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Resting-state (rs) fMRI has been widely used to examine brain-wide large-

scale spatiotemporal architectures, known as resting-state networks (RSNs).

Recent studies have focused on the temporally evolving characteristics of

RSNs, but it is unclear what temporal characteristics are reflected in the

networks. To address this issue, we devised a novel method for voxel-based

visualization of spatiotemporal characteristics of rs-fMRI with a time scale of

tens of seconds. We first extracted clusters of dominant activity-patterns using

a region-of-interest approach and then used these temporal patterns of the

clusters to obtain voxel-based activation patterns related to the clusters. We

found that activation patterns related to the clusters temporally evolved with

a characteristic temporal structure and showed mutual temporal alternations

over minutes. The voxel-based representation allowed the decoding of

activation patterns of the clusters in rs-fMRI using ameta-analysis of functional

activations. The activation patterns of the clusters were correlated with

behavioral measures. Taken together, our analysis highlights a novel approach

to examine brain activity dynamics during rest.

KEYWORDS

resting-state fMRI, task fMRI, temporal dynamics, individual di�erence, Human

Connectome Project

Introduction

Resting-state functional MRI (rs-fMRI) is a functional neuroimaging technique

during which subjects are at rest and not engaged in any behavioral task, and it is

thought to monitor intrinsic physiological signals in the brain (Biswal et al., 1995).

Several studies have identified brain-wide large-scale spatiotemporal architectures as

resting-state networks (RSNs), within a frequency of 0.1–0.01Hz (Raichle et al., 2001;

Fox et al., 2005, 2016; Damoiseaux et al., 2006; Fox and Raichle, 2007). Because of its

technical ease, rs-fMRI has also been applied to patients with neuropsychiatric disorders

and has revealed alterations of RSNs related to these disorders (Buckner et al., 2008; Du

et al., 2016).
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RSNs are usually investigated by examining temporal

correlations of resting-state activity, also known as resting-

state functional connectivity (RSFC), in multiple brain areas

comprising the network. Although prior studies assessed RSFC

in RSNs using the entire duration of rs-fMRI scans (static

RSFC), recent studies have examined fluctuations in RSFC for

timescales ranging from seconds to a few minutes, so-called

time-resolved RSFC (Chang and Glover, 2010; Sakoglu et al.,

2010; Handwerker et al., 2012; Jones et al., 2012; Hutchison et al.,

2013; Lindquist et al., 2014; Zalesky et al., 2014). One important

characteristic of time-resolved RSFC is its temporal fluctuation

over a large range of correlation values (Zalesky et al., 2014;

Betzel et al., 2016). Some studies classified time-resolved RSFC

into distinct clusters that temporally evolve during rs-fMRI

scanning (Leonardi et al., 2013; Allen et al., 2014). These clusters

of time-resolved RSFC have been associated with structural

connectivity (Hansen et al., 2015), aging (Faghiri et al., 2018),

and mental disorders (Damaraju et al., 2014; Rashid et al., 2014;

Su et al., 2016). Thus, the spatiotemporal dynamics of rs-fMRI

activity may provide more information about the brain and

phenotype than static RSFC.

To provide an intuitive and interpretable characterization of

the spatiotemporal dynamics of rs-fMRI, herein we developed

a new method to extract dominant patterns in rs-fMRI activity

and relate these patterns to well-known task-evoked activation

patterns at voxel-based resolution. To examine time-resolved

RSFC, we used a sliding-window approach with a short time

window (Figure 1A). Unlike many previous studies of time-

resolved RSFC that required large sliding-windows (<100 s) to

examine detailed patterns of RSFC (Allen et al., 2014; Leonardi

and Van De Ville, 2015; Zalesky and Breakspear, 2015), we used

a smaller sliding window and focused on detecting dominant

patterns of RSFC that reflected transient brain-wide high

connectivity (Zalesky et al., 2014; Betzel et al., 2016; Vohryzek

et al., 2020; Figure 1B). We first used region-of-interest (ROI)

analysis to classify the spatiotemporal patterns emerging in

transient high connectivity into distinct clusters (Figure 1C).

We then reconstructed the voxel-based patterns associated with

the clusters using linear regression (Figure 1D). Voxel-based

visualization allowed us to compare the activation patterns of

the clusters and task-related functional maps and then examine

individual differences in the activation patterns of the clusters

using correlations with behavioral and psychological measures.

The novelty of the proposedmethod is that it simultaneously

enabled detection of neural activity events at high signal-to-

noise ratio and visualization of activity the patterns at the voxel

level. Previous studies such as the co-activation pattern analysis

(Liu and Duyn, 2013) conducted event detection with voxel-

level resting state fMRI data. However, because single voxel

timecourses are noisy, event detection using the voxel-based

data would be noisy. To address this problem, the proposed

method used event detection with region-of-interest (ROI)-

based data and principal component analysis (PCA). However,

PCs obtained with ROI-based data are spatially compressed

and cannot be directly compared to voxel-based activity maps.

Therefore, following the event detection, the proposed method

conducted a generalized linear model (GLM) analysis based

on extracted events in voxel-based data to obtain voxel-level

description of whole-brain activity-patterns associated with

the events.

Materials and methods

Datasets

Resting-state and task-related fMRI data were obtained

from the Human Connectome Project (HCP: http://www.

humanconnetome.org/; Glasser et al., 2016; n = 810), with all

data included in the S900 data release. For each subject, resting-

state scans (approximately 15min) were conducted for four

functional runs with a repetition time (TR) of 0.72 s and 2-mm

isotropic spatial resolution.

Image preprocessing

rs-fMRI data were preprocessed by HCP and cleaned by

ICA-based X-noiseifier (FIX) from the FMRIB Software Library

(FSL) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

The current study did not apply global signal regression. Task

fMRI data were also preprocessed with a procedure identical to

that for resting-state fMRI data, including FIX cleaning. MRI

signal timecourses were extracted from 264 ROIs distributed

across the whole brain identified in prior studies (Power et al.,

2011). We have selected this ROI atlas because it is one of the

most frequently used ones to examine brain-wide functional

networks in humans (Keerativittayayut et al., 2018; Matsui et al.,

2022a), thus allowing us to compare present results directly with

other literatures.

A temporal bandpass filter (0.009< f< 0.08Hz) was applied

(Power et al., 2014), and then scanning frames of the first and last

38 TRs in each functional run were discarded from the analysis.

This resulted in 264 ROIs× 1,124 time points.

Time-resolved analysis

The analysis was based on the framework illustrated

in Figure 1. Because we focused on brain-wide high

synchronization (Zalesky et al., 2014; Betzel et al., 2016;

Figure 1B), we applied a sliding window principal components

analysis (sw-PCA) (Vohryzek et al., 2020; Figure 1A). PCA

was applied to fMRI timecourses in ROIs in a window (25 TRs

=18 s) that slid over the entire timecourse, providing 1,100

principal components (PCs) along a temporal axis with 264
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FIGURE 1

Schematic illustration of the analysis framework. (A) Example timecourses of fMRI signals extracted from regions of interest (ROIs). The vertical

and horizontal axes indicate ROIs and time, respectively. The color indicates the magnitude of standardized fMRI signals. The brighter rectangle

area indicates a window where ROIs timecourses showed temporal sectorization [TS; see (B)], and broken vertical red lines indicate TS time

points. (B) Example timecourse of the variance explained by the first principal component (1st PC, blue line). Red dots indicate local maxima of

the variance, when fMRI signal temporally synchronized. ROIs showing strong synchronization were mapped onto the 3D surface of the brain.

Colors of the ROIs indicate resting networks identified in prior work (Power et al., 2011). (C) Temporal synchronization patterns were labeled as

clusters based on a transition matrix across the cluster in Supplementary Figure S3A. ROI-based pattern for each 12 cluster centroids comprising

6 pairs of clusters mapped onto the 3D surface of the standard brain. (D) Timecourses of cluster occurrence (top). The vertical and horizontal

axes indicate clusters and time, respectively. The occurrences of clusters are indicated by blue dots. The occurrences of the clusters were coded

as events in fMRI time series modeling (bottom). Blue and green solid lines indicate event onsets and BOLD model of the cluster occurrence.

Whole-brain exploratory standard event-related GLM analysis was performed using resting-state data.

ROIs × 25 time points across 1,124 (1,200 – 38 × 2) full time

points (Figure 1A; see below for the timecourses with different

window sizes). The fMRI timecourses were z-normalized in

each window to examine the relative change in the window,

so that (1) the PCs of normalized timecourses were equal to

eigenvectors of the correlation matrix of timecourses within

the window and (2) the explained variance was identical to

eigenvalues of the correlationmatrix. Temporal synchronization

(TS) was defined as time windows where the timecourse of the

1st PC’s explained variance was at local maxima (Figure 1B).
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Thus, TS indicates time points in which fMRI timecourses are

locally and transiently synchronized (Figure 1B; Allen et al.,

2014). To examine the consistency of results between the

current study and prior studies, the following synchronization

measures were also calculated: global efficiency (Zalesky

et al., 2014), variance of correlation (Allen et al., 2014), phase

synchronization approach (Ponce-Alvarez et al., 2015; Senden

et al., 2017) and epoch numbers at frames as point-process

analysis (PPA) approach (Tagliazucchi et al., 2012; Liu and

Duyn, 2013; Supplementary Figure S2).

A temporal synchronization pattern (TSP) was then defined

as the 1st PC of sw-PCA when a TS occurred (Figure 1B).

Because the sign of PC is not determined uniquely, for each

window, we adjusted the sign of the 1st PC such that it

showed a monotonical increase toward the TS time point

(Supplementary Figure S1C). The current study adopted the 1st

PC, instead of a correlation pattern defined as a correlation

matrix of partial fMRI timecourse in a window (e.g., Allen et al.,

2014). This is because the current study used a short window

size, which makes the correlation matrix estimation unstable

(Leonardi and Van De Ville, 2015). Thus, using the 1st PC, we

focused on an overall pattern of correlation in a windowwith TS.

Exploration of window size

The size of the sliding window is a critical parameter

in time-resolved RSFC analyses, because an excessively short

window introduces spurious fluctuations (i.e., increasing the

false positive rate; Leonardi and Van De Ville, 2015; Zalesky

and Breakspear, 2015), whereas a longer window tends to

reduce the sensitivity to high frequency temporal dynamics. To

explore the effect of window size, we calculated the variance

explained by the 1st PC of windowed timecourses for window

sizes ranging from 15 to 65 TRs. Supplementary Figure S1 shows

the results for a participant (ID: 105115). Within the range of

15–35 TRs, TSP timecourses temporarily fluctuated, suggesting

that phase-synchronized signals were overall increasing or

decreasing around the local maxima. Additionally, within this

range, local maxima of the explained variance were almost

consistent, indicating that the center time point of a TS window

is almost independent of window size.

However, with window size >45 TRs, the timecourses

contained many small-peaked maxima and were not temporally

aligned.With long window sizes, it was difficult to detect some of

the local maxima observed with shorter window sizes. Although

multiple PCs based on a correlation matrix (Allen et al., 2014) is

effective for such larger window sizes, use of multiple PCs was

not applicable to the current TS analysis due to the procedure of

sign flipping for PCs. Taken together, the current study used 25

TRs for the window size to indicate the overall change of signals

in synchronization.

Reducing motion-related artifacts

To minimize motion-derived artifacts against TS patterns,

framewise displacement (FD) from derivatives of the six rigid-

body realignment parameters were calculated over the scanning

run (Power et al., 2012). If a large head movement occurred

(FD > 0.5), to ensure that the head movement did not affect

data in a window (Power et al., 2017), we discarded TS

window from the head movement to 30 TR after the head

movement. Additionally, subjects with 60 TS in any session

were discarded from analyses. Because prior studies used more

stringent criteria to discard scanning frames (FD > 0.2), we

examined the probability of head movements with FD > 0.2

within TS windows.

Clustering of temporal synchronization
patterns (TSPs)

To evaluate similarities among TSPs, we used k-means

clustering with the number of clusters set to k = 12 for

TSPs from all subjects and all sessions (approximately 200,000

TSPs in total; Figure 1C). The distance between two TSPs

was defined as pair-wise spatial correlations between TSPs.

The k-means clustering was repeated 100 times with random

initialization and, over the repetition, the result with the

minimum summation of distances from TSP to cluster centroids

was employed. Then, the center time point of a TSP window was

labeled by the number indicating the cluster (Figures 1C, D).

TSP-related whole-brain mappings

Because TSPs were defined at ROI-level, we developed a

method to translate TSPs into voxel-based maps for easier

interpretation. To obtain a voxel-based map related to ROI-

based TSP clusters, we conducted a whole-brain exploratory

analysis based on a standard event-related fMRI approach,

whose events were time-locked to the TS windows (Figure 1D).

This event coding was possible because PC timecourses were

sign-adjusted such that they monotonically increased within

TS windows (Supplementary Figure S1C). The TS events were

defined as the centers of TS windows for each cluster

label (Figures 1A, D) and were convolved with the canonical

hemodynamic response function in FSL. Then, for each

scanning run, parameters were estimated using a generalized

linear model (GLM) by film_gls implemented in FSL suite

(https://fsl.fmrib.ox.ac.uk/). Voxel-based data were expressed

in grayordinates space (Glasser et al., 2013), which consisted

of 91,282 voxels × 1,100 time points (i.e., a pixel-based

analysis; Figure 2). For comparison, we conducted ROI-based

analysis using the same procedure with 264 ROIs × 1,100 time

points. The first and last 50 TRs in each scanning run were
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discarded from the analysis. Voxel- and ROI-based whole-brain

synchronized activation patterns (SAPs) were constructed based

on parameter estimates for each of the identified 12 TSP clusters

(Figure 1C). The SAP maps were collected from all scanning

runs and subjects, and group-level statistics were calculated

based on a mixed-effect GLM implemented in FEAT in FSL,

treating a scanning run as a fixed effect and subjects as a random

effect. For pixel-wise analysis, group-level statistical maps were

visualized using the Connectome Workbench platform (Marcus

et al., 2013). For ROI-based analysis, ROIs with beta-values >

0 were mapped on a transparent 3D standard space based on

BranNet Viewer (Xia et al., 2013).

The 12 SAPs could be grouped into 6 pairs of clusters

that had anti-correlated spatial patterns and almost always co-

occurred. These pair-wise anti-correlations can be explained by

(1) the arbitrariness of the sign of PCs, (2) the spatial pattern

of clusters, and (3) autocorrelation of BOLD timecourses.

Therefore, we named these 6 groups as clusters and each SAP

in a cluster as a sub-cluster. For example, Cluster 1 consists of

Sub-clusters 1-1 and 1-2, and Cluster 2 consists of Sub-clusters

2-1 and 2-2. Note that we avoided the use of terms such as states

and attractors because similar SAPs were obtained in phase-

randomized null models (see Discussion for an interpretation

of clusters).

Characterization of SAP maps

To characterize the SAP maps, we decoded SAP maps

based on their topographical structure (Margulies et al., 2016;

Figure 2). Voxel-based reconstruction of SAP maps allowed

us to use existing meta-analyses of functional brain mapping

(https://neurosynth.org; Yarkoni et al., 2011; Gonzalez-Castillo

et al., 2019; Matsui et al., 2022b) to decode weighted word

lists that characterize the SAP maps. Large weights associated

with the decoded words reflect greater topographical similarity

between an SAP map and functional brain maps associated with

the words in the meta-analysis database (Yarkoni et al., 2011).

The word lists were visualized as a word cloud where the size

of the words reflected the weights (Chen et al., 2018). Words

unrelated to brain functions were eliminated.

Analysis for temporal structure of
relationships among cluster occurrences

To examine the temporal structure of cluster (sub-cluster)

occurrences, occurrence probabilities were calculated based on

the frequency of occurrence across time series. The probability

was calculated for each of the 6 clusters. For each cluster, the

probability associated with sub-clusters (e.g., 1-1 and 1-2) was

averaged. Then, we examined point-wise mutual information

(PMI; Church andHanks, 1989) as a function of two time points:

t and t + τ (t, τ > 0). PMI was calculated as the ratio of two

observation probabilities (X, Y) of TS events of Clusters (a, b):

PMI
(

Xa = 1,Yb = 1
)

= log2

(

Pr
(

Yb = 1| Xa = 1
)

Pr (Xa = 1)

)

, (1)

where,Xa = 1, if an event where Cluster awas observed at time t

given a TS of any clusters occurring at time t, otherwise Xa = 0;

and Yb = 1, if an event where Cluster b was observed at time t

+ τ given the TSs of any clusters occurring at time t and t + τ ,

otherwise Yb = 0.

The two probabilities were computed by counting

observations for each pair at times t and t + τ . The timecourses

of the probabilities were temporally smoothed using a moving

average with window size = 50 TRs to avoid the denominator

Pr (Xa = 1) reaching zero. Then, at each scanning frame, PMIs

were calculated for all possible pairs of the 6 clusters.

Each PMI timecourse was used to quantify two temporal

characteristics, (1) time effect reflecting monotonic change in

PMI over the scanning period and (2) lag-time effect reflecting

PMI change at time t and (t + τ ), by using multiple regression

analysis. PMIs in the first and last 100 time points were discarded

from the analysis. The lag effect was examined for τ > 100

TR to minimize bias derived from autocorrelation of PMIs

(Figure 4A). The time effect and lag effects were color-coded in

the heat maps. PMIs without lag (τ = 0) were also estimated in

the regression analysis.

Evaluation of temporal structure

To evaluate the temporal characteristics of TSP, null data

sets were generated by phase randomization of the real data

for each session (Hindriks et al., 2016). Phase randomized null

data preserve covariance and autocorrelation of timecourses

(Liegeois et al., 2017). We used the phase-randomized null

data set to test the hypothesis that clusters involve temporal

relationships beyond autocorrelation of the BOLD timecourse.

Results among subjects and sessions for the null dataset kept

variabilities among subjects and sessions because the null time

series were generated for each session of each subject separately.

Relationships of TSPs during rest and
tasks

To characterize the clusters identified based on TSPs,

we analyzed TSPs during performance of 7 behavioral tasks

of HCP (Barch et al., 2013). Scanning data were collected

using a temporal and spatial resolution identical to the ones

used during the resting state. TSPs during task performance

were calculated in a similar way as for resting-state data (see
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FIGURE 2

Whole-brain maps of SAP. Z-values of signal magnitude were color-coded and mapped onto the 3D surface of the standard brain. Columns and

rows indicate clusters (1-6) and pairs of sub-clusters (e.g., Sub-clusters 1-1 and 1-2). Each inset shows left lateral, right lateral, left medial, and

right medial surfaces of the brain. Each SAP map is functionally characterized by a word cloud on the right based on a map-to-function

decoder. The font size of a word represents the strength of similarity between the SAP maps and functional brain maps revealed by

meta-analyses. Names of brain regions are colored in gray.

above). Briefly, classification of task TSPs was performed by

k-nearest neighbor classification (k = 100), and classification

scores lower than the 5-percentile of the score of a random

pattern were replaced with 0. Task-related activation was

estimated based on the standard GLM procedure used in

the HCP pipeline, and activation contrast maps were created
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for 23 onsets during 7 tasks (see Figure 5B for task

contrast lists).

Then, relationships between TSP maps in resting state

(Figure 2) and task-activation maps were examined by

evaluating the inter-subject consistency between the two types

of maps. The mean effects of SAP and of task activation across

subjects were subtracted out from the TSP maps of individual

subjects. Consistency was quantified as the spatial correlation

between SAPs and task-related activation maps for each subject.

To test the significance of spatial correlations, we compared

two distributions of the correlations of SAP and task-related

activation maps from identical subjects (tested correlation)

and from different subjects (null distribution) and then

calculated Hedges’ g between the tested and null distributions

(Supplementary Figure S7) using MATLAB toolbox “Measures

of Effect Size” (Hentschke and Stüttgen, 2011; https://github.

com/hhentschke/measures-of-effect-size-toolbox).

Relationships between clusters and RSFC

Clusters were examined in relation to the RSFC, which was

calculated as pair-wise correlation coefficients based on the full

timecourse of the rs-fMRI scan (Fox et al., 2005; Power et al.,

2011; Smith et al., 2015). For each subject, timecourses of 13

RSNs (Power et al., 2011) were extracted from the rs-fMRI runs

and averaged across regions within each of the networks. Then,

the strengths of RSFC between the networks were calculated as

pair-wise correlation coefficients. RSFC strengths were predicted

by group-level multiple regression analysis using the occurrence

frequency of the clusters as predictors. R-squared values were

collected from all subjects and averaged across subjects for each

RSFC strength.

A similar multiple regression analysis was performed based

on reconstructed maps of the clusters (Figure 2). For each

subject and network, beta-values of the reconstructedmaps were

extracted and submitted to amultiple regressionmodel using the

RSFC and beta-values of the maps as predicted and predicting

variables, respectively. Then, R-squared values were calculated as

above. A regression analysis was performed with the beta-value

of each cluster map as a factor.

Relationships between TSPs and
behavioral measures

To characterize TSPs in relation to psychological and

behavioral characteristics, we explored cross-subject correlations

between TSPs and behavioral measures. The HCP dataset

includes behavioral measures [subject measures (SMs)] of

individual subjects, including demographic, psychological,

and behavioral measures, collected by standard procedures

conducted outside the scanner. Detailed descriptions of SMs are

available elsewhere (https://wiki.humanconnectome.org).

Prior studies found relationships between SM correlation

mode and RSFC during resting state in the HCP dataset (Smith

et al., 2015; Miller et al., 2016) by using canonical correlation

analysis (CCA; Hotelling, 1936). Based on these studies, we also

used CCA to find correlations between RSFC and selected SMs.

The adoption policy of SMs in the current study was similar to

that in a prior study (Smith et al., 2015). More specifically, we

excluded the following SMs: (1) those with insufficient variability

with 95% of subjects rated by the same measure value, (2) those

treated as confounds, (3) those correlated with other measures,

(4) those that were undesirable to feed into the CCA analysis

or had high correlation with already-selected measures (Smith

et al., 2015), (5) family history measures, (6) and age adjusted

measures. The following measures of behavioral performance

during task fMRI were added: accuracy of (1) 2-back working

memory task, (2) resemble task, (3) social cognition task, (4)

story block in language task, and (5)math block in language task.

The total number of SMs used in the analysis was 106.

Prior to CCA analysis, images and SMs were preprocessed.

First, for each subject, two SAP maps corresponding to two

sub-clusters in a cluster (e.g., Sub-cluster 1-1 and 1-2) were

concatenated, resulting in 6 images each involving 182,564 pixels

(91,282 pixels × 2 sub-clusters). The images were subjected

to rank-based inverse Gaussian transformation to avoid the

influence of potential outlier values (Van der Waerden, 1952).

Second, the effects of potentially confounding variables were

subtracted out from SMs before calculation of SAP and cluster

occurrence using multiple regression analysis. The confounding

variables included age, sex, age2, age2 × sex, height, weight,

acquisition reconstruction software version, and FD averaged

in the scanning session. Finally, to avoid over fitting, PCA was

applied to SMs and the 6 images prior to CCA. The number of

dimensions in PCA was set to 50 because 50 PCAs explained

more than 90 and 18% of SM variances and image variances,

respectively. In a separate control analysis, the dimension of the

PCA was increased to 100, and CCA was applied similarly. We

confirmed a consistent CCA mode (Supplementary Table S1).

CCA statistics were tested for significance by using random

permutation of subjects (10,000 permutations). P-values were

corrected for multiple comparisons based on family-wise error

rate. Finally, SMs and SAPweights were calculated as correlation

coefficient across subjects between CCAmode and SMs/SAP. To

examine the relationships between cluster occurrences and SMs,

a pairwise correlation coefficient was calculated for each cluster.

Results

Extraction of transient spatiotemporal
features

Figure 1 illustrates the analysis framework of the current

study. From the publicly available HCP dataset, rs-fMRI

timecourses were extracted for ROIs across the whole brain
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(Power et al., 2011; Figure 1A). To examine the temporal

characteristics of rs-fMRI signals, we used a sliding window

approach, which is a simple but powerful tool to examine

fluctuations of brain-wide high and low correlations of activities

during resting state (Zalesky et al., 2014; Betzel et al., 2016).

We first examined high correlation periods based on

a classification of spatiotemporal activation patterns.

Instead of calculating temporal correlations in the sliding

window, ROI timecourses were submitted to sw-PCA

(Vohryzek et al., 2020). The 1st PC explained the largest

fraction of variance of resting-state brain activity within

a window. Timecourses of the variance explained by the

1st PC showed large temporal fluctuations (Figure 1B,

Supplementary Figure S1A).

The large variance explained by the 1st PC indicates

that the spatiotemporal dynamics of brain activity in that

window can be projected to a single mode, which indicates

strong brain-wide synchronization (Vohryzek et al., 2020).

We identified time windows showing temporally local maxima

of the variance explained by the 1st PC and named these

windows as TSs (Figure 1B red dots). In TS, the 1st PC of the

TS dominated the temporal fluctuation of ROI timecourses,

suggesting strong brain-wise synchronization in this window.

To determine the best window size for detecting brain-wide

synchronization, the timecourse of the 1st PC was examined for

each TS window (Supplementary Figure S1B). The timecourse

monotonically increased or decreased with window sizes smaller

than 25 TRs (corresponding to 18 s; Supplementary Figure S1B

left and middle). With larger window sizes, the timecourses did

not show a temporally consistent pattern or monotonic changes

(Supplementary Figure S1B), suggesting that window sizes < 25

TR were suitable for extracting brain-wide synchronization

(Lindquist et al., 2014). Because the sign of PC cannot be

determined uniquely, in order to align the timecourses of

the 1st PC across TSs, we flipped the signs of the PCs

such that the PC timecourses showed a monotonic increase

(Supplementary Figure S1C). Because the 1st PC obtained

in these procedures provided spatial patterns of globally

synchronized resting-state brain activity, we denoted the 1st PCs

in TS as transient synchronization patterns (TSPs).

To characterize the timecourses of the variance explained by

the 1st PC (Figure 1B), we next examined these timecourses in

relation to the quantitative measures for temporal characteristics

used in previous studies. The timecourse of the variance

explained by the 1st PC was highly consistent with the

global efficiency (Zalesky et al., 2014; Supplementary Figure S2

second top), Frobenius norm of the correlation matrix

(Allen et al., 2014; Supplementary Figure S2 third top), and

phase synchronization (Ponce-Alvarez et al., 2015; Senden

et al., 2017; Supplementary Figure S2 bottom). However, the

timecourse was not similar to the point process analysis

(PPA) measure (Tagliazucchi et al., 2012; Liu and Duyn, 2013;

Supplementary Figure S2 bottom). These results confirmed that

sw-PCA captured the temporal characteristics of resting-

brain activity.

Classification of TSP

TSs were observed approximately 74.6 ± 4.2 times (mean

± SD) during one functional run (1,200 frames per run). To

identify dominant patterns of activity dynamics during rest as

observed in prior studies (Allen et al., 2014; Tagliazucchi and

Laufs, 2014), we classified TSPs into 12 patterns by k-means

clustering (Allen et al., 2014). TSPs corresponding to the centers

of the patterns were extracted (Figure 1C).

We then examined the transition patterns of TSP among

the 12 patterns (Supplementary Figure S3A). This revealed that

the occurrence of a TSP was frequently followed by occurrence

of another particular TSP. Thus, these two TSPs comprised

a pair. Six pairs of patterns were identified, and each pair

mutually transited over the TSP (Supplementary Figure S3A).

Two TSPs belonging to the same cluster appeared almost equally

(Supplementary Figure S3B). We labeled the center frame of TS

as sub-clusters, and pairs of sub-clusters comprised a cluster

(e.g., Cluster 1 is composed of Sub-cluster 1-1 and Sub-cluster

1-2). A total of 6 clusters and 12 sub-clusters were found

(2 sub-clusters per cluster; Figure 1C). Very similar clusters

were observed with different numbers of patterns used for

the k-means clustering obtained (Supplementary Figures S3C,

D), suggesting that the clusters were robust to the change of

parameters in the analysis. Note that the present analysis did

not reveal whether TSPs corresponded to states or attractors in

the resting-brain activity; hence we intentionally avoided use of

these terms (see Discussion).

Reconstruction of voxel-based SAPs

To explore the detailed patterns of brain activations related

to TS, we performed a variant of a standard event-related GLM

analysis to reconstruct voxel-based maps associated with TSPs.

The analysis coded TS as regressors, and voxel-wise parameter

estimation was performed for each sub-cluster (Figure 1D;

see also Methods). We named the reconstructed voxel-based

maps representing brain-wide synchronization patterns as SAPs.

Figure 2 shows the SAP for each sub-cluster. Note that SAPs of a

pair of sub-clusters showed opposite spatial patterns, which was

attributable to TSP signs.

Voxel-based representation of SAPs allowed us to perform

decoding analysis on SAPs, which produced word clouds based

on their topographical similarity to functional brain maps

curated in previous meta-analyses (Figure 2; see also Methods;

Yarkoni et al., 2011; Margulies et al., 2016; Chen et al., 2018;

Gonzalez-Castillo et al., 2019; Matsui et al., 2022b). SAPs for

Sub-clusters 1-1, 3-1, and 4-1 showed similarity to functional
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maps for motor movement and somatosensory stimulation.

Because subjects were refrained frommakingmovements during

rs-fMRI in the HCP’s protocol, the decoding results may reflect

motor-intention or imagination rather than movements per se.

SAPs for Sub-cluster 2-1 were characterized by vision-related

terms such as “visual,” “eye,” “attentional,” “stimulus,” and “eye

movements.” SAPs for Sub-cluster 5-1 were labeled as “working

memory” and “executive.” For sub-clusters paired with those

similar to functional maps of motor, visual, and executive

functions [i.e., clusters labeled as “X-2,” (X: 1 to 6)], word clouds

included “autobiographical,” “self-referential,” “mental states,”

“theory minds,” and “cognitive control.” These higher mental

functions are often associated with fronto-medial wall areas

spanning the ventromedial prefrontal cortex to dorsal anterior

cingulate cortex (Gusnard and Raichle, 2001; Kelley et al., 2002;

Gallagher and Frith, 2003; Piefke et al., 2003; Rushworth et al.,

2004; Mitchell et al., 2005; Summerfield et al., 2009).

Relationships between cluster
occurrence and RSFC

We further examined the relationships between (static)

RSFC and TSP. If TSs involving two RSNs (e.g., motor/sensory

and visual, like Cluster 1-1) in its TSP occurred in a scanning

run, high temporal correlation between the two RSNs should

be found. To confirm this possibility, we performed multiple

regression analysis where the strengths of RSFC (13 × 12/2 =

78 combinations) were predicted by the co-occurrence of each

cluster, and R-squared values of the regression were calculated.

The cluster occurrence explained well the strength of static RSFC

among many of the networks including sensory, visual, cingulo-

opercular, auditory, ventral attention, and cerebellar networks

(Supplementary Figure S4A).

The strength of RSFC was also predicted by SAP.

SAP explained well the FC strength among those networks

(Supplementary Figure S4B). When the regression analysis

was based on the SAP of each cluster separately, Clusters

4 and 6 were found to better explain the strengths of

RSFC (Supplementary Figure S4C). However, FPN and DMN

showed smaller explained variances [red arrowheads (a/b) in

Supplementary Figure S4B] [DMN (a): r2 = 0.3; FPM (b): r2 =

0.2]. These results confirmed that cluster occurrence and SAPs

could explain the characteristics of static RSFC.

Examination of clusters

The clusters extracted above may be a statistical artifact due

to sampling variability rather than reflecting distinct brain states

(Laumann et al., 2017: Liegeois et al., 2017; Matsui et al., 2022a).

Therefore, we tested whether similar clusters were found in null

data, which was constructed to be stationary (Liegeois et al.,

2017). We used phase randomized data as null data, which kept

the auto-/cross-covariance of the real data (Calhoun et al., 2014).

TSPs calculated based on the null data were quite similar to those

calculated based on the original data. Spatial correlation between

STPs of real and null data was high (Supplementary Figure S5A),

similar to prior studies (Laumann et al., 2017; Matsui et al.,

2022a).

However, internal cluster validity index (Calhoun

et al., 2014) differed between null and real data

(Supplementary Figure S5B), suggesting that the cluster

structure of TSPs was not fully explained by lag cross correlation

of fMRI signals and that these clusters may correspond to

distinct states constituting non-stationary resting-brain activity

(Calhoun et al., 2014).

Temporal characteristics of
cluster occurrences

To examine further whether the occurrences and transition

properties of the clusters changed during a scanning run,

we calculated ensemble mean probabilities across subjects for

each RS scanning run (2 runs × 2 days; Figure 3). A gradual

increase of Cluster 6 occurrences and high occurrence of

Cluster 2 in the first 200 frames (approximately 2–3min)

were observed on both scanning days. These observations are

consistent with prior studies (Allen et al., 2014; Abrol et al.,

2016, 2017). However, Cluster 6 occurrences increased in earlier

frames in the second run than in the first run on both Days

1 and 2. Additionally, high occurrences of Cluster 2 were

observed in the first 200 frames particularly in the first run

on each of Days 1 and 2. Importantly, these results were not

observed for cluster occurrences calculated from the null data

(Supplementary Figure S5C).

Next, we examined the temporal structure of cluster

occurrence probability by calculating temporal point-wise

mutual information (PMI; Church and Hanks, 1989). In the

current study, PMI indicated the probability of observing a

cluster at time t + τ given a cluster occurring at time t (See

also Methods). Then, for all combinations of clusters, PMI was

calculated for all t and τ (t > 0; τ > 0; t + τ < 1,200), providing

a PMI matrix (Figure 4A). To examine the temporal structure

of the PMI matrix, it was fitted by a multiple linear regression

model involving three explanatory variables, namely, t (time

effect), τ (lag effect) and a constant (zero-lag PMI) (Figure 4A).

The parameters were then estimated for all cluster combinations

(Figure 4B). Statistical significance was tested based on phase

randomized null data (Supplementary Figures S5C, D; Hindriks

et al., 2016; Laumann et al., 2017). Note that rejection of

the null hypothesis (FWE-corrected P < 0.05) suggests that
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FIGURE 3

Timecourses of the occurrence of clusters. Vertical and horizontal lines indicate occurrence probability and time, respectively. Line colors

indicate clusters as labeled in the right inset. Four scanning runs were administered in two days, and the panels show the timecourses of the first

and second scanning runs on Days 1 and 2.

these temporal structures of cluster occurrences cannot be fully

explained by autocorrelations of rs-fMRI signals.

Lag effects showed large negative effects in diagonal

components (Figure 4B left). Clusters 2 and 6 showed strong

negative lag effects, indicating that Clusters 6 and 2 alternated in

short time intervals. However, Cluster 6 showed greater positive

lag effects with other Clusters 1-5, indicating that Cluster 6

and other clusters infrequently occurred especially in a short

time interval. Note that small tau effects (τ < 100 TRs) and

early (first 100 frames) and late (last 100 frames) scanning

periods were eliminated from fitting (see Methods). This was

because the current analysis focused on cluster co-occurrences
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FIGURE 4

PMI of occurrence probability reflects the temporal relationships of occurrences between two clusters. PMI was calculated at time t and t + τ ,

which provided a PMI matrix (A). A PMI matrix was created for each combination of the 6 clusters, and each matrix was decomposed into lag (τ )

e�ect, time (t) e�ect, and zero-lag (constant) e�ect based on multiple regression analysis. (B) Regression coe�cients for all cluster

combinations are color-coded for lag e�ect (left), time e�ect (middle), and zero-lag (right), as shown at the bottom. *P < 0.05, FWE-corrected

for multiple comparison.

in long periods, and cluster co-occurrences in short periods

were derived from autocorrelation of temporally filtered rs-

fMRI signals.

It is still possible that these PMI changes were confounded

by the change in cluster occurrence probability during early

and late periods of a scanning run. For example, a positive lag

effect between Clusters 2 and 6 (Figure 4B left) was derived

from the frequent occurrence of Cluster 2 and 6 in the early

and later periods, respectively (Figure 3). This time effect of

PMI was unlikely to be attributable to the limited sample size

in those scanning periods, because the time effects of PMI

from other clusters to Cluster 6 were low (Figure 4B middle).

To confirm this effect further, we performed a simulation

analysis in which randomized null data sets preserved the

temporal characteristics of cluster occurrence frequency of the

real data (Supplementary Figures S6A–C). This control analysis

confirmed that these lag and time effects of PMI in the real data

were not affected by the temporal changes of cluster occurrence

(Supplementary Figure S6D).

Relationships between clusters and
task-related functional maps

To examine if clusters identified in the resting state also

appear in the task state, we compared TSPs during resting state

(Figure 1C) and those during task states. We first calculated

TSPs during task-fMRI scans (task-TSPs) available from HCP (7

behavioral tasks; Barch et al., 2013). Task-TSPs were extracted

using the same procedure used to extract TSPs in resting

state. Then, task-TSPs were classified by the k-nearest neighbor

method (k = 5), in which the classifier was trained based on
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FIGURE 5

Relationships of TSP in resting state and task states. (A) TSPs during performance of the 7 tasks were classified using a classifier trained on

resting-state data, and classification scores of the task-TSPs were calculated along task blocks. For each cluster and scanning frame, scores are

color-coded as shown at the bottom right. For language tasks, P and Q denote presentation onset of problems and questions for story/math

trials, respectively, and A denotes response onsets. (B) Spatial consistency of TSPs between during resting state and task performance. Spatial

consistency was calculated as correlation indexed by Hedges’ g between TSP maps. The e�ect size of Cluster N-1 and N-2 was averaged and

then color-coded on the heat map.

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2022.960607
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Noro et al. 10.3389/fninf.2022.960607

TSPs in resting state. Large classification scores indicate that

task-TSPs are spatially similar to the TSPs in resting state.

Figure 5A shows timecourses of classification scores of 7 task-

TSPs along task blocks for each cluster defined by resting-state

TSPs. Classification scores of Clusters 1 (1-1 and 1-2) and 2 (2-

1 and 2-2) were consistently high across the 7 tasks. However,

the score of Cluster 1 was higher during motor and social

recognition task blocks than for working memory and relational

tasks. Cluster 2 showed the opposite pattern, possibly suggesting

that Cluster 2 is related to cognitive demands.

Next, we compared the spatial patterns of task-TSPs and

TSPs in resting state. To allow voxel-level comparison, we

examined spatial correlations between SAPs (Figure 2) and

task activation maps (see Methods). Statistical significance was

tested by estimating a null distribution of the correlations

based on the permutation of subjects. Cumulative distributions

of correlations for each SAP and task-related activation

map were statistically evaluated using the null distribution

(Supplementary Figure S7A).

Figure 5B shows effect size (Hedge’s d) of the spatial

correlation. The maps were largely consistent for Clusters 1

and 2, which showed strong positive or negative correlations

with major task events. Specifically, Cluster 2 showed strong

correlations with working memory events, gambling events, and

a language contrast for math vs. story. Clusters 4, 5, and 6

showed strong correlations with various tasks and contrasts;

Cluster 4 with motor cue events and a language task contrast

(math vs. story); Cluster 5 with a working memory contrast

(2-back vs. 0-back), a language contrast (math vs. story),

and relational events; and Cluster 6 with language and social

tasks. The direction of the correlation was reversed between

Sub-clusters (e.g., X-1 and X-2) (Supplementary Figure S7B).

Thus, voxel-based reconstruction of SAPs allowed a detailed

comparison with task-evoked activity, which is useful for

interpreting the clusters found in the resting state.

Relationships between clusters and
behavioral characteristics

We next tested whether the clusters identified in the current

study were associated with SMs. Similar to the previous studies

(Smith et al., 2015; Miller et al., 2016; Bijsterbosch et al.,

2017), we examined correlations between SMs and SAPs using

CCA (Hotelling, 1936). Clusters 2 and 6 showed significant

correlation with CCA mode (Ps: P < 0.05; FWE corrected;

Figures 6, 7). For Cluster 2, SM weights were positively

correlated with working memory, language, drinking, and drug

use but negatively correlated with self-regulation (control)

and fluid intelligence (Figure 6 left). The weight map of SAP

(Figure 6 right) showed a spatial pattern similar to SAPs for

Sub-clusters 2-1 and 2-2 (Figure 2), suggesting that subjects

with greater CCA mode show a more prominent pattern for

Cluster 2. For Cluster 6, scores for self-control, drug use, CCD,

and alcohol dependence or abuse showed positive weights,

but negative weights were observed for frequency of drinking

(Figure 7 left). Weight maps for SAP (Figure 7 right) showed

a spatial pattern similar to those of SAPs for Sub-clusters 6-1

and 6-2 (Figure 2), suggesting that individuals with greater CCA

showed a prominent pattern for Cluster 6.

Discussion

The current study examined the transient spatiotemporal

structure of rs-fMRI data and identified temporal

synchronization patterns consisting of a set of clusters

occurring periodically within the range of seconds to minutes.

Activation patterns associated with the clusters showed spatial

patterns similar to those observed during task performance.

These activation patterns and their occurrence were also

associated with individuals’ behavioral characteristics.

The analysis procedure developed in the current study

would be useful to examine the spatiotemporal characteristics

of rs-fMRI data of patients with psychiatric and neurological

disorders (Buckner et al., 2008; Du et al., 2016). The

present method allows comparison between RSNs and time-

resolved dynamics in rs-fMRI data at a voxel-level resolution.

Nevertheless, the current study had some limitations. Our

analysis was based on a sliding window approach, and the

window size was set to 25 TRs (18 s) somewhat arbitrarily. We

also used a predetermined number of patterns to extract TSPs

using the k-means algorithm. The current results demonstrated

that our approach was powerful to examine the spatiotemporal

characteristics of resting-state fMRI signal. However, we

acknowledge that other approaches could be effective (Abrol

et al., 2017; Bassett and Sporns, 2017; Laumann et al., 2017).

Prior studies examining the spatiotemporal characteristics

of rs-fMRI signals provided a helpful interpretation of time-

resolved states (Allen et al., 2014; Calhoun et al., 2014; Abrol

et al., 2017; Nomi et al., 2017; Vergara et al., 2017; Vidaurre

et al., 2017). The current study extended this understanding by

providing a new method to annotate the time-resolved activity

patterns based on their relationships to task-evoked activation

patterns and behavioral characteristics by using voxel-based

maps (i.e., SAPs). The correlations between SAPs and SMs

suggest that the time-resolved network structure is reflected

in the behavior and psychological characteristics of individual

subjects. Further exploration and examination are possible based

on supervised classification to decode a participant’s mental state

from static RSFC (Solovey et al., 2015; Kragel et al., 2016; Kucyi

et al., 2017; Fortenbaugh et al., 2018).

Our proposed method differs from other existing methods

for the analysis of spatiotemporal structures of resting-state

fMRI. Whereas previous methods such as temporal functional
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FIGURE 6

CCA analysis of SMs and Cluster 2. SM weights of CCA-mode (left). The horizontal axis indicates the correlation coe�cient to CCA-mode. The

vertical axis indicates SMs for positive (top) and negative (bottom) directions. A whole-brain map is shown by TSP weight (right). The color

indicates the correlation coe�cient with CCA-mode.
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FIGURE 7

CCA analysis of SMs and Cluster 6. Formats are similar to those in Figure 6.
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modes (TFM) (Smith et al., 2012) and lag threads (Mitra

et al., 2015) extract independent or orthogonal modules

of spatiotemporal activities, the present method focus on

moments of low-dimensional dynamics as quantified by sw-

PCA. The present method also differs from the cross-hierarchy

propagating waves (Gu et al., 2021) which specifically extracted

activity propagation along the principal gradient of the cerebral

cortex (Margulies et al., 2016). Unlike the cross-hierarchy

propagating waves, the proposed method in principle allows

detection of standing waves. The quasi-periodic pattern (QPP)

extracts spatiotemporal activity patterns using a template-

matching approach (Majeed et al., 2011). In contrast to QPP

that uses sliding-window analysis to iteratively extract single

spatiotemporal activity pattern, the present method allows

simultaneous detection of multiple activity patterns. The present

method shares essential idea with the Leading Eigenvector

Dynamic Analysis (Vohryzek et al., 2020) that extract whole-

brain BOLD phase-locking patterns from ROI-based fMRI data.

In the present method, we additionally devised a GLM-based

method that can visualize the event-related activity patterns

at a voxel level. This voxel-based visualization allowed us to

interpret the activity patterns using functional decoders. Because

we aimed to extract transient brain activity time-locked to TSP

events and then explored brain regions showing the transient

activity, we used a standard GLM approach assuming that the

event-locked transient activity shows canonical hemodynamic

impulse response after an event, rather than an assumption-free

method such as a finite impulse response modeling.

Characterization of clusters

The present method allowed interpretation of the clusters

based on their spatiotemporal characteristics, their relationships

with task-evoked activations, and correlation with SMs

(Supplementary Table S1). These results naturally lead to the

interpretation that these clusters correspond to brain states that

temporally change during rs-fMRI scanning (Leonardi et al.,

2013; Allen et al., 2014). However, such temporal characteristics

may also reflect sampling variability (Laumann et al., 2017),

evoked attention, head motion (Power et al., 2017) and/or sleep

(Tagliazucchi and Laufs, 2014; Stoffers et al., 2015; Hindriks

et al., 2016; Laumann et al., 2017). Recent studies showed that

not only the spatial patterns but also temporal dynamics of

the putative brain states were reproducible in null data that

were stationary by construction (Liegeois et al., 2017; Matsui

et al., 2022a). Although some temporal aspects of the clusters

in the present study were not fully explained by null data

(Supplementary Figure S5B), as in some previous studies (Allen

et al., 2014; Matsui et al., 2019), the differences were small.

Therefore, in the present study, we avoided the interpretation

that the clusters represented brain states.

Nevertheless, it is still important and useful to consider

the relationship between clusters and functional networks

involved in task performance. Cluster 1 may reflect general

task processing (Dosenbach et al., 2006, 2008), because TSPs

similar to Cluster 1 were observed in a wide range of

tasks during fMRI scanning (Figure 5). Cluster 6 may reflect

drowsiness, because the occurrence of this cluster was related

to sleep score (Figure 5). The spatial pattern of Cluster 6

also implied subcortical-cortical anti-correlation (Figure 2). A

gradual increase of occurrence of Cluster 6 was also observed

during scanning (Figure 3), consistent with a prior report [State

3 in Allen et al. (2014)].

All these interpretations involve some degree of speculation

because the results were based on association (not causal)

analyses between spatiotemporal characteristics during resting

state and those during task states or individual characteristics.

Classification of clusters (6 in the current study) also involves

a certain degree of arbitrariness. Therefore, more precise

mental events or states would be identified if the clusters

were classified and examined in more detail. Compared to

ROI-based approaches (Vohryzek et al., 2020), the present

voxel-level approach would be advantageous for obtaining such

detailed characterizations.

The clusters comprised of pairs of sub-clusters are labeled

differentially by functional terms even though the sub-clusters

are occurring in close temporal proximity. The appearance of

the paired sub-clusters is temporally close because monotonic

signal increase time-locked to a TSP event is followed by a

monotonic decrease in which another TSP event can occur.

Most likely because this pattern arises from the slow nature of

signal fluctuations, the TSP events of paired sub-clusters show

inverse activity patterns (Figure 2). This entails that the paired

sub-clusters involve mutually exclusive brain regions; therefore,

they are labeled by differential functional terms.

It should be noted that, despite extensive denoising (e.g.,

FIX cleaning), BOLD signals used in the present study likely

contain physiological (non-neuronal) noise. Such physiological

noise may have affected the event-based analysis. Nevertheless,

recent studies using simultaneous optical recording of neuronal

and hemodynamic signals in mice reported that many transient

events of neuronal activity were indeed visible in hemodynamics

(Ma et al., 2016; Matsui et al., 2016, 2018). These studies support

the interpretation that the events detected in the present study

reflect underlying neuronal activity.

Temporal patterns of cluster occurrence
and static RSFC

As stated above, we found a close correspondence between

the clusters in the resting state and cognitive process,

attention, drowsiness and/or head motion. Interestingly, these
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clusters dominated more than half of TSs in the resting

state (Supplementary Figure S3B). This result is consistent

with a recent study demonstrating that behavioral events

dramatically changed RSFC of the mouse brain (Winder et al.,

2017). Nonetheless, it is natural to assume that psychological

conditions and/or mental states of subjects during resting-

state scanning affect static RSFC (Fox et al., 2005; Power

et al., 2011). Indeed, we found that static RSFC was modulated

by the temporal occurrence and dominance of the clusters

(Supplementary Figure S4).

In contrast, DMN or FPN identified by static RSFC (Fox

et al., 2005; Power et al., 2011) were stable and not affected by

cluster occurrence. The temporal stability of DMN and FPN

against TSP was consistent with the clustering results showing

that the two networks were retained within single clusters

(Figures 1C, 2). Therefore, the stable RSFC of DMN and FPN

may reflect strong structural connectivity (Gusnard and Raichle,

2001). Alternatively, it may reflect task-related generic activation

occurring during resting-state scans (Dosenbach et al., 2006;

Cole et al., 2016; Shine et al., 2016a,b).

There is a possibility that the choice of a particular window

size limited the analysis of FC transitions within a limited

dynamic range. For example, FC transitions occurring at a

shorter time scale (<25 TR) or at a much longer time scale

(>25 TR) maybe undetected by the current choice of the

window size. Nevertheless, our comparison of different window

size (Supplementary Figure S1B) suggests this is unlikely to

be the case. Supplementary Figure S1B shows time course of

TSP (1st PC) within a window, for various window sizes. For

window size smaller than 25 TR, TSP time course showed

monotonic change within a window, suggesting that resting-

brain activity did not show sharp transitions at fast (<25 TR)

time scale. In contrast, for window size larger than 35 TR,

TSP time course did not show monotonic change, suggesting

that the resting-brain activity showed activity change at a

time scale shorter than these window sizes. Taken together,

while we acknowledge a methodological limitation in sensitive

dynamic range, the present data suggest that the current

choice of window size was appropriate for capturing dominant

FC transitions.

Classification of behavior by post-hoc

clustering

We observed repeated occurrences of TSs, which may reflect

physiological functions. The current clustering and voxel-based

reconstruction approach are useful techniques to understand

the physiological processes underlying rs-fMRI. Indeed, the

current study demonstrated that spatiotemporal patterns during

TS were related to those during task engagement and the

behavioral/psychological characteristics of individual subjects.

These results suggest a potential link between individual

moments during rs-fMRI and functional processes taking place

in that moment. Because it is almost impossible to keep subjects’

mental state stable during rs-fMRI, our approach to cluster TS

events determined in a post-hoc manner provides a helpful way

to examine the nature of the resting state.
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