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locomotor activity and behavioral
aspects in an open field arena: A
perspective approach to the
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disturbances associated with
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Introduction: Complex gait disturbances represent one of the prominent
manifestations of various neurophysiological conditions, including widespread
neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Therefore,
instrumental measurement techniques and automatic computerized analysis appears
essential for the di�erential diagnostics, as well as for the assessment of treatment
e�ectiveness from experimental animal models to clinical settings.

Methods: Here we present a marker-free instrumental approach to the analysis
of gait disturbances in animal models. Our approach is based on the analysis of
video recordings obtained with a camera placed underneath an open field arena
with transparent floor using the DeeperCut algorithm capable of online tracking
of individual animal body parts, such as the snout, the paws and the tail. The
extracted trajectories of animal body parts are next analyzed using an original
computerized methodology that relies upon a generalized scalable model based on
fractional Brownian motion with parameters identified by detrended partial cross-
correlation analysis.

Results: We have shown that in a mouse model representative movement patterns
are characterized by two asymptotic regimes characterized by integrated 1/f noise at
small scales and nearly random displacements at large scales separated by a single
crossover. More detailed analysis of gait disturbances revealed that the detrended
cross-correlations between the movements of the snout, paws and tail relative to the
animal body midpoint exhibit statistically significant discrepancies in the Alzheimer’s
disease mouse model compared to the control group at scales around the location
of the crossover.

Discussion: We expect that the proposed approach, due to its universality, robustness
and clear physical interpretation, is a promising direction for the design of applied
analysis tools for the diagnostics of various gait disturbances and behavioral aspects in
animal models. We further believe that the suggested mathematical models could be
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relevant as a complementary tool in clinical diagnostics of various neurophysiological
conditions associated with movement disorders.

KEYWORDS

open field-test, animal behavior analysis, detrended partial cross-correlation analysis
(DPCCA), Alzheimer’s disease, fluctuation functions, video analysis, gait disturbance,
DeepLabCut

1. Introduction

Gait disturbances appear one of the prominent indicators of
various neurophysiological disorders including Alzheimer’s and
Parkinson’s diseases where characteristic alterations of posture are
widely used as both primary and differential diagnostic markers
(O’keeffe et al., 1996; Muir et al., 2012; Cedervall et al., 2014).
In recent years, several computerized solutions based on the
instrumental assessment of gait and posture disturbances facilitating
both diagnostic and treatment effectiveness assessment procedures
have been proposed (Bachlin et al., 2009; Bächlin et al., 2010; Maquet
et al., 2010; Chung et al., 2012; Margiotta et al., 2016; Mc Ardle
et al., 2017; de Oliveira Silva et al., 2020). In animal model studies,
computer-aided quantitative assessment of locomotor activity and
associated behavioral aspects also attracted increasing attention (Li
et al., 2013; Nyúl-Tóth et al., 2020; Nyul-Toth et al., 2021) (for a recent
methodological review, see also Klein et al. (2022) and references
therein).

Conventionally, animal behavioral and movement patterns have
been measured and analyzed by direct observation and manual
coding of behavioral categories (Anderson and Perona, 2014). In
turn, using expert observation imposes severe limitations on the
acquisition and analysis of behavioral data. First and foremost, it
is a laborious and tedious task that severely limits the amount of
data processed and the number of behaviors or behavioral variables
analyzed. But, even more importantly, human analysis of behavior
is prone to subjectivity. Behavior measurement strongly depends on
human perceptual abilities, leaving a lot of room for human error and
facilitating efficient tacit knowledge transfer in training. Furthermore,
human understanding and interpretation of behavior is subjective
and sometimes inconsistent.

Recent advancements in computer vision technologies lead
to increasing availability of video analysis based information for
animal behavioral tracking that finds extensive applications from
fundamental animal biology and ecology to applied biomedical
and pharmacological studies, respectively (Codling et al., 2008;
Hooten et al., 2017), see also Reynolds (2009), Bearup et al.
(2016), Hooten and Johnson (2017), and Torney et al. (2021). The
purpose of the development of tools that promote more objective
and quantifiable assessment and measurement of behavior (cf.
Miklósi, 2014; Overall, 2014; Hall and Roshier, 2016) has long been
acknowledged, recognizing the potential of technology not only to
empower the human observer in terms of accuracy and volumes of
processed data, but also to lead to discoveries of new characteristics of
behavior which are inaccessible for human observation. Accordingly,
computer-aided analysis of open field test data using fast, accurate,
and cost-effective computer vision algorithms is essential for their
objective and systematic classification and interpretation.

These considerations give rise to the emerging field of
computational animal behavior analysis (CABA) (Anderson and
Perona, 2014; Egnor and Branson, 2016), which aims to apply
techniques from computer science and engineering to facilitate
an accurate and objective analysis of behavior. Existing CABA
tools mainly perform automatic tracking of animals; some of them
can identify basic behavioral states and measure some behavioral
parameters. Some well-established commercial systems, such as
Ethovision, are highly costly and not always sufficiently flexible.

Examples of free access tools and platforms include platforms that
allow the user to train or use existing machine learning models, such
as the DeepLabCut Framework (Mathis et al., 2018) or the JAABA
system (Kabra et al., 2013) for trajectory estimation, and systems
that perform basic tracking and provide a limited set of parameters
related to tracked trajectories, such as EZtrack (Pennington et al.,
2019) and Pathfinder (Cooke et al., 2019). The first requires advanced
programming skills and provides only the ability to track an animal or
its body parts, while the latter is simpler to use. However, it analyzed
specific behaviors (e.g., freezing) or behavioral tests only appropriate
for some species (e.g., water maze, light-dark box).

Over several decades, the open field test remains the most widely
used test for the quantitative characterization of behavioral patterns
in experimental animal rodent models (Stanford, 2007; Gould et al.,
2009; Perals et al., 2017; Sturman et al., 2018; Kraeuter et al.,
2019). Over more than half a century, the open field test paradigm
has developed into a powerful tool for the evaluation of animal
locomotion and exploratory activity, as well as risk assessment and
anxiety behavior, with a number of established quantitative markers
for each of the behavioral characteristic studied. In the common
behavioral test analysis procedure, once the animal movement
trajectories have been extracted, their further analysis is commonly
reduced to a number of predefined characteristics, in most cases
represented by a set of scalar metrics. For example, in the open
field rodent test locomotion characteristics include the total distance
traveled and the total zone entries, vertical activity is characterized
by the rear frequency, the rear duration and grooming, while the
risk assessment is justified from the total stretch attend posture and
the total sniffing events count, and the decision making patterns are
typically interpreted based on the properties of the periphery zone
return and corner zone return events.

Although the above characteristics typically have a clear
underlying physical interpretation, being analyzed as single variables,
they are often insufficient to characterize the whole complexity
of the animal movement patterns. In turn, more sophisticated
multiparametric models are required to extract further significant
information partially hidden in the interactions between these
characteristics. Very recently, we have shown that in the context
of the fBm based models typical animal movement patterns are
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characterized by two asymptotic scaling regimes separated by a single
crossover, and the position of this crossover depends explicitly on the
neurophysiological condition of the experimental animal. Moreover,
we have also shown that the identified animal movement model
is explicitly associated with the conventional parameters such as
the level crossing statistics characterizing zone transitions events,
thus making the scalar metrics that are used in the conventional
characterization of the open field test results reproducible from the
model based perspective thus making the results clearly interpretable
from the conventional point of view (Bogachev et al., 2023).

In this work, we report the results of an early validation of
an in-house developed animal tracking tool and advanced model-
based gait analysis characterized by high flexibility and low-level
automation using DeepLabCut based video processing. To analyze
animal movement trajectories and gait patterns, we employ several
effective methods originating from statistical physics. The proposed
methodology relies upon random walk class models (Jeanson et al.,
2003; Patterson et al., 2008; Smouse et al., 2010; Langrock et al.,
2014) including the (fractional) Brownian motion (fBm) and its
modifications that in recent years attracted increasing attention in the
context of animal tracking and behavioral analysis (Reynolds, 2009;
Bearup et al., 2016; Hooten and Johnson, 2017; Torney et al., 2021). In
marked contrast to multiple scalar movement parameters or models
build upon their artificial combinations, fBm based models have only
few free parameters that are easily physically interpretable (for further
details, we refer to Codling et al., 2008 and references therein).

2. Materials and methods

2.1. Animals and experimental protocol

Double-transgenic mice used in this study express a chimeric
mouse/human amyloid precursor protein (Mo/HuAPP695swe) and
a mutant human presenilin 1 (PS1-dE9). Both mutations are
associated with an early-onset Alzheimer’s disease. The animals were
5- (n = 3) and 12-month (n = 9) old males or females which
were previously purchased from the Laboratory Animal Breeding
Facility (Branch of Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Puschino, Moscow Region, Russia). The control group
consisted of wild-type 5- (n = 3) and 12-month (n = 6) old mice.
All animals were housed in plastic cages (3/4 mice/cage) with free
access to food and water and were maintained under controlled
conditions of humidity (50 ± 10), light (12/12 h light/dark cycle),
and temperature (23◦C ± 1). All experiments involving animals
were performed in accordance with the guidelines set forth by
the European Communities Council Directive 86/609/EEC. The
experimental protocols were approved by the Animal Care and
Use Committee of the Federal Research Center “Kazan Scientific
Center of the Russian Academy of Sciences” (protocol No. 2, dated
09.06.2022).

2.2. Open field arena

The open field arena used as a test bed in this study was 33×22.3×
25.8 cm in size. The floor was made of transparent PVC plastic. For
spatial calibration, 2.5 cm Aruco codes have been added to all edges

of the arena. Two light-saving sources located opposite to each other
were used.

2.3. Data acquisition

For an explicit marker-free gait characterization, our approach
implied the analysis of the animal video recorded from underneath.
For that, a video camera Sony (Model: IMX766, 50 (12.5) Mpix,
f/1.8, 1/1.56,” PDAF, OIS, 23.6 mm) providing 30 fps video sequence
have been placed underneath the transparent floor of the open field
arena. The continuous self-tuning feature of the camera was disabled.
Video recordings have been obtained under similar conditions
under normal ambient lighting (see Figure 1A). Altogether n = 23
recordings (n = 14 in the experimental group and n = 9 in the control
group) of 15.2 min ± 20 s (median ± interquartile range) duration
have been obtained, with one single recording per each animal.

2.4. Trajectory estimation

Acquired video frames have been initially downscaled to 720p for
faster processing by DeepLabCut, an open source application widely
adopted for tracking movement trajectories of various biological
objects such as bacteria, various animals (leeches, fishes, rats,
cheetahs, horses, humans) and their body parts (e.g., fingers, toes
and even whiskers), as well as various artificial objects (e.g., robots).
DeepLabCut utilized the feature detectors (ResNets + readout layers)
of one of the state-of-the-art algorithms for human pose estimation
by Insafutdinov et al. known as DeeperCut (Insafutdinov et al., 2016;
Mathis et al., 2018; Nath et al., 2019). In this paper, we used a
deep convolutional neural network ResNet50 (He et al., 2016). These
networks utilizing the common weights concept are highly efficient
in solving trajectory tracking tasks. The convolutional neural network
consists of different types of layers: convolutional layers, subsampling
layers and layers of a “normal” neural network, also known as a
perceptron. The 50-layer ResNet uses a bottleneck design for the
building block. A bottleneck residual block uses 1 × 1 convolutions,
known as a “bottleneck,” which reduces the number of parameters
and matrix multiplications. This enables much faster training of each
layer. It uses a stack of three layers rather than two layers.

To form a dataset for the neural network training, the k-means
algorithm was used. Using this algorithm, we extracted 50–100 frames
from each video, depending on the complexity of the trajectory and
poses of the objects under study. In the next step, seven different
points for separate tracking, including the snout, all four paws and the
base of the tail, as well as the animal body midpoint have been selected
for separate tracking, as shown in the Figure 1. For each animal,
the results of computer vision based analysis have been summarized
in a CSV file containing trajectories for each of the tracked body
parts in a table form. If the object could not be detected, then the
gap was filled either with the previous value or with another nearest
neighbor. Since the losses of the initial trajectories are around 10–
20% of the entire trajectory duration, we next applied a median filter
over five frames in order to reduce the effect of anomalies, including
those induced by high-frequency jitter noise and short-time markers
swapping, to enhance the overall noise robustness of the algorithm.
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FIGURE 1

(A) The overall view of the open field arena with transparent floor as observed by the camera located underneath. (B) Tracked animal body parts: A-
Snout, B- Left front paw, C- Right front paw, D- Body midpoint, E- Left hind paw, F- Right hind paw, G- Tail. Connections represent the animal movement
network model, where nodes are associated with animal body parts and edges characterize their mutual dynamics. Highlighted edges form the network
backbone consisting of links between various body parts and animal body midpoint, while secondary links denote all pairwise connections (not shown).
Each link is characterized by some mutual movement metric, such as the detrended cross-correlation coe�cient Rij or partial correlation Pij, respectively.

Thus, the output CSV file did not contain any unfilled gaps in the
trajectory.

2.5. Identification of the movement model

For the identification of the animal movement trajectory model
and the estimation of its parameters from empirical trajectories, we
employed the detrended partial cross-correlation analysis (DPCCA)
originally introduced by Yuan et al. (2015). In the DPCCA procedure,
for each of the data series x1

i , x2
i , . . . , xmi the so-called “profiles” are

obtained as cumulative sums Xj
k ≡

∑i
k=1 xk, where j = 1, . . . ,m

is the series number, while i = 1, . . . ,N is the data sample, and
N is the length of the data. Next, the profiles are split into Ks
windows of length s, and in each window the least mean squares
polynomial fits pjν,i are calculated. By subtracting the polynomial fits
Y j

(i−1)(s+1)+k−i+1 = Xj
k − pjk,i the residual series Y j

l , l = 1, . . . , (N −
s)(s + 1) are calculated. By calculating pairwise covariance between
the residuals

F2
j1 ,j2 (s) ≡

∑(N−s)(s+1)
l=1 Y j1

l Y
j2
l

(N − s)(s+ 1)
(1)

for all j1, j2 = 1, . . . ,m one obtains the covariance matrix

F2(s) =


F2

1,1(s) F2
1,2(s) . . . F2

1,m(s)
F2

2,1(s) F2
2,2(s) . . . F2

2,m(s)
. . . . . . . . . . . .

F2
m,1(s) F2

m,2(s) . . . F2
m,m(s)

 . (2)

Of note, the diagonal elements of the matrix F2(s) are simple
variances and thus correspond to the fluctuation functions F(s) in

the conventional detrended fluctuation analysis (DFA) proposed by
Peng et al. (1994). It is known that for long-term correlated data
the DFA fluctuation functions increase by a power law F(s) ∝ sH ,
where H is the Hurst exponent, irrespective of the order of the
detrending polynomial. In the simple case of fully random (“white
noise”) increments H = 1/2, while H > 1/2 correspond to positively
and H < 1/2 to negatively correlated increments, respectively.

In the following, F2(s) are normalized as

Rj1 ,j2 (s) ≡
F2
j1 ,j2 (s)

F2
j1 ,j1 (s) · F2

j2 ,j2 (s)
(3)

to obtain the matrix of cross-correlation coefficients

R(s) =


R1,1(s) R1,2(s) . . . R1,m(s)
R2,1(s) R2,2(s) . . . R2,m(s)
. . . . . . . . . . . .

Rm,1(s) Rm,2(s) . . . Rm,m(s)

 , (4)

where Rj1 ,j2 = 1, for all j1 = j2.
Next to exclude spurious correlations induced by cross-

modulation of data series, one can also obtain partial correlation
coefficients by calculating the inverse of the cross-correlation
coefficient matrix

C(s) = R−1(s) =


C1,1(s) C1,2(s) . . . C1,m(s)
C2,1(s) C2,2(s) . . . C2,m(s)
. . . . . . . . . . . .

Cm,1(s) Cm,2(s) . . . Cm,m(s)

 (5)

followed by its normalization as

Pj1 ,j2 (s) =
−Cj1 ,j2 (s)√

Cj1 ,j1 (s) · Cj2 ,j2 (s)
, (6)
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where the latter coefficients characterize intrinsic correlations
between data series j1 and j2 (Baba et al., 2004; Yuan et al., 2015).

For an overall characterization of the animal movement model,
we additionally modified the above method by replacement of
the covariance coefficient in Equation (1) by the cross-covariance
function calculated as

F2
j1 ,j2 (s, k) ≡

∑(N−s)(s+1)
l=1 Y j1

l−kY
j2
l

(N − s)(s+ 1)
or

F2
j1 ,j2 (s, k) ≡

∑(N−s)(s+1)
l=1 Y j1

l Y
j2
l−k

(N − s)(s+ 1)
, (7)

where the additional index k ≤ s/2 implies the delay of either Y j1

or Y j2 by k samples, respectively. Algorithmically, the synchronously
recorded data in the numerator of Equation (1) has been substituted
by a series of relatively shifted copies followed by finding the
position where the maximum cross-covariance can be observed.
In addition, the total squared displacement was calculated as the
sum of the squared displacements of projections on the X- and Y-
axes, respectively. Finally, the value of the maximum of the cross-
covariance function characterizes the coupling strength, while the
position of the maximum determines the relative delay between Y j1

or Y j2 for each considered scale s. The above results are presented
in the form of a directed graph, where directions of the edges are
determined by the positions of the maxima, and further quantified
by the coupling strength Pij and delay Tij.

2.6. Statistical analysis

For the outliers removal, we employed the Tukey fence method
based on the analysis of the interquartile range which is known for its
resistance to the presence of extreme values and applicability to both
normal and slightly skewed distributions. Distributions of movement
metrics within the groups in many cases differed significantly
from Gaussian distributions, as indicated by Kolmogorov-Smirnov
and Shapiro-Wilk tests. Thus, for the assessment of the statistical
significance of our results, we employed Mann-Whitney U-test for
pairwise comparisons.

3. Results

First, we performed the fluctuation analysis as indicated in
Equations (1), (2) and obtained the fluctuation functions summarized
in Figure 2 for the animal body parts movement projections on
the X and Y axes, respectively (only group averages are shown).
The figures indicate that fluctuation functions are characterized by
two asymptotic regimes. At small scales, the fluctuation function
after s steps increases algebraically approximately as F(s) ∝ s2,
that is equivalent to the observation of 1/f noise in the movement
increments. In contrast, at large scales the fluctuation function
increases approximately as F(s) ∝ s1/2, indicating nearly random
displacements (although strongly anti-persistent increments).

To determine the position of the maxima, fluctuation functions
F(s) have been divided by s5/4 to achieve the same rate of decay on
both sides of the crossover, in order to determine the position of the
crossover at the maximum of the rotated fluctuation function. While
the figure shows only the group averages, similar transformations

have been applied to the fluctuations functions for all individual
movement trajectories of each body part of each animal, and
statistical significance of the observed shift in the crossover position
has been explicitly validated using the Mann-Whitney U-test (p =
2.4× 10−7 for the movements along the X-axis, and p = 4.8× 10−9

for the movements along the Y-axis, respectively, that is well below
the null hypothesis rejection threshold at 0.95 confidence level, also
with multiple testing correction).

The conventional fluctuation functions shown in Figure 3
characterize the dynamics of individual body parts, similar to those
recently used to characterized the whole-animal movements of rats
R. norvegicus in an open field test (Lyanova et al., 2022) and of fishes
D. rerio in a novel tank test (Bogachev et al., 2023), respectively. In
this work, we additionally considered joint fluctuation functions that
characterize mutual interactions of different body parts obtained by
detrended cross-correlation analysis (DCCA), indicated in Figure 3.
Similarly, significant discrepancies between the crossover locations
could be observed and explicitly supported by the Mann-Whitney
U-test (p = 1.4 × 10−7 for the movements along the X-axis, and
p = 2×10−10 for the movements along the Y-axis, respectively, that is
well below the null hypothesis rejection threshold at 0.95 confidence
level, also with multiple testing correction).

Next, for a more detailed pairwise comparisons between the
movement patterns, in addition to the comparison of the fluctuation
functions, we calculated the cross-correlation matrices as indicated in
Equations (3), (4) for each animal at different scales s and performed
pairwise comparisons of the respective cross-correlation coefficients
between the Alzheimer test group and the control group of animals
summarized in Figure 4, see also Supplementary material for similar
results for other animal body parts.

To localize typical scales where discrepancies between the gait
patterns in the studied animal groups can be observed, we applied
the Mann-Whitney U-test. The resulting p-values are summarized
in Figure 5 as a function of scale s. The figure shows that most
pronounced discrepancies can be observed typically at intermediate
scales s ≈ 5 . . . 10 s where they remain at p < 0.05 for the
overwhelming majority of the tracked body parts. Remarkably, these
discrepancies also appear most pronounced at scales nearing the
position of the crossover, and thus could be likely associated with the
shift in the crossover locations (that in turn are known to be shifted
toward larger scales several-fold for both DFA and DCCA methods)
for the respective animal body part movements between animals from
the test and control groups, respectively.

Finally, to localize the respective discrepancies not only in the
scale range, but also in time, we performed similar analysis in a
gliding window of 30 s duration. Figure 6 (see also similar results
for other body parts in the Supplementary material) indicate the
dynamical evolution of the respective p-values by heatmaps presented
in time-scale coordinates. The figures show that the majority of
pronounced discrepancies exhibit two typical localizations.

In the first scenario, they localize around characteristic scales
attributable to the respective fluctuation function crossover
positions, while covering significant time spans (for a prominent
example see Figure 5, see also Supplementary material for additional
examples for other animal body parts). These discrepancies
likely make the decisive contribution to the overall discrepancies
reported in Figure 6. Remarkably, the above scenario can be
observed predominantly in the first half of the test duration,
and thus could be presumably associated with different
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FIGURE 2

Left: fluctuation functions Fj,j(s) for the movement trajectories along the X-axis (upper) and Y-axis (lower) for all animal body parts j as denoted in Figure 1
obtained by detrended fluctuation analysis (DFA). The green curve denotes wild type mice (control group), while the red curve denote the Alzheimer mice
cohort (test group). Fluctuation functions scale asymptotically as F(s) ∝ s2 at small scales, and as F(s) ∝ s1/2 at large scales. Middle: show the same
fluctuation functions F(s) divided by s5/4 used to determine the crossover position at the maximum of the rotated fluctuation function. Right: boxplots
characterizing the crossover position statistics for all individual movement trajectories of each body part of each animal. Scales and crossover positions
are expressed in seconds.

adaptability to the environment in test and control animals,
respectively.

In the second scenario, there are also discrepancies that localize
in short time fragments only, while spanning over broad scale
range, being observed predominantly in the second half of the
test duration, that could be presumably associated with certain
exploratory activities that are differently represented in the test and
control animals, respectively.

Next in order to eliminate systematic correlation effects
associated with the whole animal body movements from the
interactions between individual animal body part movement
patterns, we calculate partial correlations according to Equations (5),
(6). In contrast to the conventional correlation metrics, partial
correlations reveal the intrinsic correlations in each pairwise
combination, by excluding contributions from other body parts. For
example, at large scales the major contributor to the conventional
correlation metrics is the animal walking trajectory, since all body
parts follow the animal on its way. This can be observed explicitly
in the gradual enhancement of the correlation coefficients with
increasing scale, eventually converging to one at very large scales,
where individual body movements relative to the animal body
midpoint are very small compared to the total distance traveled by

the animal over long time spans. Importantly, this effect is neither
eliminated nor reduced by detrending procedures that compensate
only trends represented by walking trajectories of particular animals,
while do not help to “detach” the relative body part movements from
the overall walking trajectory.

The latter could be potentially resolved by considering a two-
level cascade model, with the first level representing the animal
walking trajectory (e.g., at the body midpoint), and the second
level representing animal body part movements relative to the body
midpoint. The above scenario can be represented by the so-called
superstatistical models (Beck and Cohen, 2003; Beck et al., 2005)
that have been recently applied in the context of various natural
complex systems ranging from climate and weather to information
flow dynamics, as well as DNA and protein structures (Bogachev
et al., 2016, 2017; Tamazian et al., 2016; Markelov et al., 2017; Itto
and Beck, 2021; Schäfer et al., 2021).

In this work, we follow a slightly different route, and consider
partial correlations calculated as indicated in Equations (5), (6). The
results are depicted in Figure 7, see also similar results for other
animal body parts in the Supplementary material. The figures show
that the above mentioned convergence to nearly unit correlations at
large scales can no longer be observed, and thus the scale dependent
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FIGURE 3

Similar fluctuation functions Fj1 ,j2 (s) as Figure 2 but for all pairwise combinations of movement trajectories for di�erent body parts j1 6= j2 obtained by
detrended cross-correlation analysis (DCCA). Scales and crossover positions are expressed in seconds.

trend has been eliminated from the correlation pattern by separation
of the overall contributions into pairwise correlations that appear
complementary to each other.

Finally, we reconstruct the animal body part interaction network
using partial correlation analysis with pairwise alignments to adjust
for maximum cross-correlations according to Equation (7), and
represent the results in the form of a directed graph indicated in
Figure 8. In this graph, nodes are attributed to various animal body
parts, while edges characterize partial correlations at the positions of
the maximum covariance between them, as well as corresponding
delays. The figure indicates that there are typically shorter time
delays between body part movements in the animals with Alzheimer’s
disease compared to the control group, that could be observed at
different scales. Although no statistically significant discrepancies
could be observed for individual pairwise delays, most likely due
to small sample sizes and considerable within-group variations, a
certain tendency could be observed at various scales, also beyond the
two examples shown in Figure 8.

4. Discussion

Statistical analysis of walking patterns has a long history in
applied mathematics and especially statistical physics. The most basic
concept that dates nearly two centuries back is the simple Brownian
motion, that also represents the limiting case for the random
walk model. Under the assumption of statistically independent and

identically distributed increments at each step, the root-mean square
displacement of the random walker from the origin after s steps,
according to the classic Fick’s diffusion law, scales as F(s) ∝ s1/2.
Possible generalizations of this concept for correlated increments
include the fBm model with F(s) ∝ sH , a widely used approach for
modeling data series with long-term persistence, including animal
movement patterns in their natural environments. The above laws
hold asymptotically, making these models completely scale-free,
characterized by theoretically unlimited long-term correlations.

In contrast, experimental animal walking patterns, including
the open field test, premise that the motions are limited to a
certain confined space, making asymptotically scale-free models
hardly adequate, due to a breakdown of persistence above a
certain scale. Moreover, the alternating movement patterns that are
inevitable in confined space due to imminent reversals also assume
the emergence of anti-persistence at large scales. Accordingly, the
resulting animal movement model is no longer expected to exhibit
scale-free properties, but rather consists of at least two characteristic
regimes, represented by a persistent random walk at small scales only,
and substituted by more random or even anti-persistent patterns with
increasing scale.

In a recent study of the whole-animal movements we have
characterized the behavioral patterns of R. norvegicus in a rodent
open field test (Lyanova et al., 2022) and for D. rerio in a novel
tank test (Bogachev et al., 2023). In the above studies, we have
already observed two asymptotic scaling regimes separated by a
characteristic crossover s× that also appeared a single characteristic
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FIGURE 4

Boxplots indicating correlation dynamics of the left front paw (acting as a representative example) along the X-axis relative to the animal body midpoint as a
function of scale S obtained by detrended cross-correlation analysis (DCCA). The upper panel shows correlations with midbody movements along the
same X-axis, representing specific correlations, while the lower panel shows correlations with midbody movements along the orthogonal Y-axis that one
could expect to be unrelated, at least to a certain approximation, and thus indicating the level of unspecific correlations. More similar figures for other
body parts are presented in the Supplementary material. Results for animals with Alzheimer’s disease are provided by filled boxes and blue circles for
outliers; results for wild type animals (control group) are provided with open boxes and red plus signs for outliers.

scale parameter. We have also noted that the crossover location that
represents the only free parameter in the animal movement model
explicitly reflected behavioral alterations in the presence of various
stimulative and sedative pharmacological stimuli. Our current results
are closely reminiscent to those previously observed, with similar
correlation exponents H ≈ 2 observed at small scales, although
smaller correlation exponents close or slightly above H ≈ 1/2
observed at large scales, in contrast to H ≈ 1 estimated in previous
studies (Lyanova et al., 2022; Bogachev et al., 2023). While there
is no obvious reason for the latter discrepancy, there could be
potentially multiple contributing effects, ranging from finite size
effects associated with the test recording duration to differences
in video analysis and data pre-processing (e.g., smoothing for
background noise reduction) algorithms.

In general, oscillatory dynamics are known to be reflected by
localized pulses in the DFA fluctuation functions, as it has been
shown earlier, for example, by Ludescher et al. (2011), Hardstone
et al. (2012), and Govindan et al. (2017) and other studies. In the
case of animal walking patterns, there are at least two characteristic
oscillations, including (i) short-term locomotor dynamics localized
around a single step scale, and (ii) much slower and often behaviorally
driven alterations in the locomotor activity patterns, such as changes
of walking direction, start/stop events, rearing etc. According to a
recent model based study by Ludescher et al. (2011), the observed
crossover in the second-order DFA fluctuation functions is typically

located close to the oscillation period or slightly shifted toward large
scales (see Figures 3C, 8C, 9C in Ludescher et al., 2011). In our study
the typical crossover position has been observed at scales of 10 s and
above that, thus more likely attributable to the component (ii).

There are several other indicators supporting contribution of
behavioral aspects to the emergence and location of the crossover,
in particular, (a) observation of a similar crossover not only in body
part movements, but also in the animal midpoint dynamics; (b)
observation of a similar crossover in a recent work characterizing
walking patterns in rats R.norvegicus where the open field have
been observed from above, and thus no tracking of individual body
parts have been performed (Lyanova et al., 2022), as well as (c)
observation of a similar crossover in a recent work characterizing
movement patterns in fishes D.rerio in a novel tank test unrelated
to walking (although swimming patterns also contain oscillatory
patterns) (Bogachev et al., 2023).

We believe that the shift in the crossover position observed in
Figures 2, 3 reflects lower cadence, speed, and stride length altogether
with other impairments in mice with Alzheimer’s disease compared
to the control group. In addition to the reduction of stride lengths,
gait in the presence of Alzheimer’s disease is characterized by shorter
stride times, as manifested in the observed tendency of shorter
time delays corresponding to maximum cross-covariances between
animal body part movements in Figure 8, in general agreement
with recent data obtained in animal experiments (Nyul-Toth et al.,
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FIGURE 5

Scale localization of discrepancies between the correlation dynamics of the same animal body parts as denoted in Figure 1 relative to the animal body
midpoint as a function of scale S, expressed in terms of p-values. Full lines denote specific relations corresponding to the same Cartesian coordinate
(movements either along the X-axis in the upper panel or along the Y-axis in the lower panel), while dashed lines denote unspecific relations (either
respective body part movements along the X-axis vs. the animal midpoint movements along the Y-axis, or vice versa). The horizontal dashed black line
represents p < 0.05 level.

2021). Moreover, an early crossover indicating less persistence could
be interpreted as an indicator of generally more erratic movement
patterns, presumably associated with higher gait variability, that
has been previously observed in patients with Alzheimer’s disease
reported in recent literature (Cedervall et al., 2014; Pieruccini-Faria
et al., 2021).

As a side methodological remark, it is also interesting to
note that rather universal scaling laws in the multi-scale analysis
of oscillatory dynamics in physiological systems could often be
observed when considering scales not in the units of time, but
rather in periods of a reference rhythm, such as the units of
heartbeat intervals in Bogachev et al. (2009), although these laws
exhibit a breakdown when rescaled in the units of time, indicating
that multiple regulatory oscillations increased and reduced their
characteristic rates together with the reference (e.g., heartbeat)
rhythm. In the view of the above, we cannot exclude that the
discrepancies between groups may become less significant if rescaled
in the units of single steps (which in turn would require extraction
of time stamps of every single animal step, and thus not easy to
verify).

Here we suggested an extension of the above DFA-based
methodology to the joint analysis of animal body parts movement
patterns. For that, we first replaced the previously employed
detrended fluctuation analysis (DFA) that is consistent with
Equation (1) at j1 = j2, thus providing the diagonal of

the fluctuation matrix in Equation (2), by the detrended cross-
correlation analysis (DCCA) as indicated in Equations (1)–
(4). Accordingly, the between group discrepancies in the gait
variability patterns are explicitly reflected in the cross-correlation
matrices indicated in Equation (4). More specifically, while both
asymptotic regimes typically exhibit similar correlation patterns,
discrepancies at intermediate scales are reflected in the alterations
of the cross-correlation patterns, as it can be observed while
comparing the control and the test animal groups, leading to
significant discrepancies in the cross-correlation coefficients Ri,j in
Equation (4).

However, as one can see from Figure 8, the above effect
is largely hindered by the overall enhancement of the cross-
correlations between animal body parts with increasing scale,
originating from movement of animal body parts relative to the
body midpoint becoming increasingly small and eventually nearly
negligible compared to the total distance traveled by the animal
over long time spans. Although the above effect does not prevent
the statistical analysis from finding significant discrepancies between
the cross-correlation patterns in the control and test groups, as
indicated in Figure 2, largely due to the reduction of the respective
within-group variances, the above effects are no longer clearly
visualized.

To partially overcome the above issue, in the next step we
further extend the analysis methodology to the detrended partial
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FIGURE 6

Time-scale localization of discrepancies (p-values) in the correlation dynamics of the left front paw (acting as a representative example) along the Y-axis
relative to the animal body midpoint as a function of scale S between the test and the control animal groups. Compact dark areas indicate typical localization
in the time-scale space where discrepancies can be observed. Discrepancies in the correlations with the animal body midpoint movements along the
same Y-axis indicate presumable localization of discrepancies due to specific correlation patterns, while correlations with animal body midpoint
movements along the orthogonal X-axis that one could expect to be unrelated, at least to a certain approximation, indicate the level of discrepancies
caused by unspecific correlations.

cross-correlation analysis (DPCCA) recently proposed by Yuan
et al. (2015) and extract partial correlations as indicated in
Equations (5), (6). The above transformations imply the extraction
of the intrinsic correlations for each pair of animal body parts by
the elimination of the contributions of the secondary correlation
effects, such as, for example, detachment of the relative body
part movements from the overall animal walking trajectory. As
a result, the partial correlation matrix contains information on
any particular mutual interaction only once. In turn, partial
correlations appear complementary to each other, and thus the
overall correlations could be potentially reconstructed from the
partial correlations.

The latter implies that partial correlations represent a more
appropriate quantity for the reconstruction of the complex animal
behavior patterns from multi-scale movement analysis data. Indeed,
the most intuitive way to simulate the animal movement patterns
would follow a somewhat hierarchical algorithm, starting with the
reconstruction of the overall animal walking pattern on large scales,
further complemented by specific gait characteristics at smaller scales,
as it is commonly done in the framework of superstatistical models
(Beck and Cohen, 2003; Beck et al., 2005; Bogachev et al., 2016,
2017; Tamazian et al., 2016; Markelov et al., 2017; Itto and Beck,
2021; Schäfer et al., 2021). A somewhat similar approach could be
potentially based on the multi-scale partial cross-correlation data,

which contains essential information about the relative movement
characteristics of the animal body parts, while remaining invariant
to particular trajectories traveled by the animals during tests, due to
the detrending features of the algorithm.

Finally, in order to reconstruct the animal body part movement
model including time delays, we employed an in-house developed
modification of detrended partial cross-correlation analysis with
pairwise alignments to adjust for maximum cross-correlations
according to Equation (7), and represent the results in the form
of a directed graph indicated in Figure 8. In this graph, nodes are
attributed to various animal body parts, while edges characterize
partial correlations at the positions of the maximum covariance
between them, as well as corresponding delays. Since all secondary
correlations have been already eliminated, the respective graphs
represent the “backbone” of the animal body part interaction
network. In turn, in order to reconstruct the full correlation patterns,
at least in the first approximation, it should be sufficient to generate
the correlations between the nodes represented by the “backbone”
edges with corresponding time delays, eventually leading to the
emergence of the remaining secondary correlations. Accordingly, the
above model representation could potentially give rise to a correlation
based approach to the animal movement reconstructions and their
computer simulations at multiple scales by simply following the
algorithm represented by a directed graph.
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FIGURE 7

Boxplots indicating partial cross-correlations of the left hind paw along the X-axis relative to the animal body midpoint as a function of scale S obtained by
detrended partial cross-correlation analysis (DPCCA). The upper panel shows correlations with midbody movements along the same X-axis, representing
specific correlations, while the lower panel shows correlations with midbody movements along the orthogonal Y-axis that one could expect to be
unrelated, at least to a certain approximation, and thus indicating the level of unspecific correlations. More similar figures for other body parts are
presented in the Supplementary material. Results for animals with Alzheimer’s disease are provided by filled boxes and blue circles for outliers; results for
wild type animals (control group) are provided with open boxes and red plus signs for outliers.

Remarkably, the above model representations are closely
reminiscent to the recently emerged physiological networks
representing multiple physiological processes in either animal
or human body, typically obtained by different, although
complementary measurement techniques, including cardiac,
respiratory, locomotor, circadian and other activities and studying
their interactions in the integrated physiologic system (Bartsch et al.,
2012; Bashan et al., 2012), that very recently found applications in the
diagnostics of Parkinson’s disease (Asher et al., 2021; Fay-Karmon
et al., 2021).

As a potential outlook, we would like to mention that the
partial cross-correlations in the animal movement patterns with
corresponding delays are capable of revealing the intrinsic interaction
patterns, while the sign of the time shift can be used to determine
causal relationships. Figure 8 indicates a simple example of such
reconstruction, with the directions of the edges not predefined, but
rather obtained automatically in a data-driven manner based on
the signs of the respective delays reflected in the cross-covariance
maxima locations, following the simple logic that the cause can only
precede the response, and not vice versa. Based on the directional
graph where edges are characterized not only by the measure of the
strength of the interactions, but also by corresponding delays, which
in turn determine the potential causal relationships, could be useful
for the reconstruction of causal physiological networks (Günther
et al., 2022). Furthermore, since partial correlations can be used to
calculate conditional probabilities under certain constraints (Baba

et al., 2004; Baba and Sibuya, 2005), the directed graph obtained
this way would lead to a variant of a Bayesian network, a powerful
tool widely used in the analysis of interventional studies and clinical
investigations (Hanea et al., 2015).

As an obvious limitation of the above approach, we should
mention that it captures only the dominant coupling in each pairwise
interaction characterized by the maximum covariance, while there
could be more local peaks that are simply ignored by this approach.
In some cases, this situation can be partially compensated by the
additive contribution of direct and indirect effects, for example,
when movements of node D exhibits maximum correlation with
node A with delay, that is different from the sum of delays in A-
B-D or A-C-D chains. One possible approach to overcoming the
above limitation could be based on the replacement of the correlation
metric by some kind of multiple alignment procedure reminiscent to
those widely used in the genetic sequence analysis (with appropriate
restrictions taking into account known physical and physiological
limitations) leading to a consensus alignment characterized by the
maximum of the overall alignment score, like the multivariate variant
of the dynamic time warping algorithm (Helwig et al., 2011; Bankó
and Abonyi, 2012). In addition, other metrics alternative to linear
correlations could be considered as the core of the algorithm,
especially for systems with strong nonlinear interactions, with a
possible combination of metrics that appear complementary (for a
recent comparative study, we refer to Pyko et al. (2018) and references
therein).
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FIGURE 8

Graph-based representations of maximum partial correlations Pij between animal body part movements observed at scales S = 5 and 30 s (left, right) and
delays Tij corresponding to the positions of the respective cross-covariance maxima for the control and Alzheimer’s disease animal groups (upper,
lower), respectively.
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