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A study on the clusterability of
latent representations in image
pipelines

Adrian Wheeldon* and Alexander Serb

Centre for Electronics Frontiers, School of Engineering, University of Edinburgh, Edinburgh,

United Kingdom

Latent representations are a necessary component of cognitive artificial

intelligence (AI) systems. Here, we investigate the performance of various

sequential clustering algorithms on latent representations generated by

autoencoder and convolutional neural network (CNN) models. We also introduce

a new algorithm, called Collage, which brings views and concepts into sequential

clustering to bridge the gap with cognitive AI. The algorithm is designed to

reduce memory requirements, numbers of operations (which translate into

hardware clock cycles) and thus improve energy, speed and area performance of

an accelerator for running said algorithm. Results show that plain autoencoders

produce latent representations which have large inter-cluster overlaps. CNNs

are shown to solve this problem, however introduce their own problems in the

context of generalized cognitive pipelines.
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1. Introduction

Sensory pipelines can be broadly understood as signal processing cascades that

receive raw sensor data (e.g. pixel intensities of an image) and refine it until a

symbolic representation emerges. Symbolic representations are generally understood as

representations that contain high amounts of semantic information and are typically

represented as hypervectors (Kanerva, 1988; Ge and Parhi, 2020; Neubert et al., 2021).

A typical way of implementing a pipeline is by use of artificial neural networks (ANNs).

These span from the typical convolutional neural networks (CNNs) that classify input

images (Lecun et al., 1998), to more elaborate systems that, for example, attempt to extract

partial information such as color and shape separately from individual objects (Frady et al.,

2020), and arguably even to autoencoders that map input data to a latent space that ideally

supports segmentation into areas of reasonably well-defined semantics (Newson et al., 2020).

In this paper we focus on latent representations and the process of generating them

through a combination of ANN and clustering algorithms. Our basic set-up is as follows:

Sensory input in the form of an image is used to create the vision pipeline shown in Figure 1,

although pipelines can process any type of input including audio or text. The job of the

encoder is to compress the sensory input into a latent representation which can be stored

in a database of semantic relations. Another desired aspect of the system is the ability to

reconstruct an approximation of the original sensory input using the latent representation,
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FIGURE 1

A sensory pipeline based on image input useful for cognitive

artificial intelligence. The machine learning (ML) encoder and latent

representation are the focus of this work.

as it would form a convenient way of allowing the system to

‘imagine’ known objects in the absence of direct visual stimulation

and potentially transform them (e.g. mental rotation).

We apply cluster algorithms to the latent representations

emerging from autoencoder action to cast a net around the learned

examples from each class of the dataset. These nets are expected

to encompass new datapoints belonging to their corresponding

classes, including new variants such as in pose, illumination and

orientation, allowing the system to capture them during inference.

This is the principle of preserving equivariance of the sensory

input through the encoding process (Cohen and Welling, 2017),

and is necessary for the clustering process to effectively compress

the input whilst maintaining intra-class similarity and inter-class

dissimilarity.

Many clustering algorithms make multiple passes over the

data (Imani et al., 2019), requiring some or all of the data to be

stored for later access. However, it is not practical to implement

such schemes in hardware striving for minimum energy, since data

storage demands high amounts of energy. Therefore, we are most

interested in single-pass sequential clustering algorithms where

data can be clustered online as it arrives. The Leaders algorithm is a

single-pass, sequential, distance-based clustering algorithm which

was introduced by Hartigan (1975, p. 74). In brief, the algorithm

functions as follows: 1) if the new datapoint lies within radius r of

a cluster, add the datapoints to that cluster, else create a new cluster

with that datapoint as the center; 2) repeat 1) until all datapoints

are allocated to clusters. Modifications to this algorithm include

BSAS, MBSAS and TTSAS (basic, modified and two-threshold

sequential algorithmic schemes) (Theodoridis and Koutroumbas,

2006), which respectively introduce a new parameter, maximum

number of clusters; a second pass of the dataset; and a second

threshold. These will be discussed in detail in Section 1.1.

On the back of these clustering algorithms, we present a new

algorithm, called Collage. The aims of Collage are to produce a

clustering algorithm with the following abilities:

1. Process an unknown number of classes.

2. Process datapoints in a sequential, onlinemanner.

3. Process datapoints without supervision or a priori information.

4. Can be implemented in a hardware-friendly manner.

TABLE 1 Comparison of online clustering algorithms.

New center strategy Parameters Dataset
passes

Leadersa First outside r r 1

Collage First outside green radius Green radius,

Amber radius

1

BSASb First outside r r, max_clusters 1

MBSASb First outside r r, max_clusters 2

TTSASb First outside r2 r1, r2 2+

aHartigan (1975). bTheodoridis and Koutroumbas (2006).

5. Has a low number of parameters to optimize.

Collage makes improvements over the aforementioned

sequential clustering algorithms in hardware friendliness. The

competitive algorithms perform averaging of points upon every

allocation of a new cluster, which is an operation that takes a

significant portion of system energy to perform. Additionally, the

multi-pass approach of MBSAS and TTSAS adds a multiplier to the

memory size requirements, as deferred datapoints must be stored

until they are eventually processed. Collage solves this problem by

passing over the data only once as it arrives. Table 1 summarizes

the features of the sequential clustering algorithms of interest.

The main focus of the algorithm, however, is the introduction of

new functionality to enable semantic linking of clusters. This is

discussed in more detail in Section 2.

In this work, we investigate the quality of the latent

representations generated by different machine learning models;

namely the autoencoder, and the CNN; for use in the vision

pipeline system. We do this by measuring the homogeneity of

the clusterings generated by the various models and clustering

algorithms; as well as analyzing the cluster sizes, diameter

distributions, and the total usage of the latent space. We also

investigate the effects of data augmentation on the autoencoder

model and its clusterings. We use the k-Means clustering

algorithm as a baseline for our experiments. Although it does

not fit our criteria of a single-pass and sequential algorithm, it

nevertheless provides a useful upper bound for clustering quality in

our experiments.

1.1. BSAS, MBSAS, and TTSAS algorithms

BSAS, MBSAS, and TTSAS are distance-based clustering

algorithms introduced by Theodoridis and Koutroumbas (2006)

and extend the Leaders algorithm (Hartigan, 1975 p. 74) introduced

previously. New clusters are defined using points which lie outside

the threshold of existing cluster centers. A cluster center is

updated when a new datapoint is added to that cluster. To

generate the new cluster center, the current center is averaged with

the new datapoint. The latter is an important distinction from

Collage algorithm.

The BSAS and MBSAS algorithms allow a maximum number

of clusters to be specified. Once the maximum number of clusters

has been reached, no new clusters are created and datapoints
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can only be added to existing clusters. To make proper use of

this parameter, it is necessary to have a priori information about

the dataset. Since one of the goals of our algorithm is to be

agnostic to the number of clusters, in our experiments we set this

parameter equal to the number of datapoints in the dataset. This

has the affect that the algorithm can create as many clusters as

deemed necessary.

In addition to the above, the MBSAS algorithm takes two

passes of the data. On the first pass, all of the cluster centers are

initialized. This is done such that every datapoint which is farther

than the threshold from the existing cluster centers creates its

own cluster center. Datapoints which lie within the threshold of

a cluster center are skipped during the first pass. On the second

pass, all skipped datapoints are processed and added to their

nearest clusters.

The TTSAS algorithm goes further by utilizing two radii

and taking several passes of the dataset. Datapoints which lie

between the two radii are deemed to be in a “gray” area,

and their assignment to a cluster is deferred to the next

algorithm iteration. If such a datapoint will later lie within

the first radius of a cluster, it shall become part of that

cluster, otherwise it will eventually make a cluster of its own.

Datapoints which lie outside the outermost radius form a new

cluster immediately.

centers ← {data[0]}

for all x ∈ data do

n← nearest neighbor of x ∈ centers ⊲

Earliest-defined center if equidistant

d← euclidean distance x, n

if d < green radius then

Append x to cluster containing n

else

Append x to centers ⊲ Create new cluster

end if

for all M ∈ centers where (distance x to any

center < amber radius) do

Semantically connect M

end for

end for

Algorithm 1. Collage.

2. The collage algorithm

Collage is a sequential clustering algorithm controlled by

two parameters: green radius and amber radius. It operates on

data in an online manner and datapoints are processed as they

are received or generated upstream. The algorithm is shown

in Algorithm 1 and is summarized by the following: The first

datapoint forms the first cluster and becomes its center. As new

datapoints arrive, their distance from the existing cluster centers

is measured. If the datapoints lie within a certain radius of an

existing cluster, defined as the green radius, it is added to that

cluster. Should multiple cluster centers compete (a datapoint

is within the green radius of multiple cluster centers), the

nearest neighbor is chosen. Furthermore, if there are equidistant

cluster centers, the earliest-defined cluster takes precedence. If the

datapoint lies outside the green radius of all clusters, the datapoint

forms a new cluster and becomes its center. If the datapoint

is not contained within the amber radius of any other cluster,

then no further action is taken, and the algorithm behaves like

BSAS.

Furthermore, in the case where a datapoint lies within

the amber radius of two or more clusters, these clusters are

deemed to be semantically connected—that is, the clusters remain

conceptually distinct, but share a common meaning. Each cluster

represents a “view” of a contiguous visual object. Beyond the

algorithm and as part of the artificial intelligence (AI) pipeline,

these views can be semantically connected in a backend database

of relations to define the visual objects. As far as the clustering

algorithm is concerned the clusters remain distinct—the idea

being that slight transformations of an object, such as rotation

or illumination change, would be captured by this mechanism.

In purely mathematical terms (i.e. ignoring the mechanic of the

backend database), the semantic connection manifests as a merging

of the clusters. Contrast Figure 2A without merging; and Figure 2B

with semantic merging of clusters. An amber radius of zero means

that semanticmerging is deactivated. In this case, Collage algorithm

will produce clusterings similar to those of Leaders algorithm. The

behavior of the algorithm based on the location of the arriving

datapoint is summarized in Table 2. The choice of green and amber

radii depends on the distribution of the dataset, and trades off

accuracy with number of clusters generated. The larger the values

for these radii, the fewer clusters will be generated, as each cluster

will tend to accumulate more datapoints as it covers a larger portion

of the latent space.

An example clustering is shown in Figure 2A using a dummy

dataset based on random blobs. Cluster centers are shown as boxes

with a numerical label along with their surrounding green and

amber radii. Note that these radii take the shape of a diamond,

since Collage is designed to primarily use L1 geometry (also know

as Manhattan or city block geometry). Hardware implementation

favors L1 geometry over L2 due to avoidance of power and area

intensive mathematical operations, i.e. square and square root,

when calculating distances between points. Other datapoints are

shown as blue circles and lines connect the datapoints to their

associated cluster centers.

The amber radius is permitted to be less than the green radius

as illustrated in Figure 2C. In this scenario, and when a datapoint

lies between green and amber radii of its cluster, the normal rules

apply. That is, the datapoint becomes part of the cluster however

it cannot initiate a semantic merge with another cluster, as it is not

within the amber radius.

Other generalizations of the algorithm are possible for

supporting cases where the amber radius is smaller than the green

radius. One such generalization would have points lying between

the amber and green radii both automatically labeled as prescribed

by the center of the existing nearest-neighbor class and generating a

new cluster center (expanding the cluster). Another generalization

would simply have points between amber and green create new

clusters, competing with the original center of the radii.
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FIGURE 2

Example Collage clustering in two dimensions on the same dummy dataset: (A) without semantic merging; (B) with semantic merging; and (C) with

semantic merging and smaller amber radius.

TABLE 2 Behavior of collage algorithm when a new datapoint arrives.

Condition Outcome

d < green ≤ amber Datapoint assigned to cluster.

green ≤ d < amber Datapoint creates new cluster and initiates semantic merge.

green ≤ amber ≤ d Datapoint creates new cluster.

3. Experimental setup

We test the clustering algorithms firstly on the raw MNIST

dataset to obtain baseline performance. The raw dataset comprises

60,000 training images of 28 x 28 grayscale pixels. For clustering,

this is flattened to a single vector of 784 pixels and normalized to the

range [0, 1] in floating point. We then test the algorithms on latent

representations of the dataset generated by: 1) an autoencoder; and

2) a CNN.

The autoencoder model (Figure 3) consists of convolutional

layers which form the encoder; a bottleneck from which the

latent representations are extracted, which is narrower than

the input width; and deconvolutional layers which form the

decoder. The aim of the autoencoder is to reconstruct the input

exactly, using a pixel-by-pixel mean-squared error loss, whilst the

amount of information is reduced through the bottleneck. The

autoencoder model used on the MNIST experiments consists of

one convolutional layer with 32 filters and rectified linear unit

(ReLU) activations, followed by a max pooling layer. The resulting

14 x 14 x 32 tensor is flattened before the fully-connected layer of

128 neurons which forms the bottleneck. ReLU activations which

saturate at 1.0 complete the latent layer and encoder. For the

decoder, the 6,272-neuron bottleneck is reshaped back to 14 x 14

x 32 before upsampling and a convolutional layer of 32 filters.

The decoder is completed by a further convolutional layer of

one filter to restore the original data dimensions of 28 x 28 x 1,

and finished with sigmoid activations to constrain the outputs in

the range [0.0, 1.0]. The autoencoder was trained for 100 epochs

resulting in a final training loss of 1.1× 10−3 on the MNIST

dataset.

The CNN model (Figure 4) comprises one convolutional layer

with 32 filters and ReLU activations, followed by amax pooling layer.

The resulting 14x14x32 tensor is flattened before a dense layer of

128 neurons. ReLU activations which saturate at 1.0 complete the

latent layer and the encoder. A dense layer with ten neurons and

softmax activations makes the output layer. The CNN was trained

for 100 epochs resulting in a final training loss of 3.7× 10−8 on the

MNIST dataset.

The encoder layers and the bottleneck are kept the same

between both autoencoder and CNN models to allow direct

comparison of results. The number of latent neurons is chosen

based on the dataset and model. There must be sufficient latent

neurons to preserve enough information from the input to enable

classification and reconstruction, whilst providing a reasonable

level of compression. In this example we use 128 latent neurons

which gives low training losses as previously presented, and image

reconstructions which are perceptibly very close to the originals.
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FIGURE 3

Architecture of the autoencoder for the MNIST dataset.

FIGURE 4

Architecture of the CNN for the MNIST dataset.

In the case of the sequential clustering algorithms, data

ordering is important since each datapoint is processed in order

of arrival. To take into account the effects of data ordering, we run

the experiments on a ten-fold cross validation, logging the mean

and standard deviation of the metrics such as homogeneity and

number of clusters. The k-Means experiments are run once since

data ordering has a negligible effect on the outcome.

3.1. Data augmentation

For one select experiment, we train the neural network (NN)

models using an augmented version of the MNIST dataset. Each

sample from the original dataset is repeated ten times, each time

with a different, random combination of transformations applied.

The transformations include a translation in both x and y planes

up to three pixels in either direction; and a rotation around

the center of up to ±π/2 radians. New pixels that must be

introduced into the transformed image are filled with the value 0.0.

For the augmentation experiments, the validation dataset remains

untouched from the original. Examples from the augmented dataset

are shown in Figure 5.

FIGURE 5

Examples from our augmented MNIST training set.

3.2. Cluster algorithm parameter
optimization

The k-Means algorithm has only one parameter, which is the

number of clusters to which the data is fit. In contrast, Collage

does not produce a set number of clusters since it is designed to

adapt online to the data. It takes two parameters which are the radii

used to define the green and amber regions of each cluster. The

parameters of the algorithms are summarized in Table 3. The BSAS

and MBSAS algorithms require a maximum number of clusters

to be given. As previously discussed, our clustering aim is to be

able to handle an unknown number of clusters, therefore in our

experiments this parameter is set to the number of datapoints in

the dataset. This effectively disables the mechanism of limiting the

number of clusters in the algorithm to simulate an algorithm which

is not dependent on a priori dataset information. For deployment,

this mechanism should be disabled internally so that themaximum

clusters parameter need not be supplied for these algorithms.

3.3. Clustering analysis

The main metric we use to measure the clustering performance

is homogeneity. Homogeneity is satisfied (homogeneity score of

1.0) if all clusters contain only datapoints which are members of

a single ground-truth class. The lower bound for homogeneity

is zero, occurring when all cluster members belong to different

ground-truth classes. Cluster sizes are measured by diameter,

which is calculated by measuring the largest distance between two

datapoints in the same cluster. To analyse the distributions of
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cluster sizes and samples within a cluster, we chose the parameters

for Collage before matching the number of clusters for k-Means.

4. Results

A selection of the latent representations generated by our

models for the MNIST dataset are shown in Figure 6. The latent

representations from the autoencoder (Figure 6B) are distributed

more evenly throughout the range of possible values [0.0, 1.0]

compared with the CNN. An average of only 16/128 latent neurons

saturate in the autoencoder model on the same dataset. For

representations generated by the CNN (Figure 6C), some visual

intra-class similarities can be seen. An average of 119/128 of the

values saturate at 0.0 or 1.0 when tested on the MNIST dataset

with and without augmentation. This suggests that the model is

not making full use of the latent space that is available. This is also

TABLE 3 Summary of clustering algorithm parameters.

Algorithm Parameter Description

k-Means Number of Clusters Fixed number of clusters to generate.

Leaders r Points within are absorbed.

Collage
Green Radius Points within are absorbed.

Amber Radius Points within can cause cluster

merges.

BSAS, MBSAS
r Points within are absorbed.

max_clusters New clusters cannot be formed when

limit reached.

TTSAS
r1 Points between r1 and r2 defer to next

iteration.

r2 Points outside r2 form a new cluster.

evident in the clustering of the CNN latent space that we will discuss

later.

4.1. Raw dataset clustering

Before exploring different NN architectures for producing

latent representations, we test the performance of the clustering

algorithms on the raw datasets. This gives a baseline that we can

use to determine how effective the architectures are at compressing

the examples into the latent space.

Starting with the MNIST dataset, Figure 7A shows how the

green and amber radii of the Collage algorithm affect the number

of clusters generated. As all algorithms are sensitive to dataset

ordering, with the exception of k-Means, the plot shows the

mean number of clusters over ten different dataset orderings.

The uppermost line shows Collage without amber merges—this

produces similar clusterings to the Leaders algorithm. Each line

beneath represents a different value for the amber radius. Since

merged clusters are left otherwise unchanged, the homogeneity

cannot be improved with increasing amber radius.

The trend between the number of clusters generated by

an algorithm and the homogeneity of its clustering is seen

in Figure 7B. k-Means sets the performance baseline for this

experiment, as it has the advantage of analyzing the whole dataset

before settling on a clustering. We do not expect any of the

sequential, few pass algorithms to exceed k-Means’ performance.

Again, as the sequential algorithms are sensitive to dataset ordering,

the mean homogeneity is taken over ten different dataset orderings.

TTSAS is more robust to data ordering variations due to its

additional radius, and this will be explored in Section 4.5, however

no homogeneity advantage is gained over BSAS or MBSAS in the

average case as seen in the plots. In the case that the number

of generated clusters equals the number of classes in the dataset,

FIGURE 6

(A) Selection of the original dataset; (B) the latent representations generated by the autoencoder; and (C) the latent representations generated by the

CNN. Black is value 0.0, white is value 1.0.
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FIGURE 7

Clustering on the MNIST dataset. Solid vertical line in (B, D, F) denotes the case where clusters obtained is equal to number of ground truth classes.

(A) MNIST raw, collage algorithm, (B) MNIST raw, clustering performance, (C) MNIST autoencoder, collage algorithm, (D) MNIST autoencoder,

clustering performance, (E) MNIST CNN, collage algorithm, and (F) MNIST CNN, clustering performance.

even the best clustering achieves only 0.5 homogeneity. This poor

clustering is not unexpected, given the raw dataset comprises an

array of pixels whose values have a large amount of overlap.

4.2. Autoencoder

Now we investigate how the clustering algorithms perform

on a dataset which is encoded to a latent representation. In this

experiment, the latent representation is obtained by extracting the

outputs from the bottleneck of the autoencoder from Figure 3.

Figure 7C shows the number of clusters generated by Collage with

varying green and amber radii—many more clusters are generated

compared to what is achievable on the raw dataset. The clustering

performance, shown in Figure 7D, is worsened for all algorithms

in comparison to the raw dataset. The data has been compressed

through the bottleneck, however the result is many overlapping

clusters in the latent space, and thus decreased cluster homogeneity.

4.3. CNN

In this experiment, the latent representation is obtained from

the penultimate layer of the CNN from Figure 4. Figure 7E shows

that the number of clusters generated by Collage is nowmore on par

with those from the raw dataset. A reasonable number of clusters,

close to the number of ground truth classes, is now achievable

with much reduced green and amber radii. Clustering performance
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FIGURE 8

The latent-encoded CIFAR10 dataset using an autoencoder: (A) homogeneity of clusters compared to the number of clusters; and (B) training and

validation losses for augmented (aug.) and non-augmented datasets.

FIGURE 9

Clustering of the latent encoding of the MNIST dataset: (A) distribution of samples in each cluster; and (B) distribution of cluster diameters. For

Collage, Green Radius = 25. For k-Means, nclusters = 483.

on the latent representation in Figure 7F is vastly improved over

both the raw dataset and the latent representation generated using

an autoencoder. Homogeneity is 0.996 for the k-Means algorithm

where the number of clusters equals the number of classes in the

dataset. The other sequential algorithms also perform very well on

this representation. The performance of Collage begins to drop off

below 100 clusters, however homogeneity is maintained above 0.95

for all number of clusters exceeding the number of classes in the

dataset. The results show that the CNN is maintaining separation

between clusters and thus preventing cluster overlaps.

4.4. CIFAR10 dataset

In this experiment we look at the clustering performance on

the CIFAR10 dataset to see how the autoencoder and Collage

algorithm performs on a more demanding dataset with higher

input dimensionality. The dataset comprises 60,000 full color

images of dimensions 32 x 32 x 3 that are arranged into

ten classes of animals and vehicles with backgrounds. For this

reason, we modify the autoencoder architecture used in previous

experiments (Figure 3) by adding two additional convolutional and

deconvolutional layers, resulting in a total of three. The fully-

connected layer preceding the bottleneck now consists of 8,192

neurons. We increase the number of latent neurons to 1,024

to achieve a reconstruction loss of 3.4× 10−4 after 100 epochs.

The plot of homogeneity against number of clusters generated

(Figure 8A) shows poor homogeneity.

4.5. Cluster analysis

To evaluate how the datapoints are being clustered for each

algorithm, we plot distributions concerning the samples in each
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FIGURE 10

Variance of homogeneity across 10 di�erent data orderings. Latent

representations generated for the MNIST dataset by the

autoencoder model. For TTSAS, r2 is 10% larger than r1.

cluster in Figure 9. We look at Collage with green radius = 25

which gives 483 clusters and mean homogeneity of 0.69. We match

this by also testing k-Means with nclusters = 483. The distribution

of the number of samples in each cluster (Figure 9A) shows that

Collage has a high concentration of clusters with relatively few

samples, and a few clusters containing many samples. The largest

cluster contains 3,459 samples, which is enough to represent 6%

of the dataset in one cluster. In contrast, the variance of cluster

sizes generated by k-Means is far lower; the number of samples

in each cluster being in the low hundreds, with the highest

being 353.

Distributions of the cluster diameters (Figure 9B) are similar

between Collage and k-Means. An exception is that Collage has a

high concentration of clusters with diameter close to or equal to

zero. Clusters with zero diameter are singleton clusters.

As the sequential clustering algorithms are susceptible to data

ordering, we also investigate the variance in homogeneity over ten

different orderings. The results in Figure 10 show that Collage,

BSAS and MBSAS are all affected in a similar way, with variances

around 0.03 in the worst case for a small number of clusters roughly

equalling the number of ground truth classes. While TTSAS claims

to provide improved robustness to data ordering compared with

BSAS and MBSAS algorithms, we do not see this trend in our

experiment. This could be attributed to the highly-diverse nature

of our latent representation, although thorough investigation is left

for future work.

4.6. Augmented MNIST dataset

In this experiment we study how latent representations are

affected by augmenting the training dataset. We focus on the

MNIST dataset using an autoencoder and augmentations as

discussed in Section 3.1. The various losses are plotted in Figure 8B.

For the augmented dataset, the training loss is higher than

for the original dataset since the augmented dataset has ten

times more examples, and is expected to be more difficult to

reconstruct as a result of augmentation. However, looking at

the validation loss on the augmented dataset, it is much lower

than that of the original dataset. Training on the augmented

dataset has greatly improved our loss on the validation data,

which remains unaugmented: the validation data is the same for

both augmented and non-augmented experiments, and is easier

to classify than the augmented training data. This explains why

the validation loss on the augmented dataset is lower than its

training loss.

Figure 11 shows the clustering performance on the augmented

MNIST dataset compared with the original dataset. The data

augmentation shows a small improvement to the clustering of the

latent space generated by the autoencoder, however, it is hugely

detrimental to that generated by the CNN. This suggests that,

despite having lower overall performance, the autoencoder’s latent

representation may be more robust for datasets that have a larger

intrinsic spread of datapoints in raw space, which is the effect

generated by our augmentation.

5. Discussion

Overall, our work shows that clustering in latent spaces

depends very heavily on the type of transformation applied on

the input space (i.e. loosely speaking the type of neural network

used to generate the latent encoding). Whilst CNNs, that aim

for generating invariant representations, create conveniently

clusterable representations, autoencoders, which aim for

equivariance lead to a degradation of clusterability even vis-

a-vis the original input space. Furthermore, we show that

performing clustering online and with a skeletonised number of

computations (in our Collage algorithm each new datapoint suffers

only as many comparisons as there are cluster centers) comes with

a significant degradation to cluster homogeneity in all scenarios.

The fact that this occurs even in the CNN case indicates that despite

aiming for invariance, datapoints belonging to different classes still

lie ‘comparatively close’ (with respect to the green and amber radii)

in the latent space.

SHADE regularization (Blot, 2020) seeks to minimize intra-

class invariance, whilst maintaining inter-class invariances. This

is exactly what is needed to maintain tight clusters of points

within the same class, whilst repelling adjacent clusters in the

latent space. If this technique is applicable to autoencoders, it

could provide a needed boost to the clustering performance of the

sensory pipeline.

A possible improvement for the Collage algorithm is to adapt

the radii on-the-fly. This presents the challenge of learning to

obtain ‘reasonable’ clusterings. It is necessary to introduce some

metrics to measure this, since we cannot rely on measuring the

number of generated clusters, as this would again rely on a priori

information about the dataset. Finally, merging singleton clusters

with their nearest non-singleton clusters could help to reduce the

overall number of clusters and increase the number of examples

per cluster.

An alternative to calculating the datapoints ownership using L1

geometry is to check each coordinate of a new datapoint against
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FIGURE 11

Clustering on the latent-encoded, augmented MNIST dataset: homogeneity compared to the number of clusters on all clustering algorithms from an

autoencoder (A) and from a CNN (B). Solid datapoints are from the original dataset; hollow datapoints are from the augmented dataset.

a test cluster center, and then apply pass/fail criteria to determine

the ownership to that cluster. For example, if a new datapoint has

coordinates (x1, y1) and we want to check its ownership against a

cluster with center (x2, y2), we determine if (x1 − x2) is greater

than a threshold, and if so, we know the datapoint does not belong

to the cluster. If the threshold is not exceeded, we proceed to

check (y1 − y2), and only if this is also less than the threshold, we

assign the point to the cluster. Geometrically this is equivalent to

checking a square, which is simply a 45◦ rotation of the diamonds

we currently use. For the purposes of hardware implementation this

is an approach worth considering, however we do not anticipate

this to make a significant different to our findings, since the two

approaches are near functionally-equivalent.

With the information provided in this work, we believe that

a number of important questions arise: Is there a way to obtain

both equivariance and better clusterability? Is there an algorithm

that can perform the online function of Collage with similar

numbers of computations? Is there some compromise between

equivariance and invariance that would allow us to train models

that both require no prior knowledge of the input space and

lead to well-clusterable representations? We hope that this work

provides a basis, framework and inspiration for further advances in

this area.
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