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The biomedical research community is motivated to share and reuse data from

studies and projects by funding agencies and publishers. Effectively combining

and reusing neuroimaging data from publicly available datasets, requires the

capability to query across datasets in order to identify cohorts that match

both neuroimaging and clinical/behavioral data criteria. Critical barriers to

operationalizing such queries include, in part, the broad use of undefined study

variables with limited or no annotations that make it difficult to understand

the data available without significant interaction with the original authors.

Using the Brain Imaging Data Structure (BIDS) to organize neuroimaging data

has made querying across studies for specific image types possible at scale.

However, in BIDS, beyond file naming and tightly controlled imaging directory

structures, there are very few constraints on ancillary variable naming/meaning

or experiment-specific metadata. In this work, we present NIDM-Terms, a set of

user-friendly terminology management tools and associated software to better

manage individual lab terminologies and help with annotating BIDS datasets.

Using these tools to annotate BIDS data with a Neuroimaging Data Model

(NIDM) semantic web representation, enables queries across datasets to identify

cohorts with specific neuroimaging and clinical/behavioral measurements. This

manuscript describes the overall informatics structures and demonstrates the use

of tools to annotate BIDS datasets to perform integrated cross-cohort queries.
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1. Introduction

There is a “crisis of replication” in neuroscience (Button et al.,
2013; Szucs and Ioannidis, 2017). Interpreting, reproducing, and
validating results of experiments depends critically on our ability to
understand the conditions under which the data were acquired and
processed. Efficient discovery and reuse of existing data relies on
the data and metadata adhering to the FAIR: Findable, Accessible,
Interoperable and Reusable principles (Wilkinson et al., 2016;
Schulz, 2018). The biomedical research community is motivated to
share and reuse data from studies and projects by an increasing
number of requirements from funding agencies (e.g., NIH-wide
Policy for Data Management and Sharing1) and publishers (PMID:
34914921). There are a growing number of data repositories (Das
et al., 2012; Book et al., 2013; Poldrack et al., 2013; Ambite et al.,
2015; Crawford et al., 2016; Kennedy et al., 2016), each with their
own data structures and data dictionaries (Eickhoff et al., 2016).
With dozens of neuroimaging data sharing sources now available,
we need better methods to annotate datasets and to search across
those datasets without a significant investment in time to develop
database mediation services (Keator et al., 2008; Turner et al.,
2015; Wang et al., 2016; Niso et al., 2022) or creating “crosswalks”
mapping variables across datasets.

Critical barriers to finding and reusing data include the
use of undefined variables and/or an insufficient degree of
variable annotations that make it difficult to understand the data
available without significant interaction with the original authors.
Further, determining whether cohorts from different studies can
be combined, based on phenotypes or acquisition parameters is
currently difficult, requiring a significant investment in effort from
the researcher. The ability to conduct searches across diverse
datasets is difficult and typically requires sufficient annotation of
the study variables to understand what was collected and how
to query each dataset to find meaningful results. For example,
a query such as: “identify datasets that contain a measure of
depression, age, IQ, and a T1-weighted MRI scan” is not easy to
implement. Historically, this type of query would have to be posed
to multiple data repositories separately, through each repository’s
interface, and the results manually combined by the investigator.
Often, the returned results would depend upon the annotations
used in each repository and the level of granularity to which each
data object was annotated which may require the investigator to
download complete datasets in order to manually extract the data
of interest. In some cases, this query can not be satisfied without
an expert user because often the same annotation term collection
is not used across repositories, as terms used to annotate collected
study variables are inconsistent. Each lab can freely name study
variables such that they are not guaranteed to be meaningful or
sufficient, either for understanding or for querying each interface
and each dataset.

Building off the example query above, it has proven difficult to
query arbitrary datasets to find out whether they contain images
with contrast types relevant to the research question. The Brain
Imaging Data Structure (BIDS) (Gorgolewski et al., 2015; incf-
nidash, 2016) was designed to provide software developers and
the neuroimaging community with file- and directory-naming

1 https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html

conventions for organizing imaging data. Because of its simplicity,
BIDS has been quickly supported by a number of analysis tools and
database platforms (COINS,2 XNAT,3 Scientific Transparency,4

OpenfMRI,5 LORIS6). In BIDS, the organization of the data is
required to conform to strict naming and directory-structure
conventions. The adoption of BIDS has addressed the imaging-
related parts in our example query above because with BIDS
and the associated PyBIDS7 Python library, one can use the
location of data within the directory structure to determine the
type of images included in that dataset. Beyond file naming and
tightly controlled imaging directory structures, there are very few
constraints on ancillary variable naming/meaning or experiment-
specific metadata in BIDS. As such, we still have difficulty satisfying
the query above because: (1) we cannot guarantee that variable
names will be meaningful; (2) data dictionaries are optional in
BIDS and there is no validation that data dictionaries, if supplied,
contain important or sufficient information (e.g., units, frames of
reference, etc.). Therefore, searching and combining information
across independent BIDS datasets is often difficult for data beyond
image types and metrics describing those images. Finally, there is
no query engine that natively supports BIDS datasets.

To address these concerns regarding the ability to query across
BIDS datasets, as well as the desire to create a web of linked
human neuroimaging data, an international team of cognitive
scientists, computer scientists, and statisticians are developing a
(meta)data representation model and tools to support its use. The
goal is to provide the foundational infrastructure in a well-defined
and easily expandable model, to link datasets using unambiguous
annotations. This effort, built upon the resource description
framework (RDF) and the PROV standard8 (Moreau et al., 2008;
PROV-Overview, 2016), is called the Neuroimaging Data Model
(NIDM)9 (Keator et al., 2013; Maumet et al., 2016; NIDM, 2016). By
using RDF as the foundation for NIDM, it benefits from a variety
of sophisticated query languages (e.g., SPARQL, RQL, TRIPLE,
Xcerpt), an open world assumption allowing users to add as many
statements about the data as they like without constraints on header
sizes as is the case with typical image formats, and direct use of
web-accessible terminologies and ontologies to provide multiple
layers to link and infer relationships among data and metadata.
A full description of NIDM is beyond the scope of this manuscript,
but NIDM was designed to facilitate queries across neuroscientific
datasets. A Python library was built (PyNIDM10) to create NIDM
annotation documents and a tool was also created to represent
a BIDS dataset, along with all the associated behavioral and/or
clinical data, as a NIDM document. Using PyNIDM and NIDM
documents, one could use RDF query languages to satisfy the
example query above across BIDS or other datasets.

2 https://coins.trendscenter.org/

3 https://www.xnat.org/

4 https://scitran.github.io/

5 https://openfmri.org/

6 http://mcin-cnim.ca/neuroimagingtechnologies/loris/

7 https://github.com/bids-standard/pybids

8 https://www.w3.org/TR/prov-overview/

9 http://nidm.nidash.org/

10 https://github.com/incf-nidash/PyNIDM
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To annotate datasets for future discovery or integration,
researchers need to be able to rely on a set of common properties for
precisely defining study variables, beyond what is already offered
by BIDS for imaging data. In other domains beyond neuroimaging,
tools have been developed to aid in dataset annotation such as the
open source ISA framework (Sansone et al., 2012) for life sciences
research, the Clinical Data Interchange Standards Consortium
(CDISC) RDF framework (Facile et al., 2022) focused on the
medical and healthcare domains, and Frictionless Data11 developed
to support climate scientists, to humanities researchers, to
government data centers, and others. In this manuscript, we focus
on the research neuroimaging community yet many of the methods
presented are general and could be applied to other domains in
synergy with related efforts. Here we describe NIDM-Terms, a
toolkit that employs both the NIDM data model and associated
terminologies to aid in querying across datasets. We provide tools
to more fully annotate BIDS datasets and provide user-friendly
community-based annotation and terminology management tools
to assure proper definitions and metadata are provided with the
annotations. Further, we show how these annotations, along with
the NIDM data model, can be used to search across publicly
available neuroimaging datasets.

2. Materials and methods

In the following sections, we begin by formalizing our
definitions of different data element types. We then define a small
set of properties we consider critical to include when annotating
study-specific data elements to be able to both understand, at a
high level, what was collected and assure such annotations have the
necessary information for researchers to understand how to reuse
and/or combine these with other studies. Finally, we describe some
tools, both command-line and graphical, for creating these data
element annotations.

2.1. Data element types

Data elements can be simply defined as annotations on data,
where data can be variable names or content, file names or
content of files. In this work, we introduce two distinct types of
data elements and a conceptual element: (1) data elements that
are often locally defined and represent study variables (personal
data elements; PDEs), (2) data elements that are defined by a
community or a standards body (common data elements; CDEs),
and (3) terms that capture an abstract idea or a general notion
(concepts). Within the NIDM terminology work, each of these
distinct types of elements play an important role in the detailed
description of datasets.

Personal Data Elements (PDEs) refer to the typical study
variables and require strict definitions, ranges, value types, and,
if categorical, complete definitions of the categories and their
potential mapping from numerical categories to text-based strings
(e.g., 0 = right handed, 1 = left handed, 2 = ambidextrous) to

11 https://frictionlessdata.io

be easily reused across studies. PDEs may define common terms
in non-standard ways or use non-standard terms for commonly
acquired variables or processing steps. PDEs may also combine
separate annotation terms into a single term, e.g., “age_months”
that combines the duration “age” with the units of “months.” In
general, since PDEs are used locally, there is no requirement to
adhere to a standard convention and users are typically free to name
and annotate such elements as they wish.

Common data elements (CDEs) are those that have been
adopted for use by a group, often either a consortium operating
in a specific domain or standards body. Ideally, a rigorous
adoption process is implemented that entails the proposal of a
term, identification of whether similar terms already exist in other
terminologies, determination of how the term will fit into the
logical structure of the existing terminology and whether it adheres
to standards already established by the group. Often though, CDE
collections may be simply that, a collection of terms that a group
has decided to use, without the establishment of any standards or
logical framework.

Concepts are distinctly different from CDEs and PDEs.
Concepts (also known as “classes” in RDF) are those terms
that represent “higher order” ideas, e.g., the concept of “age”
is the notion of a duration of time from some predetermined
starting point to the current moment. Concepts are used to
aid in querying across datasets and provide a mechanism for
researchers to annotate their study-specific PDEs (or CDEs if
they are used within a study) with abstract ideas or general
notions about a PDE which helps us to query across datasets. For
example, two studies collect a data element meant to measure
the participant’s dominant hand. Dataset one names the variable
simply “handedness” and is stored as a categorical variable with
values indicating whether the participant is predominantly right-
handed, left-handed, or ambidextrous. Dataset two instead collects
the Edinburgh handedness inventory, names their study variable
“ehi” and whose values are integers ranging from −40 (left handed)
to 40 (right handed). Therefore, no query for a single variable
name would return data from both datasets. However, if each
dataset annotated their handedness assessment data with a concept
describing the general notion of “handedness assessment,” for
example term ILX:010488612 in the InterLex repository, querying
across datasets would then return handedness data from both
datasets. One could then investigate each returned dataset and
understand, through the data element properties (see section “2.2.
Properties”), the distinctions between how each was measured.

The use of properly defined CDEs, concepts, and properties
provides the foundation for NIDM documents to: (1) abstract the
concepts inherent in PDEs to allow for meaningful searches across
data collections, (2) provide an extensible collection of general and
domain-specific terms used to describe data, and (3) allow for an
inherently flexible annotation of data to an arbitrary level of detail.
As an example of the above points, reconceptualizing the PDEs
“age_months” and “YEARSOLD” from different datasets with the
properties “isAbout” the concept “age” and “hasUnits” of “months”
and “years,” respectively, allows an automated system to discover
both PDEs when “age” is searched for, as well as not having to define
a separate variable each time a different duration unit is required.

12 http://uri.interlex.org/ilx_0104886
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TABLE 1 Data element properties.

Property Definition

Description An explanation of the nature, scope, or meaning of the data element.

Label Short text string for referring to the data element.

ValueType A value representation such as integer, float, string, date/time (e.g., xsd: int, xsd: float, xsd: string).

UnitCode Unit of measurement (e.g., years, millimeters, etc.).

MaxValue The upper value of the data element (in case of ordered data).

MinValue The lower value of the data element (in case ordered data).

Choices Choices is a concept that corresponds to the BIDS (https://bids.neuroimaging.io/) “levels” standard for categorical variables where you’re
mapping the value (often an integer) to some text string. Using the handedness example from above, the choices would be {1 = Right,
5 = Left, 10 = Ambidextrous}.

IsAbout Used to record the relationship between a data element and a broader concept. Annotating using is About can be used to search across
datasets. The is About annotations consist of a url to identify the concept and an optional label for the concept.

Source_variable Variable name from dataset. This applies to personal data elements which are data elements defined within a specific study, typically
referred to as “study variables.”

MeasureOf Describes what the data element measures (e.g., volume, area, distance, intensity, health status, duration/period, intelligence).

datumType What type of datum it is (e.g., range, count, scalar etc.).

IsPartOf Used to link data elements to assessments (e.g., WAIS_Vocab_Raw linked to WAIS scale
(https://www.cognitiveatlas.org/task/id/tsk_4a57abb949f12/#). Typically this is not added by the user and is often done as an additional
annotation to link data elements with other classes of information.

SubtypeCDEs This property is typically added during curation. It links the term to lower-level (child) terms to provide some limited ontological
relationships.

SupertypeCDEs This property is typically added during term curation. It links the term to higher-level (parent) terms to provide some limited ontological
relationships.

AssociatedWith List of strings used to associate data elements with communities (e.g., BIDS, NIDM, etc.) for grouping data elements or searching within
communities for specific data elements.

2.2. Properties

Properties play an important role in disambiguating and
simplifying the annotation of data, as well as the mapping of data
elements between data sources, especially those that use PDEs.
In reviewing available terminologies and ontologies for use in
human neuroimaging studies, we found that data elements in these
terminologies often lacked important properties such as units, value
types, ranges, etc. When researchers try to reuse data collected
by other laboratories they often request data dictionaries which
describe the study variables collected (PDEs) and hopefully provide
precise definitions and properties for those variables. If important
properties are missing, such as “units,” the data is either not usable
or users must contact the dataset providers, if they are reachable,
to correctly and confidently reuse the data. The NIDM team found
this to be a significant problem when trying to reuse retrospective
data and query across studies to build cohorts matching various
search criteria. We therefore started out by defining a minimal
set of properties (Table 1) that we felt were important to properly
define data elements of various types (see section “2.1. Data element
types”). A larger set of properties are available in the terminology
used in the experimental description component of NIDM (i.e.,
NIDM-Experiment).

Many of the terms that are used for annotation are part
of NIDM-Experiment (NIDM-E), an ontology that can be used
to describe neuroscience experiments. NIDM-E was originally
constructed with an emphasis on terms describing imaging-
based studies, in particular those employing MRI, but has since
been expanded to encompass other modalities. NIDM-E was

built through the annotation of several real-world multi-modality
neuroscience-based data sets. The goal of NIDM-E is to provide
semantically-aware tools, a collection of defined terms organized
in a structure that can be used to annotate data to an arbitrary
level of detail. The structure of NIDM-E allows a user both to
annotate complicated data collections and accommodate terms for
new modalities and acquisition methods. NIDM-E also comprises
tools to discover terms, webpages for term URL resolution, and a
framework for community conversations regarding the terms.

As per good ontological practice (Arp et al., 2015), NIDM-
E reuses terms from other ontologies before creating new terms.
Terms are reused from such active ontologies such as the
Semanticscience Integrated Ontology (SIO) (Dumontier et al.,
2014), Information Artifact Ontology (IAO) (Ceusters, 2012), and
Prov-O.13 These general ontologies provide the framework to
which domain-specific terms were added to create NIDM-E. Terms
created for NIDM-E have formal Aristotelian definitions in the “X
is a Y that Z” format (Seppälä et al., 2017). NIDM-E also includes
many imported data type, object, and annotation properties.

Because NIDM-E began with neuroimaging data, it has
particularly strong coverage in that domain. It contains two unique
properties: “hadImageContrastType” and “hadImageUsageType”
that can be used to distinguish between the physics-based
mechanism for the contrast in an image (e.g., “T2-weighted”)
and the eventual use of that image (e.g., “Anatomical”). These
are important for the discovery of imaging data in and across

13 https://www.w3.org/TR/prov-o
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FIGURE 1

A schematic of a acquisition object “T2.nii” that was generated from the Session “Visit_3” of participant “1f3g2k6” annotated with the protocol used
and “hadImageUsageType” and “hadImageContrastType.”

repositories, where datasets with different image contrasts may be
annotated by the same term. For example, T2∗-weighted, and T2-
weighted images may both be stored as “Functional” data. NIDM-E
also includes terms from two widely used standards: DICOM14

and the BIDS standards, the former of which is ubiquitous in
the neuroimaging domain for the formatting of raw image data
and is used in multiple imaging modalities. We have created
a set of DICOM tag data type properties that can be used to
associate acquisition parameters with an acquisition object. We
have also included BIDS terms so that BIDS-organized datasets can
be annotated using terms directly from the official BIDS schema.

We show in Figure 1 a simple example of how NIDM-E can
annotate an acquisition object, “T2.nii,” with an image contrast
type of “T2-weighted” and an image usage type of “Anatomical,”
and showing the scan session activity it was acquired at
(“Session:Visit_3”), the protocol that was used (“Protocolv1.pdf”),
and the study participant (“ID:1f3g2k6”) from which it was
acquired and who had the role of “In Vivo Participant.”

The NIDM-E term-resolution and schema pages are available
in GitHub15 which includes a web-accessible infrastructure built so
that (1) the neuroscientific community can suggest or edit terms to
the NIDM-E vocabulary using GitHub issue templates, (2) terms

14 https://www.dicomstandard.org/

15 https://github.com/incf-nidash/nidm-experiment

have resolvable URI’s, and (3) the ontology can be browsed to
facilitate term discovery. GitHub issue templates allow us to have a
public record of the discussion surrounding each term. To discover
NIDM-E terms, we provide a “Schema Browser”16 webpage that
allows users to view the NIDM-E term graph, including all of the
imported terms. For semantic-web applications, we also provide a
“Terms Resolution”17 page in which each term has a unique URL so
that terms used by applications have a unique reference location.

2.3. SHACL validation

Beyond just defining useful properties for annotating data
elements, it is critically important that researchers include such
properties in their data annotations (i.e., data dictionaries).
To ensure that data elements annotated by the community
and contributed to the NIDM-Terms ecosystem contain the
appropriate properties according to their type, we have built a
validation schema using the Shapes Constraint Language (SHACL)
(Pareti et al., 2019). SHACL is a W3C-supported language for
validating RDF graphs according to a schema (i.e., a SHACL
shape). Each data element type (e.g., PDE, CDE, and concept)

16 https://incf-nidash.github.io/nidm-experiment/schema_menu.html

17 https://incf-nidash.github.io/nidm-experiment/
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has a separate SHACL shape used for validation. These shapes
specify the required properties, the value type of each property’s
values, and the number of such properties in each data element
definition. Validation is done when new data elements are added to
the NIDM-Terms GitHub repository through pull requests, either
using the NIDM-Terms UI (see section “3.1. NIDM-Terms user
interface”) or through Github Actions and Github Pull Requests.
The git action uses the Python validation framework provided by
ReproSchema.18 In brief, Reproschema offers a way to standardize
the underlying representation of assessment tools. It comes with
an open and accessible library of questionnaires with appropriate
conversion [e.g., from/to RedCap (Patridge and Bardyn, 2018)] and
data collection tools [e.g., MindLogger (Klein et al., 2021), RedCap,
etc.] to enable a more consistent acquisition across projects, with
data being harmonized by design. The techniques described here
have been aligned with ReproSchemas to both support automated
annotation of data collected and shared using assessments from
ReproSchemas and to align our data element descriptions so there
is consistency across representations. Such consistency will help
the user who wants to share their study data when collected using
ReproSchemas.

2.4. Terminology management resources
used in NIDM terms

In order to provide users with the ability to easily annotate their
data and link selected PDEs to broader concepts, a simple means to
query across existing terminologies is needed. These query services
are provided by Interlex19 (Surles-Zeigler et al., 2021), a dynamic
lexicon, initially built on the foundation of NeuroLex (PMID:
24009581), of biomedical terms and common data elements
designed to help improve the way that biomedical scientists
communicate about their data, so that information systems can find
data more easily and provide more powerful means of integrating
data across distributed resources. One of the challenges for data
integration and FAIR data is the inconsistent use of terminology
and data elements. InterLex allows for the association of data
fields and data values to common data elements and terminologies,
enabling the crowdsourcing of data-terminology mappings within
and across communities. InterLex also provides a stable layer on
top of the many other existing terminologies, lexicons, ontologies
(i.e., provides a way to federate ontologies for data applications),
and common data element collections to enable more efficient
search for users. To support annotation using CDEs, InterLex has
been expanded to include the full NIMH Data Archive (NDA)
CDE library. Through available RESTful web-services, InterLex is
supporting alignment of data elements and terminologies through
PyNIDM developed to simplify creation, editing, and querying of
NIDM documents. To further expand our available terminologies,
PyNIDM supports querying the Cognitive Atlas20 as an additional
information source for dataset annotation. Similar to Interlex,
Cognitive Atlas provides a systematic approach to representing
cognitive neuroscience entities and biomedical terminologies.

18 https://github.com/ReproNim/reproschema-py

19 https://scicrunch.org/scicrunch/interlex/dashboard

20 http://www.cognitiveatlas.org

3. Results

In previous sections, we have described the foundational
principles used in this work to annotate study variables.
Research laboratories often reuse PDEs across research projects or,
alternatively, define new PDEs for studies that have previously been
used in other projects. In an effort to help labs maintain an internal
list of PDEs and share them with others in the community, we have
developed both terminology management and dataset annotation
tools. In the following sections, we describe three such annotation
tools and a terminology management interface. We then show how
proper dataset annotations can be useful in querying across publicly
available MRI-related neuroimaging data.

3.1. NIDM-Terms user interface

To facilitate the community’s interaction in managing the
neuroimaging terminology, we developed a JavaScript (using
Visual Code Studio: version 1.67.1) NIDM-Terms User Interface21

(UI), hosted on GitHub Pages, that allows community curators
to define and interact with their lab-specific terminologies as
well as reuse terms from other neuroimaging communities. The
UI is designed around the Git version control system and
uses the NIDM-Terms/terms22 GitHub repository as a backend,
providing JavaScript Object Notation - Linked Data (JSON-LD)23

formatted files for each PDE, CDE, and concept contributed
by the community.

The NIDM-Terms UI provides the following supportive
functions: browse, search, edit, and export available terms and
their properties. The “Browse Terms” function (Figure 2, Panel
A) fetches the NIDM-Terms GitHub repository and displays the
JSON-LD formatted files in a treeview format, including a tag for
the term’s data type (e.g., concepts and data elements). Users are
then able to filter through the available communities and terms
based on the label of the term they’re interested in. We have
developed additional functionality that allow users to suggest edits
to the available terms and their properties, across the neuroimaging
communities hosted on the UI. The UI will create a JSON-LD
formatted dictionary with the user’s suggested edits to a specific
term and using the edits as a query parameter string. Upon
submission, a new browser tab will open a new Github pull
request, with the edited term and its properties, to the NIDM-
Terms repository allowing the user to use their login information
to complete the pull request. The “Suggest new terms” function
(Figure 2, Panel B) works in a similar manner to edit terms.
Suggested terms will be formatted as a JSON-LD file. The JSON-
LD file is then stringified and sent as a query parameter to the pull
request to the NIDM-Terms repository; in case of any technical
difficulties, the UI will submit a github issue to the NIDM-Terms
repository with the suggested term describing the problem specifics
while submitting the pull request. Upon the term’s approval by
a community’s curator, a JSON-LD representation of the new

21 https://nidm-terms.github.io/

22 https://github.com/NIDM-Terms/terms

23 https://json-ld.org/

Frontiers in Neuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1174156
https://github.com/ReproNim/reproschema-py
https://scicrunch.org/scicrunch/interlex/dashboard
http://www.cognitiveatlas.org
https://nidm-terms.github.io/
https://github.com/NIDM-Terms/terms
https://json-ld.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1174156 July 14, 2023 Time: 10:36 # 7

Queder et al. 10.3389/fninf.2023.1174156

FIGURE 2

This figure illustrates the various functionalities the NIDM-Terms User Interface (UI) supports including: browse terms (A), suggest terms (B), export
terms (C), and add new communities (D).

terms will be added to the repository and a tree-view display of
the new term will appear under the “Browse Terms” section of
the UI. Note, each community has its own curators responsible
for approving/interacting with users suggesting new terms and/or
editing terms. In this way, each community has responsibility for
their own terms. The “Export selected terms” function allows users
to export terms, across communities, along with their properties,
in several file formats: (1) A Markdown table for possible inclusion
in community’s documentation (e.g., BIDS reference manual); (2)
JSON; (3) JSON-LD; (4) CSV; (5) N-Quads (Figure 2, Panel C).
Finally, the “Add a new community” function which allows for the
addition of a new community to NIDM-Terms. Similar to “Suggest
Terms,” the “Add a new community” functionality submits a
pull request with the new community as a query parameter.

Upon submitting new terms and communities to the NIDM-
Terms GitHub repository, all new terms are validated using our
SHACL Schema Validator (see section “2.3. SHACL validation”),
consistent with the term properties described in (section “2.2.
Properties”).

To further enhance our list of neuroimaging communities
and support communities who may want complete control over
their repository, we have provided instructions for cloning the
NIDM-Terms UI and associated GitHub repository in order
to host their own community in their name-space prior to
merging them with the NIDM-Terms repository for broader
community use. Together, these tools form a user-friendly interface
allowing the neuroimaging community curators to interact
with and reuse terminologies across communities, backed by a
version control system.
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3.2. Dataset annotation tools

In this project, we have created several tools to assist
the neuroimaging community in annotating datasets using the
terminology management tools we developed (see section “3.1.
NIDM-Terms user interface”), consistent with our data element
types and properties. This includes defining study-specific variables
and their properties, as well as linking the variables to higher level
concepts using the properties in Table 1. A rich set of annotations
increases a dataset’s Findability and Reusability and can make
publicly available datasets more FAIR by enabling scientists to
efficiently discover datasets using concept-based queries.

To achieve this goal, we have built several annotation tools
that allow scientists to efficiently and effectively annotate their
study variables. We have built both command-line and graphical
annotation tools. First, the “bidsmri2nidm” tool enables scientists
to annotate BIDS structured datasets by iterating over the dataset
and its variables contained in the “participants.tsv” file or other
phenotypic files stored in the “phenotypes” directory through a
command-line interface. A series of questions about each study
variable will then be displayed on the screen allowing users to input
specific properties describing those variables such as description,
unit, minimum value, maximum value, etc. Additionally, the tool
queries concepts from information sources such as InterLex and
Cognitive Atlas for users to select the best matching concept to their
study variable. The tool suggests concepts that are fuzzy-matched
to the study variable name and provides a mechanism for users
to refine such queries. Often when searching large information
sources such as InterLex for concepts, users might find multiple
concepts that could be applicable to the variable to be annotated.
In our annotation tools, we initially present to the user the term
deemed closest to the study variable amongst the list of concepts
used for prior data annotations. For example, if annotating a
study variable that stores the age of the participant, each data
set provider should annotate this variable with the same “age”
concept to increase consistent term usage. Our tools attempt to
restrict the space of concepts by re-using concepts already used
in data annotations from other users. In this way, we reduce
the space to a single concept for “age.” The user can always
broaden their search for concepts but this initial reduction in the
search space helps to steer the user in selecting a concept that
increases the potential for finding these data across studies. This
reduction in search space is accomplished by the tool searching the
NIDM-Terms github repository which maintains a list of concepts
selected for annotations by users of the tool. To prevent duplicate
choices for common study variables often used in queries (e.g.,
age, sex, handedness) the list of prior concepts is currently being
manually curated. This is a place ripe for development using AI
natural language processing techniques to keep the list of concepts
relatively small and consistent.

After the annotation process is completed, the tool will export
a JSON dictionary with the variables and their properties in
addition to a NIDM-Experiment RDF document. This tool is a
great addition to the neuroimaging community because it allows
scientists to more easily add detailed and standard annotations to
their BIDS structured datasets. In addition to “bidsmri2nidm,” we
have also developed “csv2nidm,” which also allows for annotation of
study variables however it uses tabular data [e.g., comma-separated

values files (CSV) or tab–separated values files (TSV)] instead of
requiring a complete BIDS datasets. Both of our command line
interface tools, “bidsmri2nidm” and “csv2nidm” are open source
and available with the PyNIDM (see text footnote 10) tools. To
expand the use of our tools, we have additionally built a user-
friendly web-based Graphical user interface version of csv2nidm24.

A second web-based annotation tool that has been developed by
the ReproNim25 community is the Neurobagel26 annotation tool.
This graphical annotation tool loads a tabular phenotypic file -
for example a BIDS participants.tsv file–and then guides the user
through two annotation stages. In the first stage (Figure 3), the
user is presented with a number of pre-configured categories (i.e.,
CDEs), which have been previously agreed on across a number of
dataset providers, and is asked to identify the columns of the loaded
phenotypic file that contain information about each category (e.g.,
sex, or clinical diagnosis). To accomplish this step in the user
interface (UI), the user first selects a category by clicking on the
corresponding colored button, and then clicks on each column
from the phenotypic file that she wants to associate with the
category. An existing association between a column and a category
is represented in the UI by highlighting the column name with
the respective category color. In the second stage of the annotation
process (Figure 4), the user is asked to annotate the values in each
column that has been associated with a category (continuous values
can be transformed into a standardized format). Each category has a
predefined list of terms from a controlled vocabulary that a user has
to choose from to annotate the values in their phenotypic file (from
a list of common data elements). Constraining the annotation terms
is a design choice to make the annotation process easier and to
facilitate consistency across annotations at the expense of flexibility.
However, the predefined categories will be configurable in the
next version of the annotation tool to help communities choose
the most appropriate set of terminologies. After completing the
annotation, the neurobagel annotator creates a BIDS compatible
data dictionary (JSON) file, that contains the additional semantic
annotations as additional properties and can be converted to a
NIDM file.

These annotation tools are beneficial for the neuroimaging
community because they allow users to quickly and accurately
annotate their study variables in a standardized way. This helps
ensure that their data is consistently structured and more easily
understood by other researchers working on similar projects and
to facilitate cross-dataset queries. By integrating Interlex and
Cognitive Atlas, it also allows scientists to quickly and easily match
their variables to existing concepts, making it easier to formulate
sophisticated scientific queries and to interpret their results.

3.3. Use case

To evaluate the developed tools and overall terminology
management, annotation, and query workflows presented in this
manuscript section, we focus on a specific use-case, that of
querying across publicly available MRI-related neuroimaging data

24 https://incf-nidash.github.io/nidmterms-ui/?#/annotate

25 https://www.repronim.org/

26 https://annotate.neurobagel.org
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FIGURE 3

Stage 1 of the neurobagel annotator workflow. Left: a list of pre-defined categories (common data elements) is shown, each associated with a
specific color. Right: the column names of a loaded demographic.tsv file with optional descriptions are displayed. The user now selects each
category by clicking on it (e.g., “Diagnosis” in yellow), and then associates the category with each column that contains information about this
category by clicking on it (e.g., “group,” “group_dx,” and “number_comorbid_dx”). An existing association is reflected by the column being
highlighted in the color of the category.

to identify potential cohorts of interest. For these tests we use
publicly available projects contained in the OpenNeuro archive
at the time our work began, the ABIDE27 dataset, and the
ADHD20028 dataset, all of which are available from each dataset
provider and were accessed using DataLad29 (Halchenko et al.,
2021; Figure 5). Each of these datasets and the projects within the
OpenNeuro archive are available in the BIDS format and generally
contain MRI imaging data along with selected demographics and
additional cognitive and/or behavioral assessments at varying levels
of complexity. In addition, the selected datasets contain differing
amounts of annotations. For ABIDE and ADHD200 datasets, full
data dictionaries are available from the dataset providers; although,
not in a readily parsable format (e.g., PDF format). For OpenNeuro
projects, approximately 25% had annotations in the form of BIDS
“sidecar” JSON files and the rest did not.

To prepare these reference datasets for query, given their
varying levels of existing annotations and organizational form
(e.g., BIDS containing phenotype data, BIDS for imaging data
and phenotype data stored as separate tabular data files outside
of BIDS), we used various NIDM-related tools. For the ABIDE
study, each study site created their own BIDS dataset containing
the imaging data. When we started our work, the phenotype
data was stored separately for all sites as a CSV file. In later
versions of the BIDS datasets, phenotype data was stored in the
BIDS “participants.tsv” files. Although each study site collected
the same phenotypic variables, it was often the case that the
variable names were slightly different across sites in terms of the

27 http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

28 http://fcon_1000.projects.nitrc.org/indi/adhd200/

29 https://www.datalad.org/

spelling, capitalization, and word-connection indicators such as
spaces, dashes, or underscores. This inconsistency, even within a
single study, demonstrates the difficulties users may have in trying
to query across datasets simply using variable names. Further,
there were no BIDS “sidecar” files included with any of the site’s
BIDS datasets. To convert the ABIDE BIDS datasets into a NIDM
document for query we used the following procedure:

• Download each ABIDE site’s BIDS dataset via Datalad.
• Manually convert the PDF-formatted data dictionary into a

NIDM JSON-formatted data dictionary.

◦ Add entries to JSON-formatted data dictionaries to
accommodate all heterogeneity in variable naming
across ABIDE sites.

◦ Add high-level concept associations to the JSON-
formatted data dictionary for selected variables using the
isAbout property.

• For each ABIDE site.

◦ Run PyNIDM tool “bidsmri2nidm” with a local path to
the BIDS dataset.

◦ Run PyNIDM tool “csv2nidm” with a local path to the
phenotype CSV file, the JSON-formatted data dictionary,
and the NIDM file created by the “bidsmri2nidm” step
above.

The procedure above results in one NIDM document per site,
containing both the imaging and phenotype metadata, along with
the data dictionaries and concept annotations. In this procedure
we created the JSON-formatted data dictionary and did concept
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FIGURE 4

Stage 2 of the neurobagel annotator workflow. The user is now asked to annotate the values inside each column that has been linked to one of the
predefined categories. Left: each category associated with at least one column is represented with a colored button. By clicking on each button, the
user can annotate the values in the associated columns. Right: the annotation view for each category (here “Sex” in blue) contains specific elements
such as an explanation (collapsed here), an overview of the associated column names (here “sex”), and an overview of the unique values in the
associated column (bottom). The user can map each unique value to a pre-defined list of controlled terms (here with a drop-down menu) or
indicate that the value reflects a “missing value” (e.g., a data entry error or a truly missing response).

associations manually since we already had a reference PDF
document with variable definitions. Alternatively, one could use
any of the annotation tools discussed in (section “3.2. Dataset
annotation tools”).

To prepare the ADHD200 dataset for query we follow a similar
procedure as for the ABIDE dataset except that the BIDS formatted
dataset contained the imaging and phenotypic data. Similar to
ABIDE, each study site’s BIDS data was stored separately and
there was a variety of variable name heterogeneity. Here again, to
improve the efficiency and account for the heterogeneity of variable
names, we manually created the data dictionaries by transcribing
the information from PDF-formatted documents. Similar to the
ABIDE dataset, one could have used our annotation tools (from
section “3.2. Dataset annotation tools”) as an alternative approach,
which we think is far easier and less prone to transcription errors.
Yet to be able to capture the heterogeneity of variable names
across all the sites, we would have had to run ‘bidsmri2nidm‘
many times, once for each site, answering all the annotation
questions about variables that have already been annotated but
have slightly different names (e.g., one as a space whereas
another site used an underscore). To complete this task at the
scale we were working at, it was simpler for us to create a
single data dictionary with all the variable name variations and
provide this to the “bidsmri2nidm” tool. At the end of this
procedure, we have a NIDM document per site containing both the

imaging and phenotype data along with the data dictionaries and
concept annotations.

Finally, we created NIDM documents for each dataset available
in the OpenNeuro archive via DataLad at the time we performed
these experiments. For the datasets in the OpenNeuro archive we
used the following procedure:

• Download each OpenNeuro BIDS dataset via Datalad.
• Evaluate whether a data dictionary (JSON sidecar file)

is available and export all variable names and properties
to a Google spreadsheet along with project name
and contact emails.

◦ If data dictionary is present.
Add concept annotations to the spreadsheet manually.

◦ If data dictionary is not present.
Evaluate variables for consistency with BIDS schema
recommended data type, units, etc. (e.g., age variable
suggested to be years, etc.).
Ask dataset providers for clarity when needed.
Add concept annotations to spreadsheet manually.

• Convert Google spreadsheet entries to BIDS JSON sidecar files
for each project using our additions.

• Run PyNIDM tool ‘bidsmri2nidm‘ with a local path to the
BIDS dataset and using our BIDS JSON “sidecar” files.
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FIGURE 5

An illustration of the NIDM-Terms workflow.

The procedure above resulted in the creation of a NIDM
document for each OpenNeuro dataset available via Datalad at
the time of initial query. For these datasets we used a different
procedure from the ABIDE and ADHD200 NIDM conversions.
Here we had to do the annotations in bulk for approximately
300 datasets while we developed, in parallel, the robust concept
annotation capabilities of the ‘bidsmri2nidm‘ tool. To save time
we decided to crowd-source the annotation activities amongst our
NIDM-Terms team by using an export to a Google spreadsheet.
As described previously, in practice for a smaller number of
datasets, one could (and should) use any of the annotation tools
provided with our work.

3.3. Concept-based queries

Now that each of our example datasets (i.e., OpenNeuro,
ABIDE, and ADHD200) has been annotated using the
methodologies presented here and a NIDM file representation
created, we began testing concept-based integration queries. We
created two Jupyter notebook query demonstrations available
directly in the NIDM-Terms GitHub repository via Binder (see
README - Demos30): (1) Using the JSON-LD version of our

30 https://github.com/NIDM-Terms/terms/blob/master/README.md

BIDS-compliant JSON “sidecar” files to query across OpenNeuro
datasets; (2) Using the NIDM files across all three datasets to search
by concept and neuroimaging type. We feel these demonstrations
serve to show how a user can query across BIDS datasets using
concepts without any backend database (example 1) and using
NIDM files across three datasets facilitated through the ReproLake
metadata database (example 2) supported by ReproNim (see
text footnote 25). In example 2, we add the additional capability
of querying for image type alongside concepts. Note, there are
many additional pieces of metadata in the NIDM files that could
be included, along with the ones shown here, in a production
query interface.

With respect to example 1, the Jupyter notebook starts
by pulling all the JSON-LD “sidecar” files for the OpenNeuro
datasets from the NIDM-Terms GitHub repo. It then creates
a dictionary of the concepts used in annotating those data by
accessing the “isAbout” property in those JSON-LD files. Next, it
uses ipywidgets31 to create a simple drop-down interface within
the Jupyter notebook listing all the concepts available across all
annotated OpenNeuro datasets. The user can then add concepts to
a query list and perform AND-based or OR-based queries on the
list. The notebook then returns a list of datasets in OpenNeuro that

31 https://ipywidgets.readthedocs.io/en/stable/
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satisfy the query with links out to the OpenNeuro interface for the
datasets. These queries are fairly efficient and require no additional
database backend.

With respect to example 2, first the NIDM files, created
here, for all studies (i.e., ABIDE, ADHD200, and OpenNeuro)
were uploaded to ReproLake. ReproLake is a publicly available
metadata archive developed on the StarDog32 platform. Although
it is still in development, ReproLake will, in the near future,
provide a metadata archive containing NIDM files describing
many publicly available neuroimaging datasets. Because querying
large RDF graphs across thousands of datasets is quite resource
intensive, using a database to support these queries makes
them more efficient. One could instead use a local metadata
database to store and query these NIDM files by cloning the
“Simple2_NIDM_Examples”33 repository and looking in the folder.
Different from example 1, there are no JSON-LD or JSON files
used in this demonstration. Here we use the NIDM files directly,
served by ReproLake. The Jupyter notebook begins by performing
a SPARQL query, sent to the ReproLake server, on the NIDM
documents to retrieve the concepts via the “isAbout” predicate.
It then queries the neuroimaging scan types from the NIDM
documents by looking for data acquisition activities in the NIDM
graphs that contain the “nidm:hadImageContrastType” predicate,
a term that is part of the NIDM terminology (see section “2.2.
Properties”). Next, similar to example 1, these concepts and
contrast types get added to ipywidgets and the user can select
criteria to query on. The tool then formulates a SPARQL query,
presenting this query to the user for educational purposes, and
sends the query to the ReproLake StarDog instance. Depending
on the complexity of the query, the results can take a few seconds
to many minutes (or longer) to complete. Because the ReproLake
utility is still in development, no server-side optimizations have
been done and limited server resources are available. As ReproNim
continues to develop this resource, query response will improve.

4. Discussion

The dataset annotations and terminology management tools
presented here have shown to be a useful and pragmatic approach
to querying across datasets and linking datasets through mappings
from dataset-specific variables and terms to broader concepts. Most
of the tools and techniques presented here have been pragmatically-
focused and developed, in part, to support building the ReproLake
metadata database. We’ve tried to create models that are sufficiently
expressive to capture important information needed to enable
data reuse, while minimizing the burden on researchers. Thus far,
through efforts connected to ReproNim and the overall NIDM
work, we have found the minimal set of properties we’ve selected
to be sufficient to find and reuse data, amongst the datasets we
chose.

Through our query demonstrations and additional work with
the ReproLake, concept annotations have been successful in helping
us search across datasets. During our initial experiments, using

32 https://www.stardog.com/

33 https://github.com/dbkeator/simple2_NIDM_examples/tree/master/
datasets.datalad.org

the datasets described here and annotated by several individuals
in our research team, we found that there was some ambiguity
surrounding several similar concept choices. Even for simple
variables such as age, sex, and handedness, there were multiple
concepts that could be selected from the many available in large
terminology management resources such as InterLex. To address
this complexity, we’ve taken two main approaches, enabled by our
choice to use RDF and JSON-LD: (1) constrain the search space
for often-used concepts; (2) use RDF and linked-data capabilities to
start connecting similar/equivalent terms in InterLex. Constraining
the search space was accomplished using our NIDM-Terms GitHub
repository to maintain a list of concepts selected for annotating
previous datasets and to initially present those concepts to users
of our tools, effectively giving them a single choice for age,
sex, and handedness concepts. This procedure works well if the
annotations are performed using our tools and curated term
lists but does not address the problem when users are manually
annotating data using term resources without guidance. The second
approach, that of connecting similar/equivalent terms together
within InterLex, has been an on-going project for many years
and that project continues to make progress on that front. By
connecting terms within InterLex using the RDF framework, one
could perform equivalence mapping at query time via the SPARQL
query language. Then, one could theoretically select concepts
from InterLex without much concern for whether other dataset
providers selected the same concept because the similarity and/or
equivalency has already been modeled by the InterLex team and
is used directly within the ReproLake query engine. This approach
would satisfy those doing manual annotations but only when using
InterLex. To make this approach scale, the research community
should move toward using linked data methods across all metadata
included with publicly available datasets. By creating a rich web
of linked neuroimaging information, the overhead involved in
database-dependent mediation services could be reduced and this
linked terminology information would be available to any web
resource. This is the promise of linked-data and we are seeing
signs of this goal coming to fruition in the broader web, outside
of neuroimaging-based scientific data.

Data-sharing requirements from funding agencies and
journals, have done much to increase the amount of data available
for reuse in the neuroimaging and other related communities over
the last 10 years. The work presented here has been successful
at providing a framework for annotating study variables in
ways to make them more reusable by providing a formal (and
minimal) list of properties and tools to support them in the
context of the popular BIDS data structure. Further, the process of
linking concepts to selected study variables has been successful at
showing the promise of an integrated metadata search utility (i.e.,
ReproLake). Despite these advances, there is still much work to
be done to realize a web of linked neuroimaging (neuroscience)
data that is fully reusable and findable at scale and across
studies. Through continued support from funding bodies and
international informatics organizations such as the International
Neuroinformatics Coordinating Facility (INCF),34 we expect

34 https://www.incf.org/
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the remaining barriers to slowly crumble such that data
shared by any laboratory, globally, could be reused for the
advancement of science.
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