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BitBrain and Sparse Binary
Coincidence (SBC) memories:
Fast, robust learning and
inference for neuromorphic
architectures

Michael Hopkins*, Jakub Fil, Edward George Jones and

Steve Furber

Advanced Processor Technologies Group, Department of Computer Science, The University of

Manchester, Manchester, United Kingdom

We present an innovative workingmechanism (the SBCmemory) and surrounding

infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse

coding, computational neuroscience and information theory that enables fast and

adaptive learning and accurate, robust inference. Themechanism is designed to be

implemented e�ciently on current and future neuromorphic devices as well as on

more conventional CPU and memory architectures. An example implementation

on the SpiNNaker neuromorphic platform has been developed and initial results

are presented. The SBC memory stores coincidences between features detected

in class examples in a training set, and infers the class of a previously unseen

test example by identifying the class with which it shares the highest number of

feature coincidences. A number of SBC memories may be combined in a BitBrain

to increase the diversity of the contributing feature coincidences. The resulting

inference mechanism is shown to have excellent classification performance on

benchmarks such as MNIST and EMNIST, achieving classification accuracy with

single-pass learning approaching that of state-of-the-art deep networks with

much larger tuneable parameter spaces andmuch higher training costs. It can also

be made very robust to noise. BitBrain is designed to be very e�cient in training

and inference on both conventional and neuromorphic architectures. It provides

a unique combination of single-pass, single-shot and continuous supervised

learning; following a very simple unsupervised phase. Accurate classification

inference that is very robust against imperfect inputs has been demonstrated.

These contributions make it uniquely well-suited for edge and IoT applications.

KEYWORDS

single-pass learning, neuromorphic, e�cient inference, classification, machine learning,

robust, event-based, IoT

1. Introduction

With the inevitable ubiquity of AI (Artificial Intelligence) decision-making that the IoT

(Internet of Things) will facilitate, there is a clear need for mechanisms and architectures

that allow accurate inferences to be made quickly, robustly (in the presence of imperfect

input data) and with low energy use. Current state of the art information architectures such

as deep learning can provide excellent inference but at the cost of vast numbers of parameters

that need to be learned at training time and computed at inference time. This makes their
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learning phase a huge resource commitment in both energy and

time, and discourages a local implementation of inference at

the end of realistic network branches where storage, energy and

communication resources are likely to be severely constrained.

Arguably, their requirement for huge parameter sets also makes

them liable to over-fitting and the lack of robustness that this leads

to, leading some researchers to use ad hocmethods such as dropout

which can sometimes improve performance but at the cost of a

further significant learning burden. It is also currently not clear

how well they can be applied to the problem of continuous learning

which is likely to become more important in practical applications.

In the near future, intelligent decisions and classifications are

going to become required in an increasing number of devices and

architectures with constrained resources. This will focus attention

on the following issues, and technologies that help to address them

will become desirable:

• Faster learning and inference.

• Energy-efficient learning and inference.

• More robust inference in the presence of imperfections and

noise at the network inputs and partial system errors so that

performance degradation is graceful rather than brittle.

• An easy mapping onto the growing number of neuromorphic

architectures that facilitate large gains in speed and energy

efficiency.

• A natural receiving mechanism for event-based visual and

audio sensors which leverage further gains in energy use and

communication bandwidth.

These technologies should be of interest to anyone who

wants to address the issues described above, in particular those

looking to make fast and reliable inferences at the edge. Another

possibility is those who would like to create a large number of

small and efficient self-contained inference modules which perform

potentially complex pattern recognition with a very low energy-

latency product and communicate via relatively simple and sparse

messages. The latter is a good conceptual match to the dendritic

computation paradigm in computational neuroscience which is

gaining traction, and which changes quite significantly the balance

between computation and communication in large neural networks

where each action potential now becomes a carrier of more

information content.

We introduce an innovative working mechanism (the SBC

memory) and surrounding infrastructure (BitBrain) based upon

a novel synthesis of ideas from sparse coding, computational

neuroscience and information theory.1 The key contributions of

this technology presented here are:

• Single-pass and single-shot supervised learning; following

a simple unsupervised phase where parameters are learned

quickly in a simple and “local” way that does not require global

optimisation over high-dimensional spaces or the calculation

of derivatives.

1 A patent GB 2113341.8 covering this technology was filed by MH and SF

at the UKIPO on 17th September 2021.

• Accurate inference (currently classification) that is very robust

against imperfect inputs.

• Simple support for continuous adaptive learning.

• Algorithms that are designed to be implemented with

excellent energy efficiency on conventional CPUs andmemory

architectures, and on current and future neuromorphic

devices.

• A natural target for the increasing number of event-based

sensors such as silicon retinas, enabling further energy and

bandwidth gains to be exploited—in particular for edge

computing and IoT devices.

2. Background

The ideas that contributed to the BitBrain mechanism are

drawn from a variety of areas:

2.1. Sparsity of activity and homeostasis

An aspect of neural activity which is clear in the neocortex

and also globally to some extent is that activity—in terms of

action potentials at least—is relatively sparse. Perhaps 5–10% of

neurons are firing in a specific time window. If one considers

the massive complexity of the brain and all its interconnections

then this surely must imply some kind of self-adaption or self-

regulation, and for this to work consistently one can further

infer that it should be present at the local level. Hence we

believe that some form of homeostasis in the basic functional

mechanisms is an important part of any neural or neurally-inspired

mechanism. In this context, homeostasis means that the underlying

physiological mechanisms tend toward a natural, equilibrium rate

of activity despite all the complex non-linearities and interactions

that they share.

Sparse memory mechanisms have been discussed before. One

important example is the concept of Sparse Distributed Memory

(SDM) introduced by Pentti Kanerva in his PhD thesis (Kanerva,

1988). The key concept in an SDM is to use random address

decoders to map a binary input space into a very high-dimensional

intermediate space where associated information can be stored

very sparsely and redundantly, leading to robust recovery of

that information whenever a similar input is presented to the

memory. Kanerva speculated that a similar mechanism might be

at work in the cerebellum, where there are similarities between

the neuronal organisation and the structure of an SDM. Furber

et al. developed this idea further showing that the same approach

was effective using sparse N-of-M codes for both the input and

the stored information (Furber et al., 2004) and an SDM could

even be used to store and recover the temporal patterns (Furber

et al., 2007) when rank-order codes (Thorpe and Gautrais, 1998)

were used.

There are similarities between the address decoders used in our

SBCs and those used in SDMs, though we have added homeostatic

tuning mechanisms such as threshold adjustment and structural

plasticity to the original address decoder concept.
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2.2. Robustness in the presence of noise,
errors, or partial failure

Biological neural systems are extremely good at inferring

correct decisions and actions from imperfect sources

of information, whether this is poor data from sensory

systems in noisy or otherwise perturbed environments,

imperfect conditions within the neural mechanism itself

(such as the presence of alcohol or other disorders of

the ideal equilibrium) or a total failure of some parts of

the system.

Neurons and synapses are far from perfect processing elements,

with probabilistic and somewhat unreliable transfer functions even

when working at their full potential, and prone to change and

failure as are all biological mechanisms. Yet in the presence

of all these perturbations the system as a whole performs very

well. Understanding how this apparent paradox can be explained

will be an important step forwards in engineering mechanisms

of inference that degrade gracefully in the presence of realistic

amounts of error and uncertainty in their working environment.

In the 1980s, inspired partly by the thinking of the Japanese

engineer Genichi Taguchi, much research and practical work

focused on the importance of this issue in engineering robust

systems (Phadke, 1989; Edwards et al., 2000) and the outcome

was a change of focus in the design process which remains

current today.

It has also been suggested that noise and uncertainty

within the processing mechanism is not a problem but

is in fact a valuable resource in allowing this robustness

to occur (Maass, 2014) and this is a view that we

agree with.

2.3. Avoiding optimisation over
high-dimensional parameter spaces

Optimisation over high-dimensional parameter spaces with

multiple non-linear objective functions where there are vast

numbers of local optima is very hard to do consistently

well, and intuitions about dimensions above about 10 do not

serve well in realistic problems. When one considers that in

some contemporary deep neural networks (DNNs) the learning

mechanism is optimising an error function over perhaps billions

or trillions of parameters, one can see that both the energy and

time cost, and the almost guaranteed sub-optimality that will

result, are major issues. That is to say nothing of the inevitability

of over-fitting, which is clear from probability and information

theory when the numbers of independent degrees of freedom

in the system may be several orders of magnitude higher than

required for the appropriate model (see for example, chapter 4

in both Sivia and Skilling, 2006 and Jaynes, 2003 books). As

well as being too numerous these degrees of freedom are rarely

if ever, apportioned where they are most justified within the

resulting very complex models though work has been done on

how to approach this problem on a rational basis (Tishby et al.,

1999).

2.4. Spike-time coding, dendritic
computation, and local unsupervised
learning

There has been a long history of debate about the coding

mechanisms used in brains to represent and transmit information.

The main two contenders at the base computational level are spike-

time and rate coding, though these apparently distinct categories

can overlap somewhat at the extremes of their ranges (Reike

et al., 1996). For output neurons that drive muscles there is

general agreement that rate coding is used, however within more

time-critical and energy-sensitive parts of the brain many believe

that spike-time coding must be involved. This opens up many

avenues of exploration for the kinds of representations and learning

mechanisms that generate the sparse activity that we observe, whilst

at the same time allowing fast and energy-efficient computation.

It is clear that neural systems do at least some of their learning

(i) locally and (ii) without reference to a global error or utility

function. This is presumably to help the mechanism as a whole

orient itself in relation to the representations required in order

to solve the higher-level problem using the minimum amount of

time and energy. In machine learning terms we can say this is

unsupervised learning. A proven neurally-inspired mechanism for

facilitating this is spike-time dependent plasticity (STDP), but the

decision about where to access the required post-synaptic signal

can be debated. Many implementations choose to use the action

potential at the soma after having back-propagated through the

dendritic tree, but there are some issues with both timing and

reliability in this model. With the recent increased interest in

dendritic computation (London and Häusser, 2005; Stuart et al.,

2016) it has become apparent that NMDA (N-methyl-D-aspartate)

potentials local to the synapses involved (i.e., within the local

synaptic cluster or at least in a close part of the dendritic branch)

can provide the signal required without these issues (Larkum and

Nevian, 2008; Branco and Häusser, 2010; Govindarajan et al.,

2011) and some work has already been done to apply these

understandings to neuromorphic architectures (Yang et al., 2021a).

There are many other aspects of dendritic computation which

may elucidate mechanisms that allow for sparse and robust

representations which balance local and global behaviours (Mel,

1992; Papoutsi et al., 2014; Kastellakis et al., 2015; Ahmad and

Hawkins, 2016; Richards and Lillicrap, 2019).

Although adjusting the size of local synapses and hence their

drive capability is often the chosen mechanism for STDP, we

instead choose structural plasticity as an effective mechanism so

that synapses are added or removed using a Hebbian approach

(Hopkins et al., 2018) where synapse size only relates to its

longevity. This allows us to stay with binary computation and

connectivity in order to stay consonant with some of the other aims

outlined in this section.

2.5. Low resolution computation and
mapping onto neuromorphic substrates

In neural systems memory and computation are colocated,

setting it apart from the von Neumann model. The ideas inherent
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in neuromorphic computation should help us to understand how

biological neural systems achieve their remarkable performance

and energy-efficiency. Such mechanisms should take advantage of

engineering opportunities for: energy efficiency, sparsity of activity,

low resolution (ideally binary) computation and communication,

massive parallelism, asynchrony and event-driven computation.

Choices made at the algorithmic design stage can facilitate this

mapping onto current and future substrates.

Contemporary large-scale machine learning displays a strong

trend toward lower-resolution parameters and computation to

leverage the large gains in energy and storage efficiency that result.

The lowest useful resolution is the single bit. Earlier work has taken

similar directions, though at the time probably for different reasons.

Random Access Memory (RAM)-based methods for machine

learning have been around since the late 1950s. Their direct use

of RAM for storing the inference mechanism based upon complex

patterns of binary logic learned directly from the data provides a

simple and fast mechanism that should be amenable to hardware

optimisation. After a period of relative obscurity, these ideas had

a renaissance in the 1970s as RAM-nets or N-Tuple methods, and

particularly in the 1980s where they benefited from some of the

mindshare developed by the renewed interest in neural networks

under the name of weightless neural networks where Austin (1998)

collects together some of the more advanced work in this area.

There are resonances from those ideas in the work presented here.

Another more contemporary neuromorphic approach using

custom system and routing hardware and multiple FPGAs is

inspired directly by brain connectivity patterns and provides an

alternative set of trade-offs for energy, scaling and speed in realistic

neural simulation and learning scenarios (Yang et al., 2021b).

2.6. Kernel methods and their mapping into
high-dimensional feature spaces

Kernel methods have proven to be a powerful and versatile tool

in many areas of machine learning (Shawe-Taylor and Cristianini,

2004; Rasmussen and Williams, 2006). By exploiting only the

similarity/difference between cases and projecting (usually non-

linearly) into high-dimensional feature spaces that match the data

distribution in some sense, both continuous approximation and

discrete classification problems can be solved accurately and with

few assumptions. The practical limitations are primarily due to

the quantity of data and the expensive O(n3) linear computations

that usually result, and the necessity of finding closed-form kernel

functions for practical efficiencies, in particular for inference.

As discussed more thoroughly in Section 6, we see a number

of analogies between Kernel methods and the ideas that we are

exploring here. Our method can be seen as constructing a non-

linear projection into a high-dimensional feature space and dot

products in this space can be used to assess similarity or difference

and generate impressive inference accuracies considering that it is

a simple and automatic algorithm. Both methods are basically non-

parametric, i.e., using the data themselves for inference rather than

parameters learned from them. It is also the coincidences between

our analogue of feature detectors abstracted from synaptic clusters

(Mel, 1992) that are at the heart of our method and these too could

be seen as dot products in some space. We hope that a further

understanding of these parallels will provide a better foundation for

the theory of our method.

Neal (1996) elucidates and explores interesting parallels

between Kernel methods (specifically Gaussian Processes) and

neural networks.

3. An overview of the basic
mechanisms

Taking inspiration from the conception of synaptic clusters

and their ability to both create and learn from local NMDA

plateau potentials, a key concept within the SBC memory is that

of an Address Decoder Element (ADE). This subsamples from the

input stream—initially in a random fashion—and then during the

unsupervised learning phase each ADE “homes in” on a feature

and at the same time learns a homeostatic threshold θ to facilitate

a target firing probability that creates sparse activity patterns. By

adding delays of differing values to the synapses in an ADE one

can also detect temporal coincidence patterns and so carry out a

combined spatio-temporal classification for input data where this

is relevant. Figure 1 illustrates the basic mechanism.

In the form of an equation where j indexes every ADE.

∀j activationj =

synapses(ADEj)
∑

i=1

inputi × weighti (1)

where synapses(ADEj) = 6 in Figure 1. The homeostatic

threshold θj has been learned for each ADE during the

unsupervised phase. Then

∀j if activationj ≥ θj → ADEj fires (2)

The ADEs can be organised in flexible ways. One method that

is convenient for software exploration and a simple description

is in vectors which we will call Address Decoders (ADs) as they

now look similar to more conventional memory mechanisms.

During the supervised learning phase that follows, the coincidental

firing between pairs (or higher-dimensional n-tuples) of the ADEs

are used to access a memory structure for writing according to

certain rules that can be adapted to the particular problem in

various useful ways (e.g., choice of class encoding, delays to induce

robustness and/or control memory occupancy, biases between

classes to improve quality of inference). An equation defines this

coincidence mechanism where j & k are indices over the lengths of

each AD

∀j,k if AD1j ∩ AD2k → set SBCjkl where l = class (3)

During inference, the ADEs are driven by test cases and the now

populated memory is read using these same coincidence patterns

and a simple function of the count of active memory location by

class is used to make a class prediction.

For example, imagine a 2D memory with different ADs along

the row and column edges. Each ADE in these ADs connects to

a different subset of the input data and has learned a different

feature. Typically, the width (i.e., the size of subsample ≡ number
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FIGURE 1

An example ADE subsampling a greyscale raster input from MNIST.

of synapses in the cluster) of the ADEs would be different between

ADs but the same within an AD. This allows the ADEs within an

AD to learn features of similar sizes, whereas those in different ADs

learn features of different sizes, perhaps analogous to pooling or

convolutional nets of different scales. The upper panel of Figure 2

illustrates this mechanism for a single 2D SBC memory.

Each point formed by the coincidence of 2 ADEs is an accessible

region of memory. This region stores a set of the number of classes

required in the input data using an encoding appropriate to the

problem. The simplest mechanism is “one-hot” encoding. This

is illustrated in the lower panel of Figure 2 for 10 classes, each

represented by a unique bit in the memory “depth”.

4. A sample BitBrain implementation

This section gives an overview of the processing steps required

for a basic BitBrain implementation. This should just be seen as

a bare-bones description to clarify what is required.2 In Section

7.1, we outline a number of interesting variations that we already

have some experience with and there will certainly be other novel

developments as the technology matures. To fix ideas, we will

assume that the data input is a 784D vector as used in the MNIST

and EMNIST examples given in the next section.

4.1. Using the global data distribution

Firstly, the global distribution of data over the input vector is

calculated over the training set. This is as simple as summing every

pixel value into one of 784 bins whilst ensuring no overflow. This

2 An implementation of this basic mechanism in self-contained C source

code with the necessary data files for the example in Section 5.1 is available

here: https://doi.org/10.48420/c.6331565.v1

vector is then passed to a Metropolis-Hastings (M-H) sampling

algorithm [see, for example, Section 5.5 of Bernardo and Smith’s

book (Bernardo and Smith, 2000) or Section 8.71 of O’Hagan’s

book (O’Hagan and Kendall, 1994)] which is a reliable method for

drawing pseudo-random samples from an arbitrary distribution—

in this case generating synapse connections into the input space.

Although simple to achieve, there is no need to normalise

this vector to a genuine probability distribution because the M-H

algorithm that works with it only requires relative probabilities. In

fact, it is not the actual global distribution that is used here but the

sqrt() of the distribution. There are two possible reasons why this

appears to work optimally on problems that have been explored

so far:

1. These can be seen as counts and therefore each bin has a Poisson

distribution. This means that the uncertainty rises with the

mean. The sqrt() of a Poisson distribution is approximately

homoscedastic above very small counts i.e., the uncertainty

becomes independent of the mean.

2. By taking the sqrt() of the distribution we are “flattening” it and

therefore allowing synapses to be sampled slightly outside of the

training data distribution. There are good reasons to believe that

this is a good idea for working with data not yet seen in the

training set.

It is possible that for data other than greyscale pixels different

transformations may be useful, or perhaps a different approach

altogether may be preferable at this stage.

4.2. Initial AD and ADE setup

We choose w for the length of the ADs, let’s say w = 2,048. This

will also define the size of the SBC memories. Larger is typically

better but slower and there are diminishing returns beyond a
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FIGURE 2

Upper panel is an example 2D SBC memory using 2 ADs. Lower panel is an example class encoding using the “depth” dimension of the 2D SBC

memory.

certain point. This is likely to differ between problems. An initial

default value for the threshold is set for each ADE. These will be

adapted as necessary during the unsupervised learning phase.

Each AD is likely to contain ADEs of the same width n (i.e.,

the number of synapses in the ADE) but typically n will differ for

each AD. This allows each AD to work with features of different

sizes which is useful in image processing and may also be useful

with other data types. Each synapse is assigned to one pixel of the

image by drawing from the global target distribution—calculated

above—using M-H sampling. Hence, pixels which appear more in
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the data are more likely to be sampled and pixels in the corner with

almost no “ink” and no variation between images and classes (and

therefore no information) will almost certainly not be sampled.

Currently multapses (where more than one synapse per ADE

connects to the same pixel) are disallowed.

4.3. Choice of synapse types and data

There are several choices available here; we will describe two

current ones. One can use binary synapses (i.e., either positive

or negative) and their weights then relate to the “longevity” of

the synapse which is used during the unsupervised learning phase

described below. Initial values of longevity are also set here.

Alternatively, one can use 8-bit signed weights drawn pseudo-

randomly from some distribution such as uniform or Gaussian

which are used to multiply the pixel values.

4.4. Preprocessing of the pixel data

In all cases, the pixel greyscale values are centred either side

of zero by subtracting 127 from the original 8-bit unsigned values.

This provides a bipolar input which can then be multiplied by the

weights described above. Early versions of the algorithm discarded

all greyscale information by using binary synapses and thresholding

the greyscale inputs. The loss in performance was very small and

this version is a more natural match to event-based inputs that are

becoming increasingly common in neuromorphic sensors.

4.5. Clustering of synapses for image and
related data

In the case of image or volumetric data it is likely that enforcing

a locality constraint will be useful (Dahmen et al., 2022) so that

pixels chosen in each ADEmust be from the same part of the image.

To enforce this, if one draw of M-H sampling does not conform

to this constraint then another draw is made until one is found.

This can be justified either from a knowledge of the organisation

of the retina (Masland, 2012) or by analogy with convolutional

front ends in DNNs. This distance may be calculated from any of

the other pixels in the ADE which then allows feature detectors of

various shapes, or else it can be calculated from a centroid which

encourages spherical feature detectors.

4.6. Unsupervised learning

To establish a simple form of homeostasis and sparsity as

discussed in Section 2 we run through the training set (either in

order or, preferably, drawing randomly from it so as to avoid order

biases) and, for each training example, establish the ADEs that fire.

If drawing randomly we can continue for more than the number of

training cases. We accumulate the number of firing events per ADE

and after an interval t (perhaps 2,000) compare that to the target

number of firing events, e.g., 1% of the cases. If it is too high or low

we increase or decrease the threshold accordingly. The end point is

a threshold which ensures≈1% firing on average.

During this process we can also carry out a simple Hebbian

learning mechanism per synapse within each ADE. One version

is related to a simple idea first explored by Hopkins et al. (2018)

inspired by NMDA plateau potentials in a synaptic cluster. If the

ADE fires then the smallest contributor to the sum which led to

the threshold crossing has its longevity decremented by 1 and the

largest contributor to the sum has its longevity increased by 1.

After an interval t, if any single synapse has a longevity below

a critical value it is replaced using the same mechanism as was

used in the original setup of the ADE (as described above); a

new pixel is chosen and its longevity is reset to the default value.

This allows each ADE to home in on a feature. Neither this nor

the threshold learning requires class information, hence this phase

is “unsupervised”.

4.7. Supervised learning

Now that we have all the ADs setup we can carry out the

supervised learning using class information. First there is the

choice of SBC architecture. In all cases 2D SBCs with one-hot

class encoding are currently assumed. The number of SBCs can be

chosen, each using either a pair of distinct ADs or using the same

AD for both its row and its column decoder. For example, with 4

ADs each of different width ni there are
(4
2

)

= 6 SBCs where the

AD on each row and column is a distinct combination. These SBCs

recognise coincidences between ADEs of different widths, where

the feature sizes differ. In addition, there are 4 possible SBCs that

recognise coincidences between ADEs of the same width. These are

half-size SBCs because only one half of the off-diagonal elements

of the SBC are describing unique coincidences. An intelligent

implementation will fit two of these half-size SBCs into the storage

for one full-size SBC. So for example, the first 6 will be AD1 * AD2,

AD1 * AD3, AD1 * AD4, AD2 * AD3, ... , and the last 4 will be AD1 *

AD1, AD2 * AD2 etc. Other good results have been obtained using

a simpler setup: 3x ADs with (6, 10, 12) synapses placed randomly

at (+/−2, +/−3, +/−4) in x and y relative to a centroid chosen by

M-H sampling. 3 SBCs are used, each using a different pair of the 3

ADs with no half-size SBCs.

The SBCs are now populated using a simple single-pass

supervised learning mechanism that lies at the heart of the method.

In a single pass through the training data all coincidences between

ADEs cause the respective class bit to be set in the SBCs. A specific

class bit may be set many times by different training examples,

with the same outcome as if it were set only once by one training

example. After a single pass through the training set, supervised

learning is complete. An additional pass would, in any case, have

no additional effect on the SBC contents unless training noise was

being added to increase robustness as described in the next section

though the differences are likely to be very small in realistic cases.

4.8. Inference

The inference and supervised learning mechanisms are very

similar, accessing the relevant SBC locations in exactly the same
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way, setting respective class bits during training but instead

counting the set bits during inference. For inference an input

case is acquired from a test set and presented to the ADs. For

each coincidence between ADEs all class bits are read from the

corresponding location in the relevant SBC, and the number of

bits set for each class is summed across all SBCs. The highest sum

indicates the inferred class of this test case.

If the classes are not one-hot encoded then there is an extra

decoding phase required here to identify the most likely class from

the accumulated bit counts.

5. Example results using MNIST and
EMNIST

Some results are given below for two standard classification

problems, the first very well-known and relatively easy, the second

less so. They both provide input data as greyscale raster plots of

handwritten digits/characters and require the correct classification

over a test set once the training set has been digested by the

learning mechanism.

In both of these cases, the basic BitBrain algorithmwith one-hot

class encoding, as described in the previous section, has been used.

Improvements are possible using spatial jitter at the training stage,

a technique termed data augmentation in the machine learning

literature, but for simplicity and clarity we present raw results

here. The test setup for these results is 4 ADs with different ADE

widths {6, 8, 10, 12} where the subsampling pattern for each ADE is

spatially clustered. The ADs each contain 2,048 ADEs and there are

10 2D SBC memories; 6 of which are full-size 2-way coincidences

between different ADs, the other 4 being half-size memories

containing coincidences within one AD as described above.

In each case we present results for varying amounts (including

zero) of noise added independently per pixel during the training

and/or testing phases. This noise can take one of two forms:

Gaussian noise of the specified SD with maximum and minimum

clamped at 255 and 0 respectively, and “Salt and Pepper” noise with

a given probability of a pixel being replaced with 0 or 255, with each

of these values being equally likely. Zero noise for both training and

test is comparable to standard results. Noise added to the test set

simulates imperfect inputs. Noise added to the training set helps to

make inference more robust to test noise as can be seen in the plots.

For BitBrain, the uncertainty due to different random number

seeds can be assumed at ≈0.1% on the Y axes which is too small to

be represented by error bars so the thickness of the lines is a good

guide. This represents another form of robustness for the learning

process itself.

5.1. MNIST

This is the standard MNIST problem and data set (Deng, 2012)

using 60,000 training images labelled with the 10 digit classes and

10,000 test images. In Figure 3, we give two views of the robustness

performance of the setup described. In order to optimise expected

performance in a real-world application a view must therefore be

taken on the quality of the input data likely to be encountered.

Perfect input data is unlikely in any realistic scenario (unlike

benchmark testing), and this graceful degradation in real-world

usage is one of the primary drivers for our interest in these ideas.

To give some idea of inference speed for this problem, an

implementation of BitBrain was set up with 3 ADs each containing

2,048 ADEs driving 3 full-size 2D SBC memories, requiring 16 MB

ofmemory for the total SBC footprint. Running on a 2020MacBook

Air laptop with a 3.2 GHz Apple Silicon CPU this took around 7 s

for supervised training on 60,000 examples and 0.42 s for the 10,000

test inferences, delivering 96.6% accuracy with no training or test

noise. This was single-threaded C code on the default compiler with

no attempt to optimise beyond good coding practice, and no use

was made of the GPU.

It is instructive to compare the robustness performance

against some representative CNNs which represent a technology

designed expressly for such image classification tasks. LeNet-5 was

an early breakthrough and reference designed for handwritten

digit recognition (LeCun et al., 1998) which performs to a

similar standard to our default BitBrain setup in the presence of

noise-free inputs. Efficient CapsNet (Mazzia et al., 2021) is very

recent and arguably close to state-of-the-art, so therefore a very

challenging comparison.

Efficient CapsNet models were trained for a maximum of

100 epochs with ReLU activations, while the training setup for

LeNet-5 was a maximum of 100 epochs and sigmoidal activations.

To save computational effort we used Tensorflow and some

simplifications to the weight setup and training schedule. Also,

there is no canonical Tensorflow implementation and the original

LeNet-5 paper uses a 32 × 32 version of the MNIST data.

Together these are reasons why our noise-free results are not quite

as good as the original results, but perhaps more importantly

in this context they are comparable to BitBrain on noise-free

data. Despite these small differences, we are confident that

the important trends over training and test noise values will

be unaffected.

In all cases we apply the same noise pattern per training image

which is then frozen over training epochs. We call this static noise

and the aim is to try and provide a fair comparison with BitBrain

because during our key supervised learning phase each image is (in

this study) only seen once and therefore contaminated with only

one realisation of the noise distribution. This is not necessarily the

case during our unsupervised learning phase, however we believe

this is a secondary consideration. In any case, during a small

number of test runs we have found that LeNet-5 results were not

significantly improved using dynamic noise where a different noise

pattern per image is produced for every training epoch.

For the LeNet-5 results there is considerable variation in the

accuracy results with different random number seeds. We believe

this is the combined effect of differing startup configurations and

noise distributions over the training images. As a result, we have

shown mean and SD error bars for these results from a small

number of independent runs. It is worth noting that this sensitivity

to setup conditions is another form of non-robust behaviours

independent of the one that we are aiming to test here, but with its

own practical implications. For Efficient CapsNet we have limited

runs available due to time constraints; indicative error bars are

given but these are less precise than those for LeNet-5. Figure 4

compares BitBrain and the two CNNs on the same Y-axis with the

MNIST data set and Gaussian noise.
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FIGURE 3

BitBrain performance against training and test Gaussian noise levels. Training noise SDs indicated in the legend for top plot and on second axis in

surface plot. The trade-o� between inference performance with perfect and noisy test data is clear. To perform well with inputs that are very noisy or

otherwise imperfect, a small penalty must be accepted with perfect input data by training with appropriate amounts of noise. Over this range of test

noise a training noise of 40–60 SD seems to be a good compromise; not penalising performance badly with perfect data whilst protecting against

degradation with quite large quantities of test noise.

Clearly LeNet-5 suffers badly in the presence of noise here

but with an interesting pattern of the best test noise performance

matching the same training noise setting, as if it has learned to

recognise the appropriate signal-to-noise ratio. This pattern is

even clearer in the middle panel of Figure 6 and has also been

observed in independent work using a different CNN and where

modifications of the training and test sets have been distortions

other than noise (Adithya, 2022). This is suggestive of another

kind of overfitting where the CNN is only learning to recognise

data with one particular signal-to-noise ratio or contrast level, and

is therefore lacking inferential robustness in realistic real world

scenarios. It may be that this is a fruitful area of investigation
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FIGURE 4

BitBrain (top) vs. LeNet-5 (middle) vs. E�cient CapsNet (bottom) robustness comparison for MNIST and Gaussian noise with bounded pixels.

Training noise SDs are the lines identified in the legend, test noise SD is on the X axis. LeNet-5 results are mean and SD error bars from 8 independent

runs. CapsNet results are mean and SD error bars from 3 independent runs.
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FIGURE 5

BitBrain (top) vs. E�cient CapsNet (bottom) robustness comparison for MNIST and Salt & Pepper noise. Training noise probabilities are the lines

identified in the legend, test noise probability is on the X axis. CapsNet results are mean and SD error bars from 3 independent runs.

for future study. CapsNet is far more robust and in fact responds

very well to high values of training noise. Presumably this acts

as an effective regulariser which may be an interesting discovery.

BitBrain is the least affected by different amounts of training noise

at higher test noise levels but does not quite reach the accuracy

levels of CapsNet.

We thought it would be interesting to show a similar

comparison between BitBrain and CapsNet for a different type of

noise: “Salt and Pepper” as described at the start of this section.

LeNet-5 appears unable to produce consistent results with this form

of noise over these ranges. This is shown in Figure 5.

5.2. EMNIST

EMNIST (Cohen et al., 2017) is a problem similar in nature to

MNIST (i.e., 28× 28 raster plots of greyscale digitised handwritten

characters) but much more challenging. All digits and lower- and

upper-case characters are used in the most comprehensive by_Class

data set where the 62 classes are significantly unbalanced and

several characters effectively alias each other, e.g.,

{o, O, 0}, {i, I, l, 1}, {s, S, 5}, {B, 8}

Figure 6 provides the results along with the CNNs as in the

previous subsection.

Here we achieve results significantly better than the original

results for noise-free operation (Cohen et al., 2017) with our basic

mechanism, though more recent work has moved the achievable

bound upwards by a few percent over ours (Baldominos et al.,

2019) as can be seen from the CNN results here. The trade-off

between noisy and noise-free test data here is clearer and accuracy

generally much lower due to the nature of the problem. Again,

adding an appropriate amount of training noise protects the initial

performance effectively across a wide range of test noise though

with a greater penalty for noise-free data.
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FIGURE 6

BitBrain (top) vs. LeNet-5 (middle) vs. E�cient CapsNet (bottom) robustness comparison for EMNIST and Gaussian noise with bounded pixels.

Training noise SDs are the lines identified in the legend, test noise SD is on the X axis. LeNet-5 results are mean and SD error bars from 6 independent

runs. CapsNet results are mean and SD error bars from 3 independent runs.
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FIGURE 7

BitBrain (top) vs. E�cient CapsNet (bottom) robustness comparison for EMNIST and Salt & Pepper noise. Training noise probabilities are the lines

identified in the legend, test noise probability is on the X axis. CapsNet results are mean and SD error bars from 3 independent runs.

Similar patterns are observed here. LeNet-5 suffersmost and has

very high variability, BitBrain is least affected by different training

noise settings at high test noise and CapsNet again performs very

well with high training noise. Despite being completely unrelated

technologies, both BitBrain andCapsNet respond well to high levels

of training noise. We again compare BitBrain and CapsNet using

Salt and Pepper noise in Figure 7.

The EMNIST problem combined with Salt & Pepper noise

at these levels is obviously a significant challenge for both

technologies, though again CapsNet with high levels of training

noise performs very well.

5.3. Comparison with other single-pass ML
methods

In this section, we present a summary of results from the ML

literature about single-pass learning, where each sample from the

training set is used only once and is not stored in memory. We

investigate how BitBrain in its current form compares to a number

of natively single-pass approaches (Wang et al., 2012, 2013; Zhou

et al., 2016), well-established deep neural networks (He et al., 2016;

Mazzia et al., 2021), and two simple CNNs with one and two

convolutional layers trained with just a single epoch.3 We continue

to use MNIST here as the results are widely reported.

Although the state-of-the-art modernmachine learningmodels

often rely on deep networks which are successively trained over

many epochs, simpler approaches which need only a single pass

through the training set are still of interest to the community,

especially in applications with limited resources. These single-

pass approaches typically employ a form of online learning which

allows them to process large datasets without the need for excessive

computational resources. One particular approach—local online

3 CNN A—https://github.com/jiuntian/pytorch-mnist-example and CNN

B—https://github.com/ya332/Simple-CNN-for-MNIST
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FIGURE 8

Performance comparison between BitBrain (green bar), deep neural networks (red bars), and natively single-pass learning approaches (blue bars).

Accuracy in % on the test set.

TABLE 1 Two-class results for accuracy in % compared with BitBrain from Table 1 of Rai et al. (2009).

Task libSVM Perceptron Pegasos1 Pegasos20 LASVM StreamSVM1 StreamSVM2 BitBrain

0 vs. 1 99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95

8 vs. 9 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49

The relevant parts of their table are replicated here with the best result for each case in red.

learning (LOL) (Zhou et al., 2016), proposes an extension of

commonly used Passive-Aggresive (PA) method (Crammer et al.,

2006) which updates the classifier sequentially based on the

feedback from each data point in the training set. Unlike the PA

and related approaches, the LOL allows for learning multiple local

hyperplanes to non-linearly process sequential data in a one-pass

manner. The authors also introduced a novel optimisation strategy

which significantly improves the performance on classification

tasks with multiple classes of patterns compared to previously

proposed methods.

Figure 8 shows the single-pass performance of deep learning

methods (red bars) and natively single-pass methods (blue bars) in

comparison to BitBrain (green bar). The performance of BitBrain

is visibly better than deep learning methods, which significantly

underperform when trained with just a single epoch, as well

as the online single-pass approaches. Notably, natively single-

pass approaches also provide a better classification accuracy than

more commonly used convolutional neural networks, however

this discrepancy is likely to result from the fact that the training

hyperparameters of the CNNs have not been adjusted adequately in

such a limited training time.

Another single-pass comparison can be made with online

methods for SVMs in two-class problems (Rai et al., 2009). In

Table 1, results are provided fromMNIST for discriminating 0 vs. 1

and 8 vs. 9 using a number of different algorithms.

5.4. Single-shot performance

In this section, we present some results that show learning

performance as a function of n for MNIST and EMNIST with very

small training sets from n = 1 per class upwards. These are shown

in Figure 9 where error bars are one standard deviation from 10

repeats with different randomly generated subsets of the training

cases. These results show that training data sets far smaller than are

common in current machine learning applications can be useful

in terms of generating inference accuracy well beyond chance.

This will have implications for where BitBrain can be applied. It

is also worth noting that the error bars are very small, even for

n = 1. This indicates another aspect of robustness demonstrated

by the BitBrain mechanism because it hardly seems to matter

which training cases are chosen and anyone familiar with the

MNIST and EMNIST data sets will know that the training cases can

vary substantially.

6. Relationships to Kernel methods
theory

BitBrain is a new idea and the underlying theory has to be

developed further in order to catch up with the empirical results.

This will help guide future directions for research and improve

practical results and implementations. In Section 2 of the main

document we discuss ideas from a number of fields which have

informed this technology. In this section, we want to explore one

of them further.

Kernel methods are based upon amatrix which is created by the

similarities between data points in the training set. This is called the

Gram or Kernel matrix which we will call K . If there are n training

data this matrix will be n x n positive definite symmetric (PDS) with

“self-similarities” (however that is defined) along the diagonal and
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FIGURE 9

Accuracy as a function of the upper bound of the number of per class training examples. The X axis is less obvious for EMNIST because as we move

further to the right some of the under-represented classes will have their training sets exhausted whilst other classes are still being subsampled. It

may not be obvious but beyond 10,000 training examples on EMNIST the accuracy falls very slightly because the over-represented classes are still

being added into the SBCs when there are none of the under-represented class training examples left which exacerbates the unbalanced nature of

the data set.

all the off-diagonal entries being the similarities between different

training data cases.

Similarities can be defined in many ways, the primary

constraint being that they must generate a PDS Kernel matrix. A

standard description in the kernel methods literature is that the

elements of K are formed by dot products between features so that

K ij = < φ(xi), φ(xj) > where φ() is an arbitrary function that maps

the input data x into a corresponding feature space. The choice of

φ() is therefore key in order to make any given method appropriate

for the data involved.

The “kernel trick” which provides potentially very large

computational benefits for kernel methods is to find a closed-form

function k(xi, xj)= < φ(xi), φ(xj) > without having to calculate the

(perhaps very high-dimensional) dot products required explicitly.

A good example from Gaussian Process methods is the covariance

function between two points in input space which can be of a very

simple closed form whilst at the same time (i) guaranteeing a PDS

Kernel matrix and (ii) expressing a very high-dimensional feature

space that can be parameterised and adapted easily but which never

needs to be explicitly calculated (Rasmussen and Williams, 2006).

6.1. A simple multi-class Kernel-based
classification (KBC) method

Probably the most straightforward KBC method that can be

applied effectively to problems with multiple classes is called Least-

squares Classification (LSC) (Rasmussen and Williams, 2006) and

various versions are compared by Rifkin and Klautau (2004). In

its simplest form, assume that K is formed from the training data

and that there are c = 10 classes (e.g., for the 10 MNIST digits)

with each training case labelled with one of the set {0, 1, ... 8, 9}.

Now make c “dummy targets” y0-y9 which are of length n and in

each case contain a zero for training cases where the label doesn’t

match their subscript and a one where it does. So in this case there

are about 90% zeroes and 10% ones for each yi. Now generate 10

“hat” vectors h0-h9 of length n which are essentially weights (both

positive and negative) used for assessing any new case and which

class it corresponds to. The algebra4 of this is:

hi = K−1yi (4)

So now the class of a new data case can be inferred. For each

case form the vector k* of length n which gives the similarity

(exactly as defined when K was formed between training cases)

between the new case and all n training cases. This is like forming a

new row/column of K . Now create the dot product of k* with each

hi to produce c “class indicator” values, i.e.,

class indicatori = k∗.hi (5)

In the ideal case this would produce c-1 class indicators = 0

and 1 class indicator = 1, with the index of the latter providing

the class inference. In reality, imprecision in the similarity metric,

noise in the training and test data and other issues will make these

results approximate, but a simple and robust mechanism for class

choice is to pick the largest value. This intuitively describes “overall

similarity to training cases of classi” in the similarity metric defined

by the kernel function chosen.

4 For actual computation it is both faster and numerically more stable to

decompose K (e.g., using the Cholesky decomposition) and then solve for

yi using a backsubstitution rather than forming the inverse explicitly and

then multiplying. This decomposition only needs to be done once but it is

O(n3) and so clearly for large training sets is a time-consuming linear algebra

operation. The solutions to form each hi are O(n2) and only need to be done

once.
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6.2. How does BitBrain resemble and di�er
from KBC methods?

Now think about all possible 2D coincidences from a data

input as one long bit vector. For example, assume there are

3 ADs each of length w = 2,048 and 3 2D SBC memories

to capture all the full-size coincidences. “Unrolling” the 2D bit

positions from this setup would make one vector, b, of length

2,0482 x 3 = 12,582,912 bits. This ignores the class bit depth,

which will be addressed later. The number of possible bits turned

on in b ranges from 0 to 12,582,912. Assume a 1% firing

probability per AD and a random distribution for the active bits,

then the expected number of bits turned on ≈ 20.482 x 3 =

1,258.3.

Now consider two different inputs. These will turn on different

sets of bits in b. Taking the logical AND of these two vectors

is also, of course, a dot product, which can then be written in

exactly the form < φ(xi), φ(xj) > as described at the start of

Section 6. This can be thought of as an overlap between bit

vectors or an intersection between bit sets. As it can be expressed

as a dot product it is a valid similarity measure which will

produce a PDS Kernel matrix, with φ() here being a projection

of the image data via the ADEs into a sparse 12,582,912D

binary space

It may be instructive to try and demystify the hi vectors

somewhat. The upper panel of Figure 10 is a plot from the

first 600 MNIST cases, sorted by label so that the first ones

are 0s, then 1s, etc. As expected by the form of the yi vectors,

these ‘gate’ the weightings for their own labels. However, there

are subtleties as well such as substantial differences between

same label cases (caused by the interrelated relative similarities

encoded in K-1) and some less trivial negative weights as

in case 183, which presumably means that case (which is a

2) is particularly dissimilar to a/some 1 case(s), hence the

negative weight.

Using the above setup and the mechanisms described in Section

4.6 we achieved 98.6% on MNIST, which is the best result so far

using these ADEs. Table 2 shows all the class indicator values for

two correctly assigned sample outputs. The first is obviously a clear

result with good confidence and the second less so.

6.3. The relationship to BitBrain

In BitBrain the same vector b is formed for every data case but

used in a different way. For every training image the class label is

stored for every active bit position of b where it is not already set.

This assumes that b now has a 2nd depth dimension of length c (for

one-hot encoding), or alternatively think of c vectors bi which are

analogous in some sense to the KBC “hat” vectors hi. The second

perspective corresponds more directly to the kernel definitions and

is used in what follows.

The essence of understanding the relationship between these

two apparently distinct methods is to see how the supervised

learningmemory write mechanism relates to Equation (4), and how

the read operation for inference relates to Equation (5). They are

clearly performing related tasks, albeit in very different ways. A

current hypothesis is that the BitBrain mechanism is forming an

empirical approximation to the kernel function k(xi, xj) described

earlier, so that the expensive O(n2) and O(n3) operations required

in Equations (4) and (5) are now converted into memory writes and

reads over the training data as a whole.

What is not yet clear is exactly how that relationship can be

derived, but perhaps some progress can be made. A starting point

is the observation that Mercer’s Theorem means a kernel function

can be appropriately decomposed into a summation over products

of orthonormal functions, i.e.,

κ(x, z) =

m
∑

j=1

φj(x)φj(z) (6)

So that, for example, the φj() could be eigenvectors of the φ()

function that defines the feature space. A suggestion is that x is

a vector of binary values, m = length(b) and φj(x) = x[j] where

[ ] indexes into the vector and therefore returns one of {0, 1}.

Kernel functions such as this are described by Shawe-Taylor and

Cristianini (Shawe-Taylor and Cristianini, 2004) in Sections 9.5

and 9.7 as set kernels and by Odone et al. (2005) as histogram

intersection kernels which turn out to have a natural link to L1

distance in their Equation (15). Their use in image processing

problems is described by Raginsky and Lazebnik (2009). So it is

possible that the c vectors bi are related to this summation, where

the summation index is now over their length. As required above,

each bit of bi would by definition be (approximately) orthonormal

in a large, sparse binary vector.

6.4. Di�erences from Kernel methods

Unfortunately, we don’t have direct access to the full Kernel

matrix K which describes the similarities between all training cases

and so cannot explicitly form Equations (4) and (5) which are

essential for LSC. However, we have generated a union over all the

bit patterns found from the training set and stored them in the

relevant bi according to their class information. It seems that this

sampling and storage mechanism has taken the place of Equation

(4) and then Equation (5) is being approximated by the overlap

of the bit pattern from a new data input which we can call o*
(analogous to k*) and the stored bit pattern in each bi (analogous

to hi).

So what can we say about this? For one thing, in the kernel

method the similarities are unambiguously calculated between

cases. In BitBrain the similarities are calculated between o* and

either the bit pattern projections over length(b) or the c classes,

depending on your perspective. It may be useful to think about

this in terms of set theory. The cardinality of the whole bit set =

length( b). The subsets for each class are defined by the active bits in

each bi let’s define these subsets as S{bi}. The relationship between

any new point and the stored training cases for classi is defined by

the intersection of the active bits in o* with those of S{bi}. We can

directly call this a similarity by appealing to Equation (6). This gives

us half of Equation (5) but where do we get the equivalent of hi
and how do we deal with the different domain over which the dot

product is calculated?
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FIGURE 10

Upper panel is sample hi vectors for first 600 MNIST training cases. Lower panel is synthetic hi vectors for n = 100 as described in text.

To address this question it might be useful to consider the

structure of the hi. If in the kernel setup all cases are equally similar

to cases in their own class, and equally but less similar to cases in

other classes then hi just looks like a gating variable. A synthetic

simulation for n = 100 is shown in the lower panel of Figure 10,

sorted by class. This was created by a K matrix with 3,000 on the

diagonal (i.e., self-similarity or the number of bits activated by a

case), 500 off diagonal for cases of the same class and 50 off diagonal

for cases of different classes.

It’s interesting to compare this with the upper panel of

Figure 10 where varying mean similarities by class and within-class

similarities between specific cases produce a very complex pattern

of weightings. In this case the exact (and unrealistic) uniformity of

similarity provides a very clear weighting pattern. Arguably, what

we are doing with BitBrain is the same as this but gated across c

classes or length(b) depending on your perspective.

It’s also worth bearing in mind that the S{bi} will intersect with

each other in potentially complex ways. An intersection between

any number of S{bi} simply means the subset of memory positions

in all the SBC memories where those class bits are all set. Figure 11

gives a matrix plot for the number of bits in each S{bi} on the

diagonal and the two-way intersections between these subsets off
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TABLE 2 The class indicator values for two sample outputs.

Digit ID 3357 is a 5 ID 5680 is a 3

0 0.008482 0.113866

1 0.099251 0.008050

2 −0.003518 0.023137

3 −0.058747 0.414228

4 −0.058338 −0.005619

5 1.087230 0.063122

6 −0.040066 0.010855

7 −0.063182 0.029908

8 0.058970 −0.026898

9 0.039974 0.019438

FIGURE 11

Cardinality of subsets and intersections for length(b) = 33.5M in this

case.

the diagonal. The intersections are substantial, but does it matter

or is it inevitable? What about three- and higher- (i.e., up to c-)

way intersections?

We can observe the different cardinalities of each S{bi} on

the diagonal which is particularly low for class 1 and high for

classes 2 and 8. However, directly correcting for this (e.g., a naive

multiplication by their inverse ratio) makes prediction accuracy

worse, and so the cardinality is not all that matters. One observation

is that 1s might be more similar, leading to fewer bits being set

in S{b1} because the same bits are constantly being activated but

cannot be stored more than once. The relatively low values of hi
in Figure 10 for class 1 would tend to support this. This may not

matter in inference if the test cases have a similar behaviours and are

well-separated in feature space from the other classes. Presumably,

“well-separated” is some function of the intersections (of various

orders) between all the S{bi}.

For precise inference it would be ideal to have no intersections

at all, but minimising them is a much more realistic aim. That

would suggest a very clear difference in the bit count values

between classes assuming that test cases follow the training case

patterns, which is a realistic assumption that is often required

in machine learning. Achieving this kind of behaviours where

classes of interest are separated as widely as possible is a standard

problem in optimal experimental or sampling design (Shewry and

Wynn, 1987). However, working out how to get to that position

in this problem is not easy. One would need to ensure that

entirely different patterns of bits are set by the different classes

which would mean consistently different combinations of ADEs

firing per class, and it’s not currently clear how this could be

achieved. Some early work tried learning each 1
10

th of the ADEs

(i.e., the feature detectors) on digit data distribution separately by

class or differences between classes at the unsupervised stage, but

this did not provide any significant improvement in prediction

performance.

To visualise the intersections of active bits in o* with

those of S{bi}, Table 3 shows the first results from the

same setup as Figure 11. The number of active bits in

the test case shows that the ADEs are tending to fire at

slightly more than the 1% target rate, at least assuming

complete randomness.

There are several things of interest here. Firstly the correct

class has been chosen each time (this sample is from a 97.12%

performance, so not such a surprise). Secondly is that almost all

the active bits in a test case intersect with the bits in the relevant

S{bi}. Of course this is good but such a high overlap is somewhat

surprising and this seem to be quite general across both test cases

and classes. Thirdly, the size of overlap with the wrong classes is

also much higher than expected. Let’s take the first case for example

and look at class 9 instead. The overlap with S{b9} = 9,704. card

(S{b9} ) = 7,859,278 which gives as a proportion of all possible

bits a 23.42% occupancy. There are 3,803,472 bits shared between

S{b7} and S{b9} (see Figure 11) and card(S{b7}) = 7,075,762. So

we can say that this two-way intersection is about half of each

subset! In other words, for any memory position where one of

these class bits has been set there is about a 50% chance that

the other is set as well. 7 and 9 are likely to be a worse than

average case as they are often one of the higher value pairs in the

confusion matrix.

7. Discussion

In this section, we aim to cover some loose ends and discussion

points that surround what is basically a simple idea that we have

tried to describe in a straightforward way.

Although we have focused on the benefits of BitBrain some

may wonder what is to be paid for these. One discussion

has been about how much data needs to be stored in

the SBC memories and that a comparison should be made

with methods that use this amount of parameter space. We

disagree with this perspective, for the following reasons. We

see BitBrain as a non-parametric method. There is no definitive
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TABLE 3 The first results from the same setup as Figure 11 with classes {0, ... , 9}, length(b) = 33.5M.

card(o*) class 0 1 2 3 4 5 6 7 8 9

12,168 7 4,876 2,909 6,529 6,916 7,291 6,398 2,769 12,055 5,295 9,704

21,011 2 13,624 8,495 20,348 16,114 4,068 12,939 14,645 2,930 13,362 3,179

7,320 1 2,551 7,257 5,965 5,115 5,764 5,160 4,531 6,147 5,962 5,010

15,664 0 15,409 1,941 9,625 8,997 5,459 10,297 11,040 7,434 5,724 7,152

14,110 4 6,816 2,625 9,796 6,231 13,919 7,156 8,005 9,553 7,969 11,495

8,597 1 2,442 8,515 6,577 5,184 6,452 4,983 4,287 7,522 6,843 5,335

10,804 4 3,005 3,087 5,594 6,073 9,974 6,007 4,667 6,638 7,824 7,644

card(o* ) is the number of active bits in the test case, class is the class for the test case, and the remaining columns show the intersections of the test case with each of the training classes.

description of a non-parametric model but this is as good as

any.5

Non-parametric machine learning algorithms try to make

assumptions about the data given the patterns observed from

similar instances. For example, a popular non-parametric

machine learning algorithm is the K-Nearest Neighbor

algorithm that looks at similar training patterns for new

instances. The only assumption it makes about the data set is

that the training patterns that are the most similar are most

likely to have a similar result.

Another parallel is found here then with Kernel methods

which—expressed in the form described in Section 6—are clearly

non-parametric in nature as they use the data directly for their

inference, not parameters that have been somehow inferred from

the data. There may sometimes be hyperparameters involved (for

example the local width of the kernel in Kernel regression) but

nevertheless the predictor is formed from a relatively simple

function of the data themselves.

BitBrain is clearly working in a similar way, and in fact the only

scalar parameters learned are during the unsupervised learning

stage where ADE thresholds are found which give an approximately

correct average firing probability. These are local 1D searches that

are cheap and easy to carry out in parallel and with a well-defined

optimum point. There are also some differences, for example it

is not the data themselves that are used but a high-dimensional

projection of them via φ(). We don’t believe this changes anything

though in relation to the fundamentally non-parametric nature of

the inference. So the SBC memories are storing “a direct encoding

of the data in a form which makes it suitable for inference”,

not “parameters”.

It should also be said that there are versions of the method

with a much lower memory footprint. For example, if only memory

positions containing a single class bit after supervised learning are

saved. In the context of the discussion in Section 6 this means

activated parts of the bit space where there are no intersections

between class subsets. This excludes the vast majority of memory

positions and also means that less space is needed for each.

One may achieve 2-4 orders of magnitude saving in storage

5 https://deepai.org/machine-learning-glossary-and-terms/non-

parametric-model

with a demonstrated small (≈3% on MNIST) loss of inference

performance but also a significant gain in inference speed, though

hash tables or some other mechanism will be needed for the

required sparse storage unless specialised hardware is available and

this will somewhat complicate the implementation. It may be that

in some applications these trade-offs are fully justified.

Another unknown is the capability of the current and

basic implementation on the most challenging problems. We

are unlikely to compete with deep networks with billions or

trillions of parameters at this point, but in defence of the

method it was never designed for this. It remains to be

seen how the more advanced versions discussed below fare in

such problems.

7.1. Future directions

BitBrain is a very new method and there is a lot left to

explore in order to understand and improve behaviours. In this

subsection, we briefly describe a number of ideas that are either

under consideration or being actively investigated.

It has been observed that various ADEs will tend to fire together

more than they should by chance, whereas the ideal would appear

to be independence amongst the ADE firing patterns. There are

various arguments from both information theory and SDM theory

to support this aim, though it is by no means proven. Some

mechanism for modifying or replacing ADEs which are too similar

would therefore appear to be a useful mechanism during the

unsupervised learning phase. Earlier work in unsupervised learning

may be relevant here (Atick and Redlich, 1993; Bell and Sejnowski,

1995; Linsker, 2005).

There can be several subtleties and variations for the basic

supervised learning phase described in Section 4.7. We might,

e.g.,

• Only write a bit probabilistically which will reduce memory

occupancy and potentially increase inferential robustness.

• Add noise to the training data to facilitate inferential

robustness (as seen in Figures 3–7).

• “Jitter” or otherwise augment the training data with elastic

deformations and rotations.

• Use N-of-M codes within each memory location to specify the

class encoding and decoding.
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• Enforce a strict N-of-M code for each AD activation by

choosing theN ADEs that exceed their threshold by the largest

amount.

There will be weightings of the class bit sums which perform

better than the default (uniform) case. The simplest weighting

is to element-wise multiply by a vector the same length as the

number of classes. A more flexible weighting which can take

into account—and perhaps correct for—complex inter-correlation

patterns between the classes is to post-multiply the class bit counts

by a square matrix and use the resulting vector for class choice. In

either of these cases, the challenge is to know what this vector or

matrix should be!

Two types of continuous learning are being considered. Firstly,

dealing with data that changes over time: perhaps the degradation

of a sensor input device or a genuine change in patterns in the

system of interest. As new labelled data arrives over time these

can be added to the SBC memories as in the supervised phase.

A count would be kept of the number of bits added and at a

chosen interval this same number of bits are randomly removed

from the SBCs. This will maintain the memory occupancy at the

chosen level. Over time, even if the nature of the input data has

diverged significantly from the original training set this very simple

mechanism will adapt automatically to changing circumstances

and retain predictive performance on the most recent inputs. The

key decision is how quickly to adapt and this will differ for each

problem. The second possibility is that of adding new classes, which

apart from the administration of the SBC memories would be

almost automatic. In both of these cases there may be an argument

for another phase of unsupervised learning (or perhaps occasional

updating) but this would not necessarily be required. Contrast the

simplicity of these solutions with the problems facing most other

ML methods.

An application where these ideas might be fruitfully applied is

in the ML sensor 2.0 paradigm (Warden et al., 2022) which we feel

is a natural fit for BitBrain for the following reasons:

• A very simple interface is required to provide security and

engineering modularity.

• The impact on model building, training, software

development and integration. For example, the speed

with which a specific sensor could be taught its own custom

model on a training set with BitBrain and thereby sidestep

issues about production variability and the sharing of large

and complex pre-trained models.

• Continuous learning within the black box will generally be a

problem but not for BitBrain.

• Inference that is robust to sensor degradation and

environmental variability is considered essential.

• Specific and neuromorphic H/W is seen as the future of such

low energy/always on devices.

The unsupervised learning mechanism described above has

been shown to work well, however there may be other approaches

using work from image processing in ML which can provide a

useful alternative mechanism. Convolutional neural nets have been

shown to provide very good results on challenging problems and

in many cases the convolutional front end can be reused across

problems of a similar nature. This could allow us to go directly from

acquiring the data to the single-pass learningmechanism, and at the

same time sidestep the issue of needing to relearn the front end in

continuous learning problems.

We have only discussed single channel image data in this paper.

We are keen to expand beyond this into any type of data and

preliminary results are very promising. For example:

• Multi-channel (such as RGB) image or volumetric data (e.g.,

in medical imaging).

• DNA, IP or other engineering/biological/pharmaceutical

codes with no obvious locality structure.

• Uni- or multi-variate time series including real-time data from

event-based sensors so that temporal as well as spatial patterns

can be classified.

There are a number of very interesting questions to answer as

we expand the technique into these areas.

Just as in other areas of AI and ML, layers of inference and/or

hierarchies can be very powerful extensions of a basic learning and

inference mechanism. We believe that the same may be true of

BitBrain. The question will be: how to connect the SBCs together?

For example, in forming layers of SBCs, we would need some form

of ‘output’ from the upper layer which is not the class itself. This

would then feed the next layer as input. There are a number of

interesting possibilities currently under consideration. This also

provides the option that information flow can be feedback as well

as feedforward, and therefore the opportunity for more end-to-end

style learning mechanisms.

Finally, we are interested in experimenting with robustness in

the presence of input perturbation of more realistic forms than

simple Gaussian or Salt and Pepper noise added to the data.

There are so many possibilities here that separate papers will be

required to address them all.

7.2. Neuromorphic interpretation

All computational operations for BitBrain—whether in training

or inference—are small integer addition/multiplication or bitwise

operations, which can be performed in one cycle on a RISC

architecture with low energy use and often also leverage efficient

SIMD units. This is rarely the case in typical ANN computations.

The energy benefits of this difference will vary widely but an order

of magnitude is not unrealistic.

While the BitBrain architecture can be mapped onto existing

neuromorphic computational devices, there are likely to be greater

gains in performance and energy-efficiency from mapping it

into neuromorphic hardware specifically designed to support it.

Figure 2 is highly suggestive of a possible hardware implementation

of an SBC, comprising a 2D array of nodes where each node

incorporates a number of SRAM cells to store the class bits. This

2D array has a row AD and a column AD, where each AD is a

linear array of ADEs. The vector of input values is broadcast across

all the ADEs, each of which selects its chosen inputs, computes
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its activation and, if this exceeds its threshold, fires its output.

Wherever two active ADE outputs meet across the 2D array the

corresponding node is activated for a read or write operation.

Writing can use a class indicator broadcast across the 2D array;

reading is trickier as it involves counting the 1s for each class across

all of the activated nodes, which could be achieved using analogue

techniques or perhaps by serially pulsing the active row ADEs and

counting the 1s by column.

7.2.1. BitBrain implementation on SpiNNaker
On some of the existing neuromorphic devices, such as Loihi

and TrueNorth (Akopyan et al., 2015; Davies et al., 2018), the ADEs

could potentially be mapped onto individual units resembling

simple spiking neurons. The SpiNNaker system (Furber and

Bogdan, 2020) offers a number of ways to directly take advantage

of the sparsity and parallelism inherent in BitBrain thanks to

its ability to execute non-neural simulations. SpiNNaker is a

digital neuromorphic platform which can host up to 1 million

general purpose processors in a single cluster, thus allowing for an

extremely high number of calculations to be executed in parallel.

The SpiNNaker platform, as well as the discussed implementation

of the BitBrain algorithm, are designed to allow for robust and loss-

tolerant routing of messages. Therefore, a loss of information from

faulty nodes is redundant for the computation.

There are many different ways to implement such a system

on SpiNNaker. In this section, we will discuss one such

implementation which consists of two types of application vertices:

ADE and SBC vertices. Here, an application vertex is understood

as a particular type of application running on an independent

core in the SpiNNaker system. These applications carry out certain

computational tasks, and then communicate between each other

viamulticast packets which contain certain type of payload specific

to the application. In the extremely parallel implementation which

assumes a BitBrain instance with 4 ADs of length 2,048, the

ADE vertices alone would require 8,192 cores to be employed.

Additionally, 6 cores would be needed for the SBC vertices

which receive firing patterns and interact with the SBC memory.

We found that such massively parallel implementations are sub-

optimal, due to the large number of messages which need to be

processed. Moreover, we found that computation done by the SBC

vertices requires more time to be completed, therefore further

parallelisation of ADE processing does not bring expected gains

in performance.

For the purpose of this paper we decided to focus on an

implementation which parallelises not only the ADE calculations

but also writing and reading from the SBC memories. Note that

this in an early implementation and we plan to do a more

thorough study to understand and explore the many options, as

there is so much flexibility in how to implement the algorithm

on SpiNNaker that finding the best balance between, e.g., data

movement, AD calculations, SBC calculations, message types and

quantity, memory access patterns is a large and sometimes counter-

intuitive task. Moreover, the SpiNNaker architecture is based on

rather old processors ARM9 with clock rate of 200 MHz.

We found that it is the most beneficial to divide each SBC

into 64 cores which only receive messages from a small subset of

ADE vertices, see the upper panel of Figure 12. Thus, we use 384

cores in total for reading and writing from the SBC memory. We

then divide the ADE computation into further 128 cores. With

this approach we’ve been able to recreate the performance we

have previously recorded on conventional processors, and achieve

an inference time of approximately 48s, or ≈4.8 ms per data

point. Notably, the performance accuracy of our implementation

is higher than that of other approaches previously implemented

on SpiNNaker, such as Liquid State Machines (LSM) (Patiño-

Saucedo et al., 2022). However, it is important to emphasise that

these previous attempt typically used a variant of MNIST dataset—

Neuromorphic MNIST (Orchard et al., 2015), which requires

additional preprocessing steps and operates on temporal inputs,

thus cannot be compared directly.

The ADE cores are responsible for calculating the firing

patterns of a small subset of pixels in the image. When activated,

an ADE vertex sends a message to the set of its corresponding

SBC vertices, see the lower panel of Figure 12. In turn, the SBC

vertices collect the incoming messages, and calculate the feature

coincidences. The updates to the application vertices are performed

on a timer interrupt which occurs every simulation time step. The

length of this time step is determined by the complexity of the

calculations which need to be performed and he messages that need

to be processed. On average the SBC vertices receive≈60 activation

messages from the ADE vertices, with an additional 16 messages

which are meant to indicate that the ADE vertices have finished

their part of the job. On the other hand, the ADE vertices receive

192 messages per one image in the dataset.

The training and testing sets, as well as other data structures

required to implement a BitBrain instance are stored in two types

of memory: SDRAM (shared slow memory) which contains the

SBC memories and the full set of training/testing data, and DTCM

(fast local memory) which contains the simulation parameters,

routing keys, address decoder thresholds, firing patterns, and

test labels (in inference mode). Additionally, we allow the ADE

vertices to transfer the training/testing data for each example

into the DTCM memory, while the system is waiting for the

SBC vertices to interact with their respective SBC memories.

This approach allows us to reduce the inference time further by

approximately≈25%.

Each of the SBC vertices has a recording channel. In the

inference mode the count of SBC activations per class is being

recorded for each example in the test set. In the training

mode the SBC memories are recorded only once after the

whole training set has been processed. The recordings are then

accessed by the host machine in order to save the trained

SBC memories, or calculate the inference accuracy and build a

confusion matrix.

8. Conclusions

We have introduced an innovative working mechanism

(the SBC memory) and surrounding infrastructure (BitBrain)

based upon a novel synthesis of ideas from sparse coding,

computational neuroscience and information theory that

support single-pass learning, accurate and robust inference,

and the potential for continuous adaptive learning. We have
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FIGURE 12

An example of distributed implementation of BitBrain on SpiNNaker neuromorphic platform. In this example, we divide the SBC computation into 64

parts per SBC memory. Additionally, each Address Decoder is split into 8 cores consisting of 256 ADEs. The panel below illustrates the message

routing between di�erent application vertex types in a parallelised implementation of BitBrain.

demonstrated the efficacy of these concepts on the MNIST

and EMNIST benchmarks and shown that the proposed

inference mechanism has very low training costs and is robust

to noise.

Clearly these ideas are not yet fully developed, and

theoretical advances as well as practical experience are likely

to provide further gains in performance and efficiency. There

are various ways that the mechanisms can be reconfigured, for

example to reduce the SBC memory requirements by using

an efficient compressed sparse matrix storage format, and/or

by reducing the number of classes stored at each potential

coincidence node.

Even at this early stage of development, BitBrain displays

state-of-the-art performance in one-shot learning tasks combined

with intrinsic robustness and fast inference. The Sparse Binary

Coincidence memories upon which it is based may be large, but

are simple bit arrays set to mark principal feature coincidences.

This mechanism supports continuous on-line learning provided

that the memories do not become over full, which may be ensured

by incorporating some form of random “forgetting” .
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