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Editorial on the Research Topic

Physical neuromorphic computing and its industrial applications

1. Introduction

The importance of handling cognitive data such as images, voices, and natural languages

is wide spreading not only at datacenters but also at networking, edge, and IoT. Artificial

neural networks are a powerful and prospective concept to process such cognitive data.

The improved performance of neural networks is achieved by increasing the scale of

neural network models. This unavoidably has a direct and tremendous impact on the energy

required to training and inference by current software and general-purpose processors due

to their serial operation. On the other hand, current hardware acceleration is based on well-

matured ASIC technology and integrated electronics. However, with the downscaling limit

of conventional technologies, the traditional electronic computing will face difficulties in

further growing in terms of energy efficiency.

To address the power and performance constraints, neuromorphic computing is

a promising approach. In fact, various CMOS-based neuromorphic devices have been

reported so far. In recent years, motivated by potential computational capabilities of

various natural physical phenomena, unconventional computing paradigms have been

actively investigated in the interdisciplinary region of computer science and natural science.

The objective of this Research Topic is to investigate the possibility of incorporating

diverse natural physical phenomena to neuromorphic computing, which we call “physical

neuromorphic computing.”

In this Research Topic, we collected nine papers relevant to the theory, algorithm, and

implementation of physical neuromorphic computing. They can be roughly classified into

the following categories: electric, material, and quantum neuromorphic computing.

2. Electric neuromorphic computing

Undoubtedly, electric neuromorphic computing is the most actively investigated

research area in neuromorphic computing, where non von-Neumann architectures are
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pursued with brain-like features such as distributed and sparse

information representations, massive parallelism, event-driven

operation, analog signal processing and on-chip learning capability.

Stapmanns et al. derived two efficient algorithms for archiving

postsynaptic membrane potentials, based on event-based synapse

updates and compared two algorithms with a time-driven

synapse update scheme in terms of memory and computations.

They showed that the two event-based algorithms significantly

outperform the time-driven scheme. Their results on information

archiving efficiency provide guidelines for the design of learning

rules and make them practical in large-scale networks.

Michaelis et al. developed an open source emulator named

Brian2Loihi for Loihi, which is a neuromorphic many core

processor for spiking neural network with on-chip learning

capability. They demonstrated error-free emulation for a

single neuron and a recurrent spiking neural network and

implementation of on-chip learning. Their work provides a quick

prototyping and deployment of new algorithms for Loihi.

Hopkins et al. presented a new concept “sparse binary

coincidence (SBC) memory” and its realization on surrounding

infrastructure called BitBrain. The SBC memory stores

coincidences between features in a training set and infers the

class of a test example by identifying the class with which it shares

the highest number of feature coincidences. They applied these

concepts to theMNIST and EMNIST benchmarks and showed very

low training costs and robustness to noise. BitBrain is designed to

be implemented efficiently on both neuromorphic devices such as

SpiNNaker and conventional CPU and memory architectures and

is well-suited for edge and IoT applications.

Md Abdullah-Al Kaiser et al. proposed an asynchronous non

von-Neumann analog processing-in-pixel architecture to perform

convolutional multiply and accumulate (MAC) operations by

integrating in-situ multi-bit multi-channel convolution inside the

pixel array. They verified the architecture on vision sensor datasets

and showed that the solution consumes significantly less energy

than their digital MAC alternative; less than half of the backend-

processor energy while retaining front-end energy and a high

test accuracy.

3. Material neuromorphic computing

The major energy consumer of today’s digital processor is data

movement between MAC processors and volatile main memories.

This motivates integration of memory and computation called “in-

memory computing.” Use of intrinsic properties of materials for

in-memory computing is becoming very promising approach for

in-memory computing.

Gokmen and Haensch presented a new training algorithm,

called “Tiki-Taka” algorithm for deep neural networks on

resistive cross-point device arrays. Tiki-Taka alleviates stringent

symmetry requirement that resistive devices must change

conductance symmetrically for positive or negative pulse stimuli.

Simulation results show that the accuracy of the SGD algorithm

with symmetric device switching characteristics is matched in

that of the Tiki-Taka algorithm with non-symmetric device

switching characteristics.

Corti et al. presented an in-memory computing platform

for convolutional neural networks by synchronization in phase

and frequency of coupled VO2 oscillators. The neuromorphic

architecture was fabricated in a crossbar configuration on silicon

and achieved significant improvements of area density, oscillation

frequency, variability and reliability, compared to existing digital

convolutional filters. They applied the platform to MNIST

recognition task and achieved high recognition accuracy.

Garg et al. demonstrated that the phase synchronization of

glial cells can be reproduced by injected radio-frequency signals

in the heavy metal layer of spin-orbit torque oscillators. They

also proposed applications of such neural synchronization to the

temporal binding problem and the design of a coupled neuron-

synapse-astrocyte network.

4. Quantum neuromorphic computing

Quantum computing is an emerging technology based on

completely different principles from classical computers, the laws of

quantum mechanics. Quantum computing, if it happens in reality,

has the potential to solve many industrial problems that classical

computers cannot with a reasonable amount of resources. The

nonlinearity of the quantum devices used in quantum computing

can be applied to energy-efficient neuromorphic computing.

Tschirhart and Segall investigated how superconducting

electronics by Josephson junctions address the requirements

for large scale neuromorphic systems, such as scalability,

programmability, biological fidelity, on-line STDP learning,

efficiency, and speed. The result of detailed numerical analysis

based on digital logic demonstrations showed that superconducting

electronics is suitable for fast and efficient neuromorphic

experimental platform in the future.

Rahman et al. reported a differential device by Fowler-

Nordheim (FN) quantum-mechanical tunneling. They showed

that a prototype FN-synapse array can achieve near-optimal

memory consolidation characteristics with tunable plasticity-

stability trade-offs, compared to other physical implementations.

They also claimed that the proposed FN-synapse provides an

ultra-energy-efficient approach for implementing both synaptic

memory consolidation and continual learning in terms of an energy

footprint per synaptic update.
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