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The rapid effects of estradiol on membrane receptors are in the focus of the

estradiol research field, however, the molecular mechanisms of these non-

classical estradiol actions are poorly understood. Since the lateral diffusion

of membrane receptors is an important indicator of their function, a deeper

understanding of the underlying mechanisms of non-classical estradiol actions

can be achieved by investigating receptor dynamics. Diffusion coefficient

is a crucial and widely used parameter to characterize the movement of

receptors in the cell membrane. The aim of this study was to investigate the

differences between maximum likelihood-based estimation (MLE) and mean

square displacement (MSD) based calculation of diffusion coefficients. In this

work we applied both MSD and MLE to calculate diffusion coefficients. Single

particle trajectories were extracted from simulation as well as from α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live

estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the

obtained diffusion coefficients revealed the superiority of MLE over the generally

used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients

because as it has a better performance, especially for large localization errors or

slow receptor movements.

KEYWORDS

diffusion coefficient, maximum likelihood, mean square displacement, MLE, receptor
movements

Introduction

The diffusion coefficient is the most frequently defined parameter used to characterize
receptor movements (De Keijzer et al., 2011; Knight and Falke, 2009; Knight et al., 2010;
Matsuoka et al., 2009; Michalet and Berglund, 2012; Michalet, 2010; Pinaud and Dahan, 2011;
Qian and Sheetz, 1991; Sahl et al., 2010; Schütz et al., 1997; Weigel et al., 2011).

The derivation of diffusion coefficient from mean square displacement (MSD) curve
fitting (Matysik and Kraut, 2014) is a basic and frequently used method because it provides
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consistent results despite of the statistical shortcomings of MSD
analysis (Saxton, 1997). The main problem with MSD analysis is
that the overlapping time-averaging calculations in MSD curves
from a single trajectory generate complex noise characteristics
(Grebenkov, 2011; Qian and Sheetz, 1991). This resulted in an
asymmetric distribution of the estimated diffusion constant around
the true value that makes the interpretation of the results difficult
(Yu, 2016). Another problem is that MSD cannot handle the
uncertainty of the localization properly, in other words, the MSD
requires the real coordinates of the particle to provide correct
results. However, this is not the case in practice, because observed
trajectories are compromised with both the localization error
(Martin et al., 2002) and the motion blur effect (Savin and Doyle,
2005).

Maximum likelihood-based estimation (MLE) has already been
successfully applied to estimate diffusion coefficients from single-
particle tracking experiments (Shuang et al., 2013). The MLE is
one of the most frequently used method in statistics to estimate
arbitrary parameters of theoretical models describing the observed
event by using recorded data. Changing the model’s parameters
will alter the probability of the recorded dataset. MLE is an
optimization method, that estimates a set of parameters that
provides the maximal probability of the observed data. The MLE
has asymptotically optimal properties, it determines the correct
distribution of diffusion coefficients for a homogenous set of
particles localized within a finite camera integration time and in the
presence of localization error (Zacks, 1971). A comprehensive study
on detailed comparison of MSD and MLE methods was recently
published (Bullerjahn and Hummer, 2021), which concluded
several advantages of the maximum likelihood estimator compared
to other diffusion coefficient calculating methods.

There is a clear relation between the movement of cell
surface receptors and their signal transduction activity. There are
several single molecule detection (SMD) techniques to investigate
this relationship. Events that result in clear changes, such
as receptor ligand interactions can be studied by previously
widely used analytical methods such as MSD curve analysis.
However, for biological effects that cause only small variations
in receptor movements but result in biologically significant
changes, conventional methods can no longer be used for
reliable investigation.

The reliability of the MSD and MLE methods were tested
on simulated datasets as well as on data derived from live-cell
experiments. For the live-cell measurements we detected changes
in the surface movement of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors after estradiol exposure.

The gonadal steroid 17β-estradiol (E2) is a powerful molecule
playing a key role in learning and memory formation by influencing
glutamatergic neurotransmission and synaptic plasticity (Kramár
et al., 2009; Ledoux et al., 2009; Lu et al., 2019; Murakami et al.,
2018; Teyler et al., 1980; Vierk et al., 2014; Wong and Moss, 1992).
Besides its well-known classical actions, E2 can influence gene
expression indirectly by rapidly altering the functions of membrane
receptors and the activity of second messenger molecules. These
are referred to as the non-classical effects of E2 (Rudolph et al.,
2016). Although ample data have been accumulated on the rapid
effects of E2 on learning and memory (Phan et al., 2015; Taxier
et al., 2020), the molecular mechanisms are still largely unknown.
Single-molecule tracking studies showed that the lateral diffusion

of membrane receptors determine the activation state of membrane
receptors and consequently the downstream signaling events
(Kusumi et al., 2014).

The surface movement of glutamate receptors including
AMPA receptors is pivotal in glutamatergic neurotransmission and
synaptic plasticity (Babayan and Kramar, 2013; Penn et al., 2017).

Accordingly, measuring the diffusion parameters of the
AMPARs can provide a better understanding of the non-classical
E2 effects on learning and memory processes (Godó et al., 2021).
Therefore, it is crucial to improve currently available methods to
analyze membrane receptor movements.

Recent studies (Barabas et al., 2021; Godó et al., 2021) on
lateral movement of receptors in the plasma membrane have
demonstrated the value of the data extracted from SMD. SMD
is a technique that can identify individual molecules and create
the trajectories of these particles for detailed analysis. This allows
deeper insights into the function of the receptors and helps us to
understand the underlying mechanisms of different agents actions
such as E2.

When examining the effect of E2 on the movement of AMPA
receptors, because of the shortness of the detected trajectories and
the larger localization error due to the specificity of the labeling, the
MLE method has been proven to be more accurate in determining
the diffusion coefficient of the AMPA receptors.

In this current manuscript we found that MLE method is better
to analyze single molecule receptor movements by comparing the
MSD and the MLE analysis of simulated and real, live-cell datasets.

Materials and methods

Simulated trajectories

A Matlab script was applied to generate sets of trajectories for
two dimensional Brownian-diffusion with different characteristics.
Besides the number of desired trajectories, the script allows the
user to define the diffusion coefficient, the Gaussian localization
error, the exposure time, the pixel size, the number of frames in
each individual trajectory to customize the output according to the
requirements. Moreover, there is an additional option that allows
the user to turn the motion blur effect on or off.

Measured trajectories

To collect trajectories of real immobilized and diffusing
molecules we performed single-molecule imaging using total
internal reflection fluorescence microscopy (TIRFM). Single-
molecule imaging was carried out on an Olympus (Tokyo, Japan)
IX81 fiber TIRF microscope equipped with Z-drift compensation
(ZDC2) stage control, a plan apochromat objective (100X, NA
1.49, Olympus), and a humidified chamber heated to 37◦C and
containing 5% CO2. The dish containing dPC12 was mounted in
the humidified chamber of the TIRF microscope immediately after
in vivo labeling. A 491 nm diode laser (Olympus) was used to
excite ATTO 488, and emission was detected above the 510 nm
emission wavelength range. The angle of the excitation laser beam
was set to reach a 100 nm penetration depth of the evanescent wave.
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FIGURE 1

The parameters extracted by mean square displacement (MSD) (A) and maximum likelihood-based estimation (MLE) (B) based parameter estimation
on three set of simulated trajectories. Each point on the graphs represents a set of parameters calculated from a trajectory. The value of diffusion
coefficients is shown on the x-axis of both graphs. The y-axis represents another parameters provided by the diffusion coefficient’s estimation,
namely they are the y-intercept of the linear fitting and the extracted localization error for the MSD and MLE graph, respectively. The number of
trajectories is 1,000 in each group.

A Hamamatsu 9100-13 electron-multiplying charge-coupled device
(EMCCD) camera and Olympus Excellence Pro imaging software
were used for image acquisition by TIRF microscopy. Image series
were captured with 10-s sampling intervals and 33-ms acquisition
times. Single-molecule tracking of labeled particles was performed
with custom-made software written in C++ (WinATR, Kusumi
Lab, Membrane Cooperativity Unit, OIST). The center of each
particle was localized by two-dimensional Gaussian fitting, and
the trajectory for each signal was created by a minimum step size
linking algorithm that connected the localized dots in subsequent
images. The trajectories were individually checked, and artifacts or
tracks shorter than 15 frames were excluded from further analysis.

Immobilized particles

To measure immobilized particles, we dried a droplet of ATTO
488-labeled antibodies directed against the extracellular N-terminal
domain of rat GluR2 (1:1,000 in PBS, Alomone Labs) onto a glass
bottomed dish. The dried dyes were covered with Prolong Gold
Antifade Mountant (P10144, Thermo Fisher, Waltham, MA, USA).
After 24 h, image series of immobilized ATTO-488 dyes were
collected and analyzed as described above.

AMPARs in live dPC12 cells

To detect GluR2-AMPAR molecules in the plasma membranes
of differentiated PC12 (dPC12) (Godó et al., 2021), live-
cell immunofluorescent labeling was performed. Before single-
molecule imaging, dPC12 were incubated with ATTO 488-labeled
antibodies directed against the extracellular N-terminal domain of
rat GluR2 (1:100, Alomone Labs Cat #: AGC-005-AG) in dRPMI
cell culture medium at 37◦C for 6 min. During the measurement
period of ATTO 488-GluR2-AMPAR, 20–30 image series were
recorded. 17β-estradiol was applied immediately before imaging
the dPC12 in dRPMI in 100 pM and 100 nM concentration
dissolved in vehicle (EtOH).

Calculation of diffusion coefficients

Mean square displacement curve (MSD) for each trajectory was
calculated by the following equation (Matysik and Kraut, 2014; Yu,
2016):

MSD (m4T) =
1

N −m

N−m∑
i = 1

(
(xi+m − xi)2

+
(
yi+m − yi

)2
)

where xi and yi are the observed coordinates of tracked particle,
1T: time interval between two consecutive frames, N: total number
of frames, and m as an independent variable represents the time
delay (in frames) applied for the particular point of the MSD
curve. The calculation of diffusion coefficients was implemented
by three points linear fitting on the MSD curve. The parameters
extracted from the MSD fitting are also provided by the Matlab
script available in the Supplementary material.

In order to obtain the corresponding D value by MLE, the
MLE was applied as previously described (Berglund, 2010). 1xk
and 1yk represent the observed displacements (1xk = xk+1 − xk
and 1yk = yk+1 − yk) arranged in N-component column vectors,
where the total number of frames is equal to N+1. xn and yn are
the coordinates of the signal’s center on the nth frame, as usual. The
N × N covariance matrix (6) is defined by the following equation:

6ij =


2D1t − 2

(
2DR1t − σ2) , if i = j

2DR1t − σ2, if i = j ± 1
0, otherwise

where D is the diffusion coefficient, 1t is frame integration
time, σ is the static localization noise, i and j are the row and
column indexes in the covariance matrix and R summarizes the
motion blur effect.

R =
1
T

∫ T

0
S (t) [1− S (t)] dt where S(t) =

∫ t

0
s
(
t′
)
dt′

where s (t) is the shutter function, in our case, R = 1/6 as a
consequence of continuous illumination.
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FIGURE 2

Mean and standard deviation (SD) values of diffusion coefficients extracted from a set of trajectories (N = 1,000) simulated with the following
diffusion coefficients: (A) 0.01µm2/s, (B) 0.02µm2/s, (C) 0.05µm2/s, (D) 0.1µm2/s, (E) 0.2µm2/s, (F) 0.5µm2/s as a function of the length of
trajectories. The diffusion coefficients were extracted by both the mean square displacement (MSD) (black) and maximum likelihood-based
estimation (MLE) (red) method.

The likelihood was defined by the following function:

L
(
1x, 1y

)
= − log |6| −

1
2
(1x)T6−1 (1x)−

1
2
(
1y
)T

6−1 (1y
)

The D and σ which provides the maximal likelihood is
the estimated diffusion coefficient and static localization noise,
respectively. The calculation of the determinant and the inverse
of covariance matrix at each step of the optimization method

can be a severe computational difficulty at high value of N. An
approximation (Gray, 2005) based on the theory of circulant
matrices is applicable (Berglund, 2010). In the script we defined
a constant for the limit to switch between the direct and the
simplified calculation method. Based on our experience we set
the value of this constant to 1,001. When the number of frames
exceeds 1,000 this simplified likelihood function is used for the
global optimization, otherwise the direct likelihood function was
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FIGURE 3

The coefficients of variation (the ratio of the SD and the mean from Figure 2) as a function of the length of trajectories. The diffusion coefficients for
the simulation were: (A) 0.01µm2/s, (B) 0.02µm2/s, (C) 0.05µm2/s, (D) 0.1µm2/s, (E) 0.2µm2/s, (F) 0.5µm2/s.

applied. In this study the maximal length of trajectories was 1,000
frames, so the script applied the direct method for each trajectory.
To estimate the area of molecule trajectories the convex hull for
each trajectory was created by a Matlab script. Area of the molecule
trajectory was defined as the area of this convex hull.

The Matlab script for the MLE based estimation of diffusion
coefficient is available as a zip file available in the Supplementary
material.

Results

Simulated trajectories

Three sets of trajectories were generated with MSD and
MLE estimations assuming the presence of the blur effect due
to continuous recording. Each set containing 1,000 trajectories
with a length of 501 frames differed in the values of the
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FIGURE 4

Distribution of diffusion coefficients derived from trajectories recorded on immobile particles. The measurement was carried out on different
temperatures and the extracted trajectories were analyzed by the mean square displacement (MSD) (A) and the maximum likelihood-based
estimation (MLE) (B) method. The inserted table shows the mean and SD values for each group, respectively.

FIGURE 5

The effect of E2 treatment on the diffusion coefficient of GluR2-AMPAR molecules in the soma’s plasma membranes of dPC12, live-cell. The E2
treatments were carried out by the concentration of 100 pM (A,B) and 100 nM (C,D). Both the mean square displacement (MSD) (A,C) and the
maximum likelihood-based estimation (MLE) (B,D) methods were used for further analysis to obtain the diffusion coefficients from the recorded
trajectories. The graphs represent the groups as mean and SD values. The probability values of significant differences calculated by
Kolmogorov–Smirnov test (*p < 0.05) and the number of trajectories in each group are also shown.

diffusion coefficient and the localization error. The first group
contained immobile (D = 0µm2/s) trajectories in the presence of
ε = 100 nm localization uncertainty. The second set contained
mobile (D = 0.15µm2/s) trajectories without any localization
error (ε = 0 nm). The last group simulated trajectories recorded
on moving particles (D = 0.15µm2/s) with ε = 100 nm
measurement error. Figure 1 shows the parameters provided by the
MSD and MLE.

Figure 1 demonstrates that both methods clearly separate
the distinct sets of trajectories. The MLE reliably provides the
expected parameters while diffusion coefficients provided by
the MSD method are in good agreement with the theoretical
values. A minor difference between the two methods is observed
between the distribution of diffusion coefficients from the mobile
trajectories with no localization error. The MLE estimates the
diffusion coefficients with less standard deviation (SD). However,
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this observation has no significance in the single molecule imaging
because the lack of localization error is a purely theoretical category.
The main difference between the two sets of data is the distribution
of diffusion coefficients extracted from the immobile trajectories.
While the MSD based diffusion coefficients show some variability
around the group’s average of 0 µm2/s, the distribution of the
same parameter in the same group provided by the MLE is much
narrower. Since this scenario can easily happen if we observe slow
particles, this finding has a great importance, and we went further
to investigate it in detail.

To investigate this phenomenon, another set of trajectories
were created and analyzed. While the localization error was
constant (ε = 100 nm), both the length of trajectories and the
diffusion coefficients were altered. The length was altered from
11 to 1,001 frames. The diffusion coefficients had the following
values: 0.01µm2/s, 0.02µm2/s, 0.05µm2/s, 0.1µm2/s, 0.2µm2/s,
and 0.5µm2/s. The number of randomly created trajectories in each
group was 1,000. The set of raw simulated data is available in the
Supplementary material.

The group means provide satisfactory estimation of the
diffusion coefficient when the number of steps (i.e., the number
of frames minus one) is equal or above 20. At the shortest
trajectories (length is equal to 10 steps) some uncertainty is present
independently of the applied method. In this case the mean values
slightly differ from the expected ones. This finding confirms the
legitimacy of the general practice that in studies with single-
molecule tracking the trajectories below the length of 15 steps are
omitted from further analysis.

Figures 2, 3 demonstrate that the SD and coefficient of
variation (CoV) of diffusion coefficients derived by MSD are larger
than the corresponding values extracted by MLE. In the two slowest
group of trajectories (D = 0.01µm2/s and D = 0.02µm2/s) both
the CoV and SD parameters provided by the two analyses differ to
a large extent and this difference is independent of the trajectory
length. The values of CoV of the MSD based diffusion coefficients
for the slowest trajectories (D = 0.01µm2/s) are approximately
three times higher than the corresponding values extracted by the
MLE. In the case of the slightly faster group (D = 0.02µm2/s) the
application of the MSD method provides two times higher CoV
values for the diffusion coefficients than the MLE based analysis.
In the group simulated with D = 0.05µm2/s the MSD provided
values of CoV for the diffusion coefficients exceed the same values
from MLE based calculation by 30%. This difference between the
values of SD and CoV diminish slowly with the increasing diffusion
coefficient. The values of SD and CoV are crucial in several types
of statistical test, and a broader distribution can easily disguise a
slight but a real difference between the investigated groups. While
the provided mean values calculated by the MLE as well as the
MSD method are in good agreement with the expected values, the
distribution of the group’s diffusions coefficients are narrower in
each set of trajectories proving a better performance of MLE based
calculation on simulated data.

Measured immobile particles

To test the usability of MLE on measured trajectories we carried
out an analysis on trajectories recorded on immobile particles

at different temperatures. However, the investigated particles
are named “immobile” some movement is always present. For
these particles diffusion coefficients are approximately two orders
of magnitude smaller than receptor’s diffusion coefficients. We
expected more intense movement at elevated temperature. The
trajectories are available in the Supplementary material.

Figure 4 shows the distribution of diffusion coefficients
measured at different temperatures on immobile samples. These
distributions confirm the result derived from the simulated
data. There is a shift in the mean values 5.9·10−4µm2/s and
3.0·10−5µm2/s for the trajectories measured at 24◦C. As it
was expected the mean values are higher (1.2·10−3µm2/s and
6.1·10−4µm2/s) at 37◦C. More importantly, the values of SD are
significantly decreased by applying the MLE. While provided values
of SD by the MSD method are 3.5·10−4µm2/s and 2.6·10−4µm2/s,
the distributions from MLE based analysis are significantly
narrower (the corresponding SD values are: 2.7·10−5µm2/s and
1.7·10−4µm2/s). These findings match the results of our previous
in silico experiments.

Trajectories measured on live dPC12 cells

Analysis performed on simulated data and immobile particles
showed that the MLE had remarkable performance which
occasionally exceeded the abilities of MSD based method. To
compare the two approaches also in live-cell experiments, we
tested their usability and reliability in an experimental model
that has been routinely used in our laboratory. Therefore,
comprehensive analysis was carried out on AMPA receptor (GluR2-
AMPAR) trajectories measured in live dPC12 cells after E2 or
vehicle treatment.

Administration of 100 pM E2 induced a significant decrease
of diffusion coefficients in AMPAR in soma in the first 20 min
after the treatment. The means were decreased to 0.018 µm2/s and
0.019 µm2/s, while the control’s mean values were 0.020 µm2/s and
0.022 µm2/s for the MSD and MLE, respectively (Figures 5A, B).
The probability of significance was p = 2.33% and less than 0.01%
for the MSD and MLE method, respectively. The application of
100 nM E2 highlighted the difference between the two calculation
methods. While analysis conducted by the MLE (Figure 5D)
showed no effect (p = 14.85%) after E2 administration, the MSD
method provided a significant decrease of the diffusion coefficients
(Figure 5C). In this case the mean of diffusion coefficients
was 0.019 µm2/s, which was significantly lower (probability of
significance is p = 2.86%) than the same value in the control group
0.029 µm2/s.

The result of MLE can be surprising as the lower E2
concentration (100 pM) evoked a significant decrease of the
diffusion coefficients, while the administration of the higher dose of
E2 (100 nM) did not induce any change. This effect was previously
investigated (Godó et al., 2021) and it was revealed that the
difference may be the consequence of GPER1 internalization in the
soma induced by 100 nM E2. It was also demonstrated that both
ERβ and GPER1 are required for the effect of E2. The higher dose of
E2 induced elimination of GPER1 preventing E2 to cause decrease
of the diffusion coefficient.

In soma, the 100 nM E2 treatment has distinct effect, based on
the two calculation methods. On one hand, the MLE does not reveal
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FIGURE 6

The trajectories length distribution from GluR2-AMPAR molecules
in the soma’s plasma membranes of dPC12, live-cell in control state
and after administration of 100 nM E2.

any significant effect due to E2 treatment, on the other hand the
application of E2 significantly decreases the diffusion coefficients
based on statistics on the MSD results. Previous study (Godó et al.,
2021) has shown that GPER1 internalization depletes the GPER1
which is crucial for the effectiveness of E2 in soma, indicating the
propriety of MLE based result.

Figure 6 shows the distribution length distribution of
trajectories measured on GluR2-AMPAR molecules in the somatic
plasma membrane of living dPC12 cells both in control state
and after the administration of 100 nM E2. The vast majority
of trajectories are shorter than 50 steps. Our previous results
on simulated trajectories proved that MLE provides more
reliable result on trajectories characterized with similar parameters
(D = 0.02µm2/s and the length are less or equal to 100 steps).
Based on this we think that in this case we can acknowledge the
MLE provided results and statistical statement.

Discussion

The focus of the current study was to examine in depth
the differences between MLE and MSD-based methods. First,
we used simulated trajectories, which are suitable to detect
localization errors. Our results show that while the obtained group
averages of the diffusion coefficients perfectly corresponded to
the expected values regardless of the computational methods, the
SD values of the diffusion coefficients were significantly lower
for the D = 0µm2/s (immobile trajectories with localization
error) group using the MLE method. This difference between the
distribution of the diffusion coefficient values is the consequence
of the fundamental difference between the two methods. On one
hand the MSD based calculation does not constrain the sign of the
diffusion coefficient, therefore the D values, especially for slow or
immobile trajectories, often have a negative sign, which is difficult
to interpret. On the other hand, the MLE method does not provide
sub-zero diffusion coefficients, so the distribution of D values
is much narrower.

Secondly, the reliability of the methods was investigated, also
using simulated trajectories to compare mean and SD values
for low diffusion coefficients. The length of the trajectories
and expected diffusion coefficients characterized the randomly
generated trajectories in these groups. The analysis of the set
of simulated trajectories showed no difference between the two
methods in terms of mean values. Both analyses provided good
estimates of the expected values. These results were consistent
with our previous finding, namely that the MLE method gave
more accurate estimation of diffusion coefficients. The SD value of
diffusion coefficients from MSD method exceeded the SD provided
by MLE based calculation when the value of D was less than
0.2µm2/s. In addition, both mean and SD values were identical
when the diffusion coefficient was greater or equal to 0.2µm2/s.
The analysis following numerical simulation showed that the MLE
outperforms the MSD as a data analysis tool.

Regarding measured immobile trajectories at different
temperatures, the two methods provided similar values for the
average of the diffusion coefficient in any analyzed groups.
According to the expectations, the higher temperature evoked
a more intense movement, which was reflected in increased
diffusion coefficients. The experiment clearly confirmed that the
distribution of diffusion coefficients provided by the MLE is much
narrower than the distribution calculated by the MSD approach.
The reason for this difference is the following: in contrast to MLE
method MSD is less effective in separating the static localization
noise from the diffusion generated displacement, which causes
increased uncertainty in the calculated diffusion coefficients. This
phenomenon is pronounced when the localization error exceeds
the expected displacement by diffusion (i.e., in the case of so-called
immobile particles).

Finally, the two methods were tested on trajectories collected
from live dPC12 cells. The effect of E2 on the movement of GluR2-
AMPAR molecules was investigated in somata of dPC12 cells. On
the one hand, the 100 pM E2 treatment significantly decreased
the mean value of diffusion coefficients by applying either the
MSD or the MLE method. On the other hand, the two calculation
methods resulted in conflicting results when comparing the effect
of 100 nM E2 in the soma. The MSD method showed a significant
alteration in the diffusion coefficients of GluR2-AMPAR molecules,
while the MLE demonstrated no effect. The result of MLE is
consistent with the previously reported ineffectiveness of 100 nM
E2 in the soma, due to GPER1 internalization. The investigation
of length distribution of the trajectories and the results gained from
simulated trajectories reveals that for this set of trajectories the MLE
provides more reliable diffusion coefficients. So, the statistical result
extracted from MLE based calculation seems to be more reliable
and accurate in this particular case.

Conclusion

The performed analysis conducted on simulated trajectories
revealed that the provided mean values of diffusion coefficients are
in good agreement with the theoretical values, regardless of the
applied method. The superiority of MLE based calculation over
MSD was shown by examination of the coefficients of variation
(ratio of SD and the mean) for the distribution of the estimated
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diffusion coefficients. The CoV is remarkably lower by using MLE
based method instead of the application of MSD based in the case
of slow particle movement.

The results of simulation were confirmed by the results
extracted from immobile trajectories measured at different
temperatures. The distribution of diffusion coefficients is
undoubtedly narrower in the case of MLE making the
interpretation of obtained results easier.

Moreover, our findings were tested on AMPA receptor
trajectories measured in live dPC12 cells after estradiol-treatment.
The two calculation methods provided conflicting results when
comparing the effect of 100 nM E2 in the soma.

On the one hand, MSD is less reliable for short trajectories
or trajectories characterized with small diffusion coefficients.
Moreover, MSD does not effectively separate the localization error
from diffusion. On the other hand, MLE is applicable on short and
slow trajectories, and it does separate the localization error from the
movement. The superiority of the MLE method was demonstrated
on simulated as well as on measured trajectories in live cells.

These results indicate that MLE method is one of the first
recommended approach to analyze data obtained in single-
molecule imaging measurements.
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