

et al., 2015; Lezmy et al., 2017). Moreover, a layer of complex

multi-factor dependencies seems to influence the phenomenon

and its functional role. These include, for example, neuron type,

soma size, and the baseline AIS geometry.

Studies of AIS plasticity to date predominantly relied on

comparative assays of snapshots between control and perturbed

groups and have important limitations (Dumitrescu et al.,

2016). Since the averages of different sets of neurons were

studied in each group, it is difficult to control for sources of

variability (especially unique morphological properties). This

issue could be resolved by tracking the same neuron over a

long duration, from baseline state to a state with a modified

AIS. Simultaneous access to activity in the network would be

desirable to attempt to tease apart the contributions of individual

neuronal modifications to the network activity.

A potential solution could be to live-image structural AIS

plasticity. Dumitrescu et al. (2016) recently proposed that a

fluorescently-tagged sodium channel motif—YFP-NaV II-III—

may be suitable for time-lapse imaging of activity-dependent

AIS plasticity, although certain aspects (like the delayed response

of the probe relative to endogenous AIS proteins) are not yet

fully understood. The imaging approach has the advantage that

it could also reveal the detailed neuronal morphology when

used in combination with high-resolution microscopy, however,

it does not offer access to neuronal activity. Nevertheless,

it could be combined with simultaneous functional imaging,

for example, using calcium probes or genetically encoded

voltage indicators (Abdelfattah et al., 2019). However, an all-

optical approach may be technically challenging. Moreover,

it is important to consider that excitation-light exposure can

have significant photobleaching and phototoxicity effects that

may compromise reliability and reproducibility of the obtained

data, especially when imaging is done at high spatial resolution

(Icha et al., 2017). Low experimental throughput, poor temporal

resolution (for calcium imaging), and inadequate signal-to-

noise ratio (for voltage imaging) are further disadvantages of an

optical approach.

The AIS, by virtue of its unique molecular architecture,

is the location of highest electrical excitability in the neuron

and is the dominant contributor to extracellular electric fields

(Radivojevic et al., 2016; Bakkum et al., 2019). For this reason, it

is amenable to investigations using high-resolution extracellular

electrophysiology. HD-MEAs are capable of providing stable,

label-free, long-term readout of electrical activity at high spatio-

temporal resolution (see Supplementary Figure S6; Ballini et al.,

2014). What is missing is an analysis framework to reliably

identify and capture specific activity signatures that can be

uniquely mapped to underlying structural changes at subcellular

scale.

In this study, we present a first attempt at tackling this

challenge. We used computational models to characterize

extracellular footprint changes in response to specific

microstructural modifications. In order to generalize the

results, we studied changes in pairs of extracellular footprints.

Such synthetic data could be used to train machine-learning

models (method 1) or be used to extract kernel functions to

predict waveform transformations associated with AIS plasticity

(method 2).

Method 1 relies on baseline morphological information

to spawn replicate simulations. While this method could

involve substantial computational costs, this is not necessarily

a disadvantage. AIS plasticity and its functional consequences

have been tied to various morphological parameters like axon

diameter, soma size, etc., the reliable inference of which is

beyond the scope of a pure extracellular-electrophysiology-

based approach. Therefore, a determination of initial neuron

morphology will add significant value to the analysis.

Our second method has the advantage that it is fast,

has low computational overhead, and relies on a library of

already computed kernel functions that may—in principle—

be progressively improved, as more data are gathered. Further,

the search for an optimal kernel may be rendered more

efficient: currently, a kernel search over all possible angles is

performed, whereas, if the actual orientation of the proximal

axon could be estimated, the kernel search space can be

restricted accordingly. Such an estimation could be possible

based only on the extracellular footprint. For example, a

regression model may be trained to predict the orientation of

the proximal axon as demonstrated for the ball-and-stick model

(Supplementary Figure S1).
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To develop the algorithm and illustrate its effectiveness, we

focused on distal relocation of the AIS. However, the approach

itself is flexible and can readily be extended to other AIS

plasticity phenomena like changes in length, diameter, or relative

densities of the AIS protein machinery, and diverse baseline

AIS morphologies—including those localized at axon-carrying

dendrites (Höfflin et al., 2017). For each case, we would need

to run a new set of simulations and train or compute the

corresponding models. Aberrant phenomena like neurons with

multiple functional AISs have also been reported in vitro, though

it is unclear if and how structural plasticity is expressed in such

neurons (Guo et al., 2017). Hence, such cases will be challenging

to reliably model using our approach.

A constant AIS length of 30 µm was used throughout

this study. The AIS length is, in general, a very important

parameter and needs to be systematically explored in future

studies. The minimal HD-MEA electrode pitch necessary to

precisely discriminate an incremental change of the AIS is an

interesting constraint that needs to be explored.

The dominant contributor to the spatial variability

in the extracellular footprint would be the morpho-

geometric properties of a given neuron. This issue could

be addressed by reconstructing experimentally observed

neuronal morphologies, as we do in this study. Another possible

source of extracellular footprint variability could be the diversity

in the electrophysiological properties of primary neurons in

vitro. Modeling this variability could potentially add to the

robustness of our approach.

Experimental studies are necessary to thoroughly validate

the premise of our study. Carefully curated and labeled ground-

truth data sets, for example, combined live-imaging and HD-

MEA readouts, are essential to benchmark the recall and

accuracy of our approach. Additionally, various parameters

may need tuning to suit experimental data. For example, the

choice of 26 electrodes to featurize each extracellular footprint

was a heuristic guess and may need to be adjusted depending

on experimentally available extracellular footprints. Further,

electrode pre-selection based on feature thresholding (e.g.,

amplitude, latency) could be improved using sophisticated

approaches. The recently published automated axon tracking

package could, e.g., be used to estimate the orientation and

bearing of the proximal axon, and electrodes neighboring the

estimated trajectories could be used to better engineer feature

vectors (Buccino et al., 2022b).

In conclusion, extracellular microelectrode array data

constitute a rich and complex mixture of contributions from

multiple neurons and neuronal compartments. Harvesting

reliable information that can be mapped back to the underlying

biological sources has been an outstanding computational

challenge. A variety of methods, ranging from simple threshold-

based detection of multi-unit spiking to more sophisticated

unsupervised algorithms (e.g., spike sorting), has been proposed

and progressively improved to add value to extracellular

electrophysiology. Alongside, technological advances have

enabled significant strides in spatial and temporal resolution

of recording techniques. In addition, better computational

schemes need to be developed to augment the interpretational

value of extracellular electrophysiological data and to reliably

elucidate the underlying biological phenomena. Our study is a

contribution in this direction.
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