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The study presents a novel approach designed to detect time-continuous
states in time-series data, called the State-Detecting Algorithm (SDA). The SDA
operates on unlabeled data and detects optimal change-points among intrinsic
functional states in time-series data based on an ensemble of Ward’s hierarchical
clustering with time-connectivity constraint. The algorithm chooses the best
number of states and optimal state boundaries, maximizing clustering quality
metrics. We also introduce a series of methods to estimate the performance
and confidence of the SDA when the ground truth annotation is unavailable.
These include information value analysis, paired statistical tests, and predictive
modeling analysis. The SDA was validated on EEG recordings of Guhyasamaja
meditation practice with a strict staged protocol performed by three experienced
Buddhist practitioners in an ecological setup. The SDA used neurophysiological
descriptors as inputs, including PSD, power indices, coherence, and PLV.
Post-hoc analysis of the obtained EEG states revealed significant differences
compared to the baseline and neighboring states. The SDAwas found to be stable
with respect to state order organization and showed poor clustering quality
metrics and no statistical significance between states when applied to randomly
shuffled epochs (i.e., surrogate subject data used as controls). The SDA can
be considered a general data-driven approach that detects hidden functional
states associated with the mental processes evolving during meditation or other
ongoing mental and cognitive processes.

KEYWORDS

EEG, clustering, unsupervised data annotation, information value, meditation practice,
Ward’s method, functional states, change point detection

1 Introduction

e acquisition of psychological comfort by a person is the basis of any
spiritual practice, including religious practices. In this regard, phenomena
such as meditation, mind-wandering, insight, and religious excitement can
be considered as self-induced changes in the functional state of the brain.
Tracking these changes has recently become a popular topic in neuroscience.
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A convincing corpus of literature report neurophysiological
changes during meditative practices (Lutz et al., 2004; Britton et al.,
2014; Lee et al., 2018; Brandmeyer et al., 2019; Volodina et al., 2021;
Medvedev et al., 2022). At the same time, there is a high variability
of the reported effects that accompany meditative states (Fell et al.,
2010; Kaur and Singh, 2015; Lee et al., 2018; Brandmeyer et al.,
2019), and this prevents the formulation of a theoretical description
of ongoing neurophysiological modulations induced by meditative
practices. e variability observed in the literature is explained
by the diversity of the content of meditation practices (focused
attention, active visualization, open observation, etc.), recording
conditions (laboratory, retreat, and monastery), experience of the
subjects (time spent in practice), and individual variability (omas
and Cohen, 2014; Volodina et al., 2021).

EEG dynamics of meditative states were addressed in recent
studies. Denison presented a visual analysis of EEG recorded during
a progressive meditative sequence toward deeper states of serenity
(Dennison, 2019; Fell et al., 2019). Huang and Lo compared EEG
recordings of Zen meditation performed by experienced subjects
vs. the resting state of the control group (Huang and Lo, 2009).
e PSD data at the beginning, at the middle, and at the end of
40-min recordings were compared. A similar setup was applied for
Vipassana meditation in a group of Buddhist monks (Marasinghe
et al., 2021). e 40-min meditation session was split into 5-min
intervals, and PSDs were statistically compared with the beginning
of the meditation.

ese naïve approaches suffer from a series of limitations. First
of all, the choice of the control condition (resting state or beginning
of the meditation) is debatable as the arbitrary chosen time intervals
of the interest are hard to justify. Second, the approach takes
no account of the individual meditative patterns of practitioners
(difference in concentration, time of transition to meditative state),
which are lost in the averaging procedure and ĕxed meditation
length. Finally, most works considered meditative protocols that
are not supposed to have any sequential structure, making the
interpretation of EEG dynamicsmore challenging.Moreover, notice
that just a small subsample of the data was analyzed (only the
beginning and the end of recordings).

Recently, Volodina et al. (2021) used a more complicated
experimental paradigm. Two groups, experienced practitioners and
novices, were EEG-recorded when passing through the guided
Taoist meditation with 16 audible instructions. Authors compared
dynamics of the PSD indices averaged within six formally deĕned
states: (1) control pre-meditation resting state, (2) relaxation and
focus on the body, (3) mental silence, (4) active visualization, (5)
closing practices, and (6) control post-meditation resting state.
e main funding was the two opposite trends to relax and
concentrate within the “experienced” group, associated neither with
demographic nor with meditation experience. is is evidence
that between-subject variability cannot be overcome using stricter
experimental conditions (instructions, uniĕed meditation protocol,
and time limits). us, there is a need for a method that can operate
on the data with minimal neurophysiological assumptions on EEG
feature dynamics and detect trends and functional state changes
within ongoing EEG.

In this study, we present the ĕrst attempt to algorithmically
detect functional state changes in continuous EEG recording

of meditative practice. We assume that EEG records of the
ongoing Guhyasamaja meditation performed by highly experienced
practitioners in natural conditions (Tibetan monastery) can have
intrinsic non-stationary structure that may reĘect functional
states associated with a particular stage of meditation. is
statement is motivated by the predetermined structure of the
Guhyasamaja Tantric meditative practice, which includes eight
stages of “dissolution of bodily elements and mental states” to the
state of “clear light,” the reĘection of which we expect to ĕnd in the
EEG recording.

An unsupervised clustering approach may be in use for such a
unique dataset with no strict assumptions on the number of states
and state characteristics, see Dai et al. (2018) and Dai et al. (2022)
for clustering methods review. e general pipeline for clustering
algorithm application is to split continuous EEG data into epochs
(points), represent each epoch in the chosen feature space, and then
apply the clustering algorithm.

Surprisingly, there is a lack of methods that assist the research
of hidden functional states within ongoing EEG. e validation
and clustering quality estimation are typically performed the same
way as for classiĕcation problems by comparing the obtained
cluster structure with Ground Truth (GT) labeling provided with
the dataset (ĕxed number of clusters). ere are a relatively
small number of works where an arbitrary number of clusters
is considered or where the most descriptive analysis of features
is introduced (Geva and Kerem, 1998; Kazemi et al., 2022);
still, these works appeal to the known states (sleep stages and
epileptic episodes).

is study introduces the State Detecting Algorithm (SDA), a
novel technique addressing the challenge of ongoing EEG clustering
without available annotation and minimal assumptions about
states or feature behavior. SDA, based on Ward’s hierarchical
clustering with a temporal connectivity constraint, aims
to ĕnd change points in time-series data, revealing hidden
functional states.

We applied the SDA to EEG data recorded during ongoing
Guhyasamaja Tantric meditation and surrogate EEG data without
any temporal organization as control. We used common EEG
features (PSD, PLV, and coherence index) as SDA input to
provide a comprehensive description of detected states. e
obtained functional states were assessed by clustering quality
metrics, statistical tests between states, and the accuracy of
predictive classiĕcation models and are compared for meditation
data and control. We also introduce an information value (IV)
metric to obtain the most descriptive EEG features of each
obtained state.

is study presents the SDA approach, along with a
comprehensive methodology to estimate the clustering
quality without GT annotation. It offers a novel solution for
unsupervised clustering in meditation research, contributing
to the understanding of ongoing EEG dynamics. e SDA,
along with IV analysis, can be used in clinical applications with
strict problem formulation, such as sleep stages annotation,
as well as in phenomenological psychophysiology research
(self-induced functional state changes). e SDA applicability
extends to arbitrary time-series data characterized by concealed
staged dynamics.
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2 Methods

2.1 Dataset

2.1.1 Meditation protocol
Guhyasamaja Tantric meditation practice follows a strict

protocol. Its essential part is the so-called “bringing dharmakaya
of death into the path” (tib. འཆི་བ་ཆོས་སྐུའི་ལམ་འཁྱེར།, ‘chi ba chos sku’i lam
‘khyer), which consists of eight consequent stages of “dissolution of
bodily elements andmental states” up to the state of “clear light.”e
meditation protocol of eight stages is ĕxed in Buddhist tradition and
has been practiced over centuries.

e duration of each stage is not limited, nor is the total
meditation duration. Some monks include additional meditative
techniques to the meditative session, such as analytical or focused
meditation at the beginning of Tantric meditation to initialize
the process. Some extend the meditation by performing the
Guhyasamaja practice in its entirety, which includes an additional
imaginative process of “self-generation” that passes through eight
stages of the dissolution process in reverse order. is leads to
individual variability of time spent in meditation and an uncertain
number of meditative states within the practice. During the
experiment, there were no external cues or instructions, and the
ongoing meditation was naturally controlled only by a practitioner.

2.1.2 Participants
e participants of the experiment were 30 Tibetan Buddhist

monks who had practiced Guhyasamaja Tantric meditation on
a regular basis for decades. We use the following notation to
refer to the aforementioned EEG recordings: Subj1, Subj2, and
so on, up to Subj30, respectively. Participants’ meditations were
recorded on different days, and the time of themeditation recording
was chosen by a practitioner according to his daily routines. e
participants signed the informed consent before the experiment.
Each participant reported that the meditation was successful
(i.e., passing through all eight states of Guhyasamaja meditation)
during the questionnaire followed aer the practice. During the
questionnaire, the practitioners were also asked to subjectively
estimate the total time spent in meditation, but the reported time
in most cases differed dramatically, up to twice, from the registered
time, which indicates that practitioners tend to lose their sense of
time during meditation.

For Subj1 23.02.2020-15:30, recording duration 935 s
(∼16min), reported duration 30 min.

For Subj2 28.02.2020-7:00, recording duration 2,344 s
(∼39min), reported duration 25 min.

For Subj3 01.03.2020-9:00, recording duration 1,302 s
(∼22min), reported duration 17 min.

A table with the date, time, and duration of all 30 meditations
can be found in Supplementary Table 1.

2.1.3 EEG recording and preprocessing
To provide environmental validity, the experiment took place

in a Tibetan monastery in the very room used by participants for
meditative practices.

e EEG signals were recorded with the NVX-52
acquisition system (Medical Computer Systems Ltd.,
Moscow, Russia) at a 500-Hz sampling rate, with analog
bandpass ĕltering between 0.1 and 200Hz. A digital 50-
Hz notch ĕlter was applied to remove artifacts caused
by power line noise. Forty EEG channels positioned
according to the 10–20 system were used with Cz as a
reference electrode.

e following data processing was performed with MNE-
python (Gramfort et al., 2013). e EEG signals were re-
referenced to average reference. A 0.9–40-Hz bandpass ĕlter was
applied to remove low-frequency artifacts (breath movements
and electro-dermal activity) and high-frequency muscle activities
(Widmann et al., 2015). Independent component analysis was
performed, and ICA components corresponding to artifacts,
such as eye blinks, saccades, muscle activities, heart rate, and
rheogram, were excluded if present. For further analysis, the
EEG data were split into 1-s epochs. Figure 1A shows the
preprocessing steps.

Since most clustering techniques are sensitive to
outliers, we included an additional step of cleaning the
data from artifacts—epochs in which the PSD value
exceeded three standard deviations for at least one of
the calculated 75 PSDs were rejected from the analysis
(EEG features are described in the Section 2.2.1).
us, ∼10–15% of all epochs were removed from each
EEG recording.

2.1.4 Simulated data
For each of the three subjects, we randomly shuffled

epochs (1-s time windows) within the EEG record to test the
SDA performance on the very same data with no temporal
structure. e shuffled EEG recordings are referred to below
as Subj1_surrogate, Subj2_surrogate, and Subj3_surrogate,
respectively, and are called surrogate EEG data in this study.
EEG features in the surrogate data were obtained by shuffling
feature values calculated for each epoch in the original EEG
recordings in the same order as their epoch indices. is
allowed us to destroy possible temporal structures in a given
feature space.

To verify the stability of functional states obtained
with the SDA, we constructed simulated EEG data by
randomly rearranging the obtained functional states for
each of the three practitioners Subj1, Subj2, and Subj3
and applied the SDA again to test its ability to capture the
rearranged states.

e process of generating the EEG data with rearranged
states consists of the following steps. We applied the SDA to the
initial subject’s EEG data and randomly shuffled the obtained
functional state indices. en, we rearranged time-continuous
epoch sequences corresponding to these functional states in
the same order as their indices. EEG features in the simulated
data were obtained by reordering the values of the original
features, calculated within each epoch, in the same order as the
corresponding epochs.
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FIGURE 1

Data processing. (A) Steps of the EEG data preprocessing. (B) Types of EEG features used in the analysis and feature processing scheme.

2.2 EEG features

2.2.1 Feature engineering
2.2.1.1 Bands for averaging features

Frequential features were computed for each 1-s epoch for
each of the 38 channels (ear electrodes A1 and A2 were
excluded from the analysis). en, data were averaged in the
frequency domain within ĕve conventional bands: delta (0.9–4Hz),
theta (4–8Hz), alpha (8–14Hz), beta (14–25Hz), and gamma
(25–40 Hz).

Based on the raw signal correlation between channels, we
grouped 38 channels into 15 spatial ROIs (region of interest):
pre-frontal (Fp1, Fp2, and Fpz), le frontal (F3, F7, FC3, and
FT7), midline frontal (Fz and FCz), right frontal (F4, F8,
FC4, and FT8), le central (C3 and CP3), midline central
(Cz and CPz), right central (C4 and CP4), le temporal (T3,
T5, and TP7), right temporal (T4, T6, and TP8), le parietal
(P3 and P5), midline parietal (Pz), right parietal (P4 and
P6), le occipital (PO3, PO7, and O1), midline occipital (POz
and Oz), and right occipital (PO4, PO8, and O2), shown in
Figure 2A.

e resulting frequential features were obtained by channel-
averaging within each ROI. We used 15 ROIs to perform the data
analysis, while for illustrative purposes, we reduced the number of
ROIs to 9, merging central, parietal, and occipital regions, as shown
in Figure 2B.

We used PSD and PSD ratios, power coherence indices,
and phase-locking indices calculated for 1-s epochs as input
to the SDA; refer to Supplementary material for the detailed
calculation description.

2.2.1.2 PSD features and PSD ratios
EEG power spectral densities were computed using

the adaptive multitaper method (Prerau et al., 2017).
Seventy-ĕve PSD features were calculated (ĕve frequency
bands × 15 brain regions) with the use of MNE-python
built-in function [psd_array_multitaper() with option
adaptive = True].

We also computed 16 power ratios in 15 brain regions, 240
so-called PSD ratio features in total: theta/delta, alpha/delta,
alpha/theta, alpha/(delta+theta), beta/delta, beta/theta,
beta/alpha, beta/(delta+theta), beta/(theta+alpha), gamma/delta,
gamma/theta, gamma/alpha, gamma/beta, gamma/(delta+theta),
gamma/(theta+alpha), and gamma/(alpha+beta) EEG
power ratios.

2.2.1.3 Coherence and PLV indices
We computed coherence as a measure of power synchronization

between two EEG signals based on cross-power spectral densities
(CSD) for each 1-s epoch using a 5-s sliding window over ĕve
adjacent epochs centered around the current one. Coherence
was calculated for each pair of EEG channels, resulting in 3,515
coherence features (ĕve frequency bands × 703 channel pairs of
38 channels). We also computed phase-locking values (PLV) as
a measure of phase synchronization between two signals based
on CSD for each 1-s epoch with a 5-s sliding window. e total
number of PLV features is 3,515 (ĕve bands × 703 channel pairs),
similar to coherence features. Refer to Supplementary material
for the exact formulas and details of coherence and
PLV calculation.
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FIGURE 2

Reduction scheme into spatial ROIs. (A) Fifteen brain regions used in data analysis. (B) Nine brain regions used for the analysis results demonstration.

We did not use coherence and PLV features directly as input to
the state-detecting algorithm but used coherence and PLV indices
obtained on their basis. e coherence index of EEG channel x
with threshold P is the number of channels y and y ̸= x, where
coherence is greater or equal to the given threshold: [(Coh)]xy ≥ P.
Coherence indices were computed for three thresholds (P∈{0.6, 0.7,
0.8}) and ĕve frequency bands and were averaged within 15 brain
regions, resulting in 255 coherence index features (3 thresholds ×
5 bands × 15 regions). By analogy with the coherence indices, PLV
indices were calculated, and a total of 255 PLV index features were
obtained (3 thresholds × 5 bands × 15 regions) aer averaging
within brain regions.

e original coherence and PLV features for channel pairs, as far
as their analogs for brain region pairs (525 coherence and 525 PLV
features for 15 regions, i.e., 5 bands × 105 region pairs), were used
as descriptive characteristics in the analysis of the functional states
obtained as a result of SDA.

Signal synchronization parameters such as coherence and PLV
require a longer time interval than 1 s to be more informative
and relevant for physiological interpretation. Experimentally, we
found that a 5-s sliding window for calculating coherence and PLV
provides an optimal balance between interpretability and the use of
1-s epochs for calculating all features in the study to obtain enough
data for effective analysis.

2.2.1.4 Feature processing
Since the underlying Ward’s hierarchical clustering method is

sensitive to differences in ranges and distribution of data, as well as
to feature correlations, the features were preprocessed. e obtained
EEG features were log-scaled, if necessary, to approximate the
normal distribution (PSDs and PSD ratios), then all the features
were z-scored (75 PSD features, 240 PSD ratios, 255 coherence
indices, and 255 PLV indices, 825 features in total).

To get rid of correlations and to reduce the dimensionality of
the feature space, principal component analysis (PCA) was used,

as in the study by Vivaldi and Bassi (2006). We restricted the
number of principal components to 15 for all EEG recordings
to correctly compare inter-cluster distances and clustering quality
metrics between the subjects. Fieen PCA components explain
60–80% of the original feature space variance (depending on EEG
recording). us, each 1-s epoch was represented by 15 principal
components for further use in the SDA. Figure 1B illustrates the
steps of feature processing and their use in further analysis in
this study.

2.2.2 Information value approach for feature
exploration
2.2.2.1 What are IV and WoE

We used the information value (IV) approach to ĕnd the
most descriptive EEG features for obtained functional states and
to estimate the number of important features for each state in
comparison with SDA results on surrogate data.

Information value analysis is a concept from Informationeory
and one of the most useful techniques for selecting important
features in a binary classiĕcation problem (Good and Osteyee,
2006). It provides a useful framework for exploratory analysis and
evaluating variable importance for binary classiĕers (Saputra et al.,
2023). e problem of ĕnding signiĕcant features for each cluster in
clustered data (e.g., important neural correlates in given functional
states) is similar to a classiĕcation problem with binary indicator
variables for each cluster, so it can be solved using the information
value approach.

e IV is a numerical value that quantiĕes the predictive power
or inĘuence of an independent continuous or categorical variable
on the value of a speciĕed binary variable, i.e., measures the
importance of a feature. IV calculation is based on the weight of
evidence (WoE) coefficients.WoE is closely related to IV andhelps to
understand if a particular range of values of an independent variable
has a higher distribution of events or non-events. e weight of
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evidence describes the relationship between a predictor and a binary
dependent variable, and information value is the measurement of
that relationship’s power.

Figure 3A gives an example ofWoE and IV calculation for better
understanding. For exact formulas and calculation details, refer to
Supplementary material.

2.2.2.2 Interpretation of IV
In simple terms, the information value shows how much the

feature behavior, i.e., distribution in the events subset, differs from
its distribution in the entire dataset. Here is a rule of thumb for using
information value to understand the predictive power of each neural
feature for a given functional cluster of EEG recording:

• IV < 0.2, then the feature is useless for prediction;
• IV varies from 0.2 to 0.4, then the feature has weak

predictive power;
• IV from 0.4 to 0.6, then the feature has medium

predictive power;
• IV from 0.6 to 1, then the predictive power of the feature

is strong;
• IV > 1, very strong predictive power, suspicious behavior

(double check it).

IV signiĕcance thresholds for EEG features are higher than
standard ones, e.g., for credit risk data (Siddiqi, 2006). e reason is
that EEG features are not completely independent variables due to
their time-series structure, especially in the case of averaging over
several adjacent epochs (as for coherence and PLV features).

Figure 3B gives examples of distribution differences in the events
class and the entire dataset for EEG features with IV approximately
equal to 0.2, 0.6, and 1, respectively.

2.3 State-Detecting Algorithm (SDA)

2.3.1 Algorithm idea
e generally accepted clustering approaches are not directly

applicable in this study since they do not take into account the
requirement of continuity in time of the obtained functional clusters
(hypothetically, stages of meditation in our case). Some clustering
methods allow the addition of a time-connectivity constraint, that is,
the requirement that each cluster can be represented as a connected
graph in which neighboring points (i.e., epochs with a distance not
exceeding k seconds) are connected by edges. us, for data with
a non-stationary structure, clusters that are more compact in time
dimension can be formed.

But even with a connectivity constraint, common clustering
methods still do not solve the problem of ĕnding functional states
in time-series data since the resulting clusters are generally not
continuous in time. Clusters can overlap in the time domain, and
some clusters can be inside others or alternate, e.g., one cluster
consists of odd epochs and the other one of even epochs. e result
of applying Ward’s clustering method with a connectivity matrix to
meditation data, illustrating the described cluster behavior, is shown
in Figure 4 in the ĕrst plot of the States-from-Clusters block.

e idea underlying the SDA is to treat the boundaries of clusters
obtained with the use of a time-connectivity constraint as potential

change points between states since there are no epochs similar to
elements of a given cluster before (for le boundary) or aer (for
right boundary) them at a distance of k seconds. us, we sort the
array of le and right boundaries of all the clusters in ascending
order to receive a partition of the epoch space into time-continuous
segments. en, we improve this partition by merging adjacent
segments if they are too short or the inter-cluster distance between
them is too small. As a result of the merging process, only the
best change-point candidates will stay in the array of potential state
boundaries, which separate the segments long enough for the task
objective with a sufficiently large cluster distance between them.
e described steps of forming states are clearly depicted in the
States-from-Clusters block of Figure 4.

e above process provides a partition into states only for a ĕxed
set of clustering parameters, which may not be optimal for a given
task. Since the optimal clustering parameters depend essentially on
the initial data and are unknown in advance, it is reasonable to repeat
the described process of forming potential states from clusters with
varying hyperparameters (number of clusters, distance k between
epochs in the connectivity constraint, minimum state length, etc.),
then combine all the obtained arrays of state boundary candidates
into a single sorted array of epoch indices. Repetitions are possible
in this array, and the frequency of occurrence of an epoch index in it
shows its stability as a potential boundary between functional states.

e next reasonable step is to cluster all elements of the joint
array of potential state boundaries by one or more methods with
a different clustering principle, e.g., K-Means and DBSCAN, to
compare results and choose the best clustering. e centers of
obtained clusters are the epoch indices with the best separating
ability between potential states in feature space, and we can take
them as the resulting state boundaries in the studied EEG data.

e SDA automatically produces the best partition into states
based on state-adapted clustering quality measures and initial task
restrictions set as algorithm hyperparameters (e.g., minimum state
length to avoid the allocation of EEG recording artifacts in a
separate state) for each considered number of states, along with
corresponding clustering parameters and plots for further expert
analysis. e optimal number of ĕnal functional states is selected by
an expert conclusion as a compromise between the best clustering
quality metrics and the conditions of the initial task (required
number of clusters, cluster length restrictions, interpretability,
required level of detail, etc.).

2.3.2 Ward’s method
Among the common clustering methods, a class of

agglomerative hierarchical algorithms can add a connectivity
constraint due to the principle of the sequential merging
of clusters with a possible preliminary check of the
connectivity condition. Of all the agglomerative hierarchical
methods considered (Ward, average, complete, and single
linkage), Ward’s method showed the best clustering quality
metrics on EEG data; therefore, it was chosen as the basis
for the SDA.

A description ofWard’s clusteringmethod and the exact formula
of the Ward distance (the increase of within-cluster variance aer
merging two clusters) used in Ward’s method can be found in

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1301718
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Mikhaylets et al. 10.3389/fninf.2023.1301718

FIGURE 3

Examples of calculating information value. (A) Table with details of the calculation of WoE and IV on the example of PSD feature. (B) Histograms with
examples of distribution differences of PSD features between the events cluster (red) and the entire dataset (blue) depending on their information
value.

the Supplementary material, as well as in many online tutorials
(Contreras and Murtagh, 2015; Virtanen et al., 2020). Ward distance
depends on the size of clusters, which is useful in the clustering
process to balance cluster sizes during formation, but to analyze the
results, we additionally use Centroid distance (Euclidean distance
between cluster centers), which is independent of cluster sizes.

Using the connectivity constraint in Ward’s method allows
us to obtain clusters containing epochs that are close in time,
which is necessary to ĕnd time-continuous functional states during
meditation. We create the connectivity matrix by deĕning the
structure of a connected undirected graph in the epoch space (pairs
of 1-s epochs with a distance not exceeding k seconds for a given
hyperparameter k are connected by an edge). At each step of the
clustering process, the Ward distance between clusters is calculated
only if there is an edge between their elements.

2.3.3 Clustering quality measures
When the ground truth of a dataset is not available, we have to

use intrinsic methods to assess the clustering quality. In general,
intrinsic methods evaluate clustering by examining how well the
clusters are separated and how compact the clusters are.

In this study, we use three main clustering quality measures
that do not require a priori knowledge of cluster labels, i.e., ground
truth (Caliñski and Harabasz, 1974; Davies and Bouldin, 1979;
Rousseeuw, 1987). ey are the Silhouette coefficient, measuring

how similar objects are to their own cluster (cohesion) compared to
other clusters (separation) on average (it varies from−1 for incorrect
clustering to 1 for highly dense clustering), the Calinski-Harabasz
index, also known as Variance Ratio Criterion, characterizing the
average density and separation of clusters as the ratio of variance
between clusters to variance within clusters (it takes positive values
and is higher when clusters are dense and well-separated), and
the Davies-Bouldin index, which measures similarity of clusters
comparing the distance between clusters with the size of the clusters
themselves (zero is the lowest possible score, and values closer to
zero indicate a better partition). Refer to Supplementary material for
the exact formulas and calculation details.

For assessing the quality of functional state structure obtained
with the SDA, we adapted the aforementioned clustering quality
measures to better match the speciĕcs of the task. Our goal is to ĕnd
optimal change-points between different states, that provide the best
separation for adjacent time-continuous functional clusters. Good
data partition into states means well-separated pairs of adjacent
states. Non-adjacent functional states may be similar, and states can
alternate, for example.

So, instead of applying the clustering quality measures to the
entire dataset partition into functional states, which does not solve
the problem, we calculate them on all pairs of adjacent states,
considered as two-cluster datasets, and take the average value. In
this study, we call these adapted quality measures the state-adapted
Silhouette coefficient, Calinski-Harabasz index, andDavies-Bouldin
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FIGURE 4

State-Detecting Algorithm (SDA) pipeline.

index, and use them to choose the best decision in the state-
detecting algorithm.

2.3.4 SDA description
e State-Detecting Algorithm (SDA) consists of two phases.
e 1st phase is an iterative process of searching for potential

state boundaries based on Ward’s hierarchical clustering method
with a connectivity matrix. It is repeated for each triple of
hyperparameters (N, K, and L) varying in ranges, as shown
in Table 1. Table 1 shows the ranges of values speciĕc to this
study for all hyperparameters of the algorithm. Optimal ranges of
hyperparameters were chosen empirically based on the clustering
quality metrics, the nature of the data, and the purpose of our study.

e process of forming potential states is described in the
Section 2.3.1 and illustrated in Figure 4, States-from-Clusters block.
It consists of the following steps.

1. Ward’s clustering is performed for N clusters with a
connectivity matrix based on K neighboring epochs.

2. e array of le and right boundaries of the obtained clusters,
sorted in ascending order, forms a partition of the epoch space
into time-continuous segments, i.e., potential functional states.

3. Each segment consisting of ≤ L epochs is merged with the
nearest (by the Ward distance) of the two adjacent segments
until only segments whose length exceeds L remain (when L =

0 this step is skipped).
4. e pair of segments with the smallest Ward distance Dmin

between them is merged if Dmin ≤ W. Davg, where Davg is

the average value of Ward distance for all pairs of adjacent
segments and W is a ĕxed coefficient. For this study, the
coefficient W is set to 0.3 (Table 1). e merging process
continues until the minimum Ward distance between adjacent
segments exceeds the proportion W of its average value for all
pairs of adjacent segments.

As a result, for each triple (N,K, L) , we get a partition of the
epoch space into potential states with a sufficiently large Ward
distance between them. e obtained partition is represented as a
sorted array of epoch indices that are state boundary candidates, i.e.,
change-points between data segments differing in the behavior of
features. According to Table 1, there are 19 ·31 ·4 = 2, 356 iterations
of the 1st phase of the SDA in our study.

e 2nd phase is a process of choosing the ĕnal state boundaries
based on the results of the 1st phase. Its steps are illustrated in
Figure 4 aer the States-from-Clusters block.

For each triple of hyperparameters (Nmax,Kmax, L) fromTable 1,
a subset Q of triples (N,K, L) is formed, where N and K vary in
ranges [2, Nmax] and [20, Kmax], respectively. For each subset Q,
the following steps are performed.

5. For all triples (N,K, L) of the subset Q, we combine
corresponding arrays of state boundary candidates, obtained
in the 1st phase, into a single array of epoch indices, sorted in
ascending order, which we treat as the array of state boundary
candidates of the ĕnal partition.

6. e obtained joint array of epoch indices is clustered
with KMeans and DBSCAN methods for all values of
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TABLE 1 SDA hyperparameters.

Phase Sign Values Description

Phase 1 N [2, 20] Number of clusters in the Ward’s clustering method

K [20, 50] Maximum distance between epochs in Ward’s connectivity constraint

L {0, 20, 40, 60} Minimum state length in the process of merging segments

W 0.3 Coefficient in the Ward distance requirement for merging segments

Phase 2 Nmax {10, 15, 20} Maximum value of N to construct joint array of state boundaries

Kmax {35, 40, 45, 50} Maximum value of K to construct joint array of state boundaries

NKM [2, 15] Number of clusters in KMeans clustering method

EDBS {0.02, 0.025, 0.03} Maximum sample distance in DBSCAN clustering method

Center type Mean, Median, Mode Types of cluster centers in a given clustering

hyperparameters NKM and EpsDBS, shown in Table 1, to
reveal dense clusters of array points (coincident or close
epoch indices).

7. In each obtained clustering, we select cluster centers of three
types (mean, median, and mode) as candidates for the ĕnal
state boundaries.

en, for each number of clusters NKM and for all the other
considered hyperparameters (Nmax, Kmax, EDBS, center types) of the
2nd phase, varying in ranges as shown in Table 1, the best array of
ĕnal state boundaries is determined based on the maximum state-
adapted Silhouette measure (averaged Silhouette coefficient on all
pairs of adjacent states).

is measure was chosen because it is the best among all
considered clustering measures in determining the right place for
the boundary between two adjacent states since it is calculated for
each sample in both clusters, and samples classiĕed incorrectlymake
a negative contribution to it.

As a result, for eachnumber of clustersNKM, a single sorted array
of epoch indices remains, which is treated as a set of the ĕnal state
boundaries for this number of clusters. e optimal number of the
resulting functional states (equal toNKM+1) is chosen by an expert
conclusion based on the adapted clustering quality metrics (State-
adapted Silhouette, Calinski-Harabasz, Davies-Bouldin measures),
average distances between adjacent functional states (Ward and
Centroid), and the task requirements.

e SDA pipeline was implemented based on the scikit-learn
module in the Python library (Vallat and Walker, 2021).

2.3.5 SDA performance evaluation
Weapplied the SDA to theEEG recordings ofmeditative practice

performed by 30 highly experienced practitioners Subj1–Subj30.
is study provides a detailed demonstration of SDA results in
three subjects, Subj1, Subj2, and Subj3, respectively, and the average
values of the considered quality estimates for all 30 subjects. We
also applied the SDA to surrogate EEG data of Subj1_surrogate,
Subj2_surrogate, and Subj3_surrogate and compared the results.
e idea of such comparison was to analyze and evaluate the SDA
performance and quality of the captured functional states within the

original EEG of meditative practice compared to the EEG data with
poor functional state structure or without it at all.

For the purpose of verifying the stability and separateness of the
functional clusters captured by the state-detecting algorithm, as well
as the SDA’s ability to detect them in a changed order, we rearranged
the obtained states for each participant by random reordering of
corresponding segments in the EEG recording and applied the
algorithm to the rearranged EEG data. e detailed process of
reordering the state structure in meditation data is described in the
Section 2.1.4 (Simulated data).

Inter-state and overall clustering quality obtained by SDA for
subject data and surrogate data were assessed with clustering
metrics, paired statistical comparisons with Bonferroni correction,
information value (IV) analysis, and predictive models. e details
are given below.

2.3.5.1 Clustering quality
In this study, we use ĕve basic clustering measures of the

difference between a pair of adjacent functional states in time-
series data. ese are two types of cluster distances (Ward
and Centroid distances) and three types of intrinsic clustering
quality measures (Silhouette, Calinski-Harabasz, and Davies-
Bouldin scores).

For evaluating the quality of the entire dataset partition
into states, we use these measures averaged over all pairs of
adjacent states and call them state-adapted clustering quality
measures. e description of the aforementioned measures
can be found above in the Sections 2.3.2 and 2.3.3. All the
ĕve speciĕed measures assess the quality of the obtained
partition into functional states and illustrate the mutual
arrangement of time-adjacent states in the feature space, i.e.,
distances between adjacent states, their density and separation
(Silhouette and Calinski-Harabasz scores) and similarity level
(Davies-Bouldin index).

2.3.5.2 Statistical significance
Statistical signiĕcance was estimated for all 1,875 obtained

EEG features, averaged within 15 topographic brain regions,
including 825 features involved in the SDA (PSDs, PSD ratios,
coherence indices, and PLV indices) and 1,050 coherence
and PLV features not used directly in the algorithm. e
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complete list of analyzed EEG features is provided in the
Section 2.2.1.

For each subject Subj1, Subj2, and Subj3 and the
corresponding surrogate data Subj1_surrogate, Subj2_surrogate,
and Subj3_surrogate, statistical differences in EEG features were
examined between each pair of states obtained as a result of
SDA and for each state in comparison with the median value
of the feature. e detailed results of the statistical analysis
of the practitioners’ data compared with surrogate data are
presented in this study and Supplementary material. e
same analysis was performed for the remaining 27 subjects
(Subj4–Subj30), and the average results are also given in
this study.

Since the calculated EEG features are non-normally distributed
(even most of the PSD functions with logarithmic scaling did not
pass the Shapiro–Wilk normality test) and due to the relatively
small size of obtained state clusters, we used the non-parametric
Mann–Whitney U-test to analyze pairs of states and one-sample
Wilcoxon signed-rank test to compare states with the feature general
median value. e obtained p-values were then corrected for
multiple comparisons using the Bonferroni correction procedure
as the strictest correction technique (Van der Weele and Mathur,
2019).

2.3.5.3 Information value analysis
We calculated the average IV across all EEG features for

subject data compared to surrogates; also, we calculated the
proportion of features with medium and strong predictive power
(IV ≥ 0.4 threshold) among all features and speciĕc feature
groups (ĕve frequency band groups and six type-speciĕc groups of
EEG features).

is enabled us to assess the features’ predictive power for
states detected by the SDA in both cases and to reveal the
most important features for each state obtained in the recordings.
e description of the information value approach in feature
exploration and feature importance analysis is given in detail in the
Section 2.2.2.

2.3.5.4 Predictive modeling analysis
Using the partition into functional states obtained by SDA as

the target labels, we built predictive classiĕcationmodels to estimate
feature prediction power in each state and the SDA’s performance
expressed in its ability to produce well-separated states in EEG
feature space if they are naturally present in the data.

All the models are applied only to PSDs (75 features) and PSD
ratios (240 features), described in the Section 2.2.1.2, and used as
SDA-input.We did not use coherence and PLV features in predictive
models, as well as coherence and PLV indices, because they are
calculated for each epoch within a sliding window of ĕve adjacent
epochs, and their values in neighboring epochs of train and test
datasets may depend on each other causing the risk of overĕtting.

We applied three basic classiĕcation methods, Support Vector
Machine, Logistic Regression, and XGBoost Classiĕer, as the most
stable and well-performing on small datasets with imbalanced data
for both multiclass and binary classiĕcation tasks with varying sets
of hyperparameters. For all the machine learning algorithms, the
step of preprocessing input features included ĕltering important
features by their information value (IV ≥ 0.4) for each state in a

training dataset in a binary classiĕcation task (and taking their union
in a multiclass classiĕcation task), z-scoring, and PCA dimension
reduction (20 PCA components le).

In the modeling process, in all cases, test dataset size was
taken with 0.4 proportion, stratiĕed k-fold cross-validation was
used with k = 3 due to the small dataset size, and optimal
hyperparameters for each classiĕer were chosen using the grid
search process through various combinations of hyperparameters
(kernel type and regularization parameter for SVC, solver, penalty
type and regularization strength for Logistic Regression and number
of estimates, maximum depth, subsample ratio, and learning rate
for XGBoost). e best model architecture for each of the classiĕers
is reported in this study. We assessed the model performance
with accuracy and F1 score for a multiclass classiĕcation task and
balanced accuracy and ROC-AUC score for binary classiĕcation.

3 Results

3.1 Overview

In the current study, we focus on presenting and
validating the developed SDA approach, and due to size
limitations, a detailed demonstration of its results is provided
in the study for three meditation recordings Subj1, Subj2,
and Subj3. For the whole dataset (30 EEG recordings),
average values of analyzed quality estimates are given
within the study, and a detailed information on SDA
quality measures for each of the 30 subjects is provided in
Supplementary Tables 2, 3.

e SDA produced stable, well-deĕned functional states for
the EEG recordings of all 30 subjects during meditation practice;
we specify “well-deĕned” as statistically different feature dynamics
within time-adjacent states. Here, we will discuss three of them
in detail—Subj1, Subj2, and Subj3; 9 states were detected within
Subj1 recording; 8 states were obtained in Subj2, and 10 states in
Subj3. e optimal number of states in each case was chosen based
on the local extremum of clustering quality characteristics and the
meditative protocol, which assumes at least eight different stages
to be traced in the data. e clustering results for surrogate data
Subj1_surrogate, Subj2_surrogate, and Subj3_surrogate revealed
low-quality metrics, comparable to random partition into states for
any number of clusters, so we ĕxed for them the same number
of states as for Subj1, Subj2, and Subj3, respectively, for ease
of comparison.

e obtained functional state structure for subjects
Subj1, Subj2, and Subj3 and their surrogate data is shown in
Figure 5A, correspondingly with an indication of the duration
in seconds for each state. It is also presented as a table in
Supplementary Table 4. e scatter plots in Figure 5 also
illustrate the stability of obtained state boundaries (mainly
well-separated and high-density clusters of boundary candidates,
mostly concentrated in one point) in practitioners’ data in
contrast to surrogate data, where we observe mainly spread and
poorly separated boundary clusters in the scatter plots. is
fact demonstrates a well-deĕned state structure of the Tantric
meditation EEG recordings compared to surrogate data, which
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FIGURE 5

(A) Practitioners’ and surrogate EEG data partition into states, obtained by SDA. The 1st row contains three EEG recordings of meditation (Subj1,
Subj2, and Subj3, respectively), and the 2nd row contains corresponding surrogate data (Subj1_surrogate, Subj2_surrogate, and Subj3_surrogate,
respectively). Horizontal axis denotes the epoch index along the recording. Vertical black lines are the final state boundaries obtained as the centers
of corresponding clusters shown on a multicolored scatter plot placed in the box center. The scatter plot represents the joint array of state boundary
candidates obtained in the SDA 2nd phase; dot size reflects the frequency of occurrence of an epoch in this array. The rectangles with the same
colormap along zero-line denote the resulting states. State ID and state total duration (in seconds, s) are shown in black. Vertical axis denotes
standardized clustering quality measures (the values in the range [−0.2;1] were obtained by division by the maximum found among pairs of adjacent
states over participants’ and surrogate data). Dashed polylines show clustering quality measures calculated for each pair of adjacent states (Centroid
distance—green line, Silhouette score—blue line, Davies-Bouldin score—red line). (B) The SDA results on practitioners’ EEG data with rearranged
states. There are results of applying SDA after random rearranging of states within the recordings of meditation, depicted in the 1st row of point (A)
for Subj1, Subj2, and Subj3, respectively. All designations from point (A) are valid for the obtained partition into states in point (B), except
Davies-Bouldin score polyline, which is not shown in point (B). Additionally, red dashed vertical lines denote the rearranged original state boundaries
(the expected boundaries), as well as state IDs and state durations in red color. Dotted light green polyline and dotted light blue polyline denote
Centroid distance and Silhouette score, respectively, between the rearranged initial adjacent states (the expected ones). Dashed green polyline and
dashed blue polyline denote Centroid distance and Silhouette score, respectively, between the new adjacent states, obtained as a result of repeated
application of SDA.

is also conĕrmed by the results of statistical analysis later in
the study.

e values of SDA hyperparameters (see Table 1) corresponding
to the best partition into states are given in Supplementary material
for all six subjects (Supplementary Table 8).

Figure 5B shows the results of the experiment for rearranged
Subj1, Subj2, and Subj3 data. In all three cases, SDA captured the
initial functional states and rearranged them in a randomorder, with
a slight deviation not exceeding 10 s (see Supplementary Table 6).
Tables with clustering characteristics for the obtained state structure
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FIGURE 6

EEG features behavior in states of Subj1’s practice recording. Horizontal axis denotes the epoch index along the recording. Vertical black lines are the
state boundaries. Black numbers at the top of each plot are the state IDs. Blue lines denote EEG features dynamics along the recording. The features
are PSDs (1st row), coherence, and PLV Indices with threshold 0.7 (2nd and 3rd row, respectively) in five frequency bands, averaged over all 38
channels. Red lines represent the Median ± IQR for a selected feature in each state.

and initial state boundaries in the data with randomly rearranged
states are given in Supplementary Tables 6, 7.

Further analyses are presented for both subject and surrogate
states for contrast.

3.2 Clustering metrics comparison

e standardized values of the three most representative
measures, independent of cluster sizes (Centroid distance, state-
adapted Silhouette, and Davies-Bouldin scores), calculated for each
pair of adjacent states, are given in Figure 5 for three subjects
Subj1, Subj2, and Subj3. For example, from Figure 5, we see that the
most distant states in the Subj1 recording are the 5th and the 8th,
but the 8th state has more similar epochs with its adjacent states
than the 5th. Figure 6 demonstrates these interstate differences in
feature space.

Table 2 represents the main clustering parameters (ĕve
aforementioned averaged measures for pairs of adjacent states) for
the obtained functional state structure of the Buddhist practitioners’
recordings and the corresponding surrogate data, detailed for Subj1,
Subj2, and Subj3 and averaged for all 30 subjects. We can conclude
from Table 2 that all the clustering parameters differ signiĕcantly
between the two groups of subjects—practitioners and surrogate
data (from 4 to 100 times depending on the type of measure). A
detailed table with clustering quality measures for each of the 30
subjects can be found in Supplementary Table 2.

Figure 5 also shows that clustering quality measures for each
pair of adjacent states in the practitioners’ EEG recordings are
substantially (several times) better than those in surrogate data
(Centroid distance and Silhouette coefficient are higher, andDavies-
Bouldin index is lower).

e results of comparing clustering quality measures conĕrm
the presence of a structure of well-separated functional clusters in
the EEG recordings of the Buddhist Tantric meditation captured by
the SDA, and on the contrary, a poor functional state structure or
even absence of it in the surrogate data. A table with the values of all
ĕve clustering quality measures on each pair of adjacent states for
Subj1, Subj2, and Subj3 and their corresponding surrogate data can
be found in Supplementary Table 5.

3.3 Statistical comparison

In all cases, SDA detects functional states in the practitioners’
meditation recordings with high statistical reliability of differences
in neural features. Table 3 for each pair of states shows the
proportion of statistically signiĕcant features with a conĕdence level
of p-value < 0.01 of the number of all EEG features for subjects
Subj1 and Subj1_surrogate respectively (Mann-WhitneyU-test with
Bonferroni correction).

According to Table 3A, the proportion of statistically signiĕcant
features between adjacent states (the 2nd diagonal of the matrix)
varies from 23 to 39% for the practitioner Subj1, 32% on average,
which indicates considerable differences in the behavior of neural
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TABLE 2 Clustering quality measures of EEG data partition obtained by SDA.

Subject Number
of states

Cluster
center type
for state
boundaries

Averaged over pairs of adjacent states

Ward
distance

Centroid
distance

Silhouette
coefficient

Calinski-
Harabasz
index

Davies-
Bouldin
index

Subj1 9 Mode 23,293 20.7 0.197 67.5 1.7

Subj2 8 Mode 17,853 12.4 0.102 59.4 2.9

Subj3 10 Mode 11,874 14.7 0.112 32.8 2.7

Subj1_surrogate 9 Median 771 3.6 0.002 1.4 13.2

Subj2_surrogate 8 Median 856 2.5 0.001 1.9 17.1

Subj3_surrogate 10 Mode 942 3.9 0.001 1.7 12.4

Average for 30 subjects Subj1–Subj30 12,509 10.9 0.127 68.7 3.1

Average for surrogate data 856 3.4 0.001 1.7 14.2

TABLE 3 State pairwise statistical significance (A) in practitioner’s Subj1
EEG data; (B) in surrogate data Subj1_surrogate.

(A) Subj1

% St1 St2 St3 St4 St5 St6 St7 St8 St9

St1 0 31 57 37 51 45 53 50 45

St2 31 0 32 28 45 39 31 40 22

St3 57 32 0 25 46 42 15 36 10

St4 37 28 25 0 39 31 13 39 11

St5 51 45 46 39 0 39 45 12 33

St6 45 39 42 31 39 0 29 38 26

St7 53 31 15 13 45 29 0 37 8

St8 50 40 36 39 12 38 37 0 23

St9 45 22 10 11 33 26 8 23 0

(B) Subj1_surrogate

% St1 St2 St3 St4 St5 St6 St7 St8 St9

St1 0 0 0 0 0 0 0 0 0

St2 0 0 0 0 0 0 0 0 0

St3 0 0 0 0 0 0 0 0 0

St4 0 0 0 0 0 0 0 0 0

St5 0 0 0 0 0 0 0 0 0

St6 0 0 0 0 0 0 0 0 0

St7 0 0 0 0 0 0 0 0 0

St8 0 0 0 0 0 0 0 0 0

St9 0 0 0 0 0 0 0 0 0

For each pair of states, obtained by SDA, at the intersection of the corresponding row
and column, the percentage of signiĕcantly different features is indicated according to the
Mann–Whitney U-test with Bonferroni correction (p < 0.01).

features between states and a good ability of the SDA to capture
the functional state structure of EEG data. ere are no signiĕcant
features for Subj1_surrogate data, which means the absence of
temporal structure. A small number of signiĕcant features may be
present in surrogate data since the state boundaries are not random
but are determined by the SDA, which can detect small Ęuctuations
even in shuffled data.

Analogous tables with similar results for subjects Subj2 and
Subj2_surrogate and Subj3 and Subj3_surrogate can be found in
Supplementary Tables 10, 11.

e average proportion of statistically signiĕcant features
between adjacent states for all 30 subjects Subj1–Subj30 varies from
16 to 54% with a mean value of 36% (for detailed information,
refer to Supplementary Table 3). On the contrary, for surrogate data,
there are no statistically signiĕcant features at all.

e Supplementary material section also provides tables with
detailed information on feature signiĕcance in functional states vs.
feature median value for the three subjects Subj1, Subj2, and Subj3
(one-sample Wilcoxon signed-rank test with Bonferroni correction,
p < 0.01). ese tables contain the total proportion of signiĕcant
features compared to the corresponding surrogate data (the results
of the comparison are very close to those for pairs of states—high
statistical signiĕcance in practitioners’ data in contrast to the
absence in surrogate data) and the proportion of signiĕcant features
in a group for different groups of EEG features (ĕve frequency
band groups, nine brain region groups, and six feature type groups),
which allows us to analyze and compare feature signiĕcance in these
groups for each state (Supplementary Tables 12–14). e average
signiĕcance in states versus median value for all 30 subjects varies
from 20 to 70% with a mean value of 41% and is given in detail for
each of the subjects Subj1–Subj30 in Supplementary Table 3, while
for surrogate data, it is zero.
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FIGURE 7

PSD interstate dynamics in five frequency bands and nine spatial ROIs in Subj1’s practice recording. Data are represented as Median ± IQR for nine
states shown on the horizontal axis. The box in the left upper corner illustrates z-scored PSDs averaged over all 38 channels for five frequency bands:
delta (D—blue line), theta (T—orange line), alpha (A—green line), beta (B—red line), and gamma (G—purple line). With respect to the five frequency
bands, the rest five boxes illustrate the average dynamics of PSDs in nine spatial ROIs: pre-frontal (Fp—blue line), left frontal (LF—orange line), midline
frontal (MF—green line), right frontal (RF—red line), left temporal (LT—purple line), right temporal (RT—brown line), central (Cen—pink line), parietal
(Par—gray line), and occipital (Occ—khaki line).

FIGURE 8

Topographic maps of PSD features for Subj1 and Subj1_surrogate. PSDs are compared within the obtained states of practitioner’s and surrogate data
(columns) and five frequency bands (rows). Yellow markers denote a significant (p < 0.01) difference with the median PSD value of the EEG recording
according to the one-sample Wilcoxon signed-rank test, followed by Bonferroni correction.
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Figure 6 illustrates the differences in feature behavior between
the obtained states in Subj1’s practice recording. For each state in
Figure 6, we can observe essentially different behavior compared to
adjacent states of at least one type of feature used as SDA input (PSD,
coherence index, and PLV index) in at least one of the ĕve frequency
bands. From Figure 6, we can clearly see how these differences
in feature behavior were captured by the SDA in the resulting
states, and we can analyze the behavior of neural correlates for
each state (which could reĘect the meditation stage). e analogous
ĕgures for practitioners Subj2 and Subj3, as well as for surrogate
data Subj1_surrogate, Subj2_surrogate, and Subj3_surrogate, can be
found in Supplementary Figures 1–5.

Figure 7 shows detailed interstate differences in the behavior of
PSD features within ĕve frequency bands over nine spatial ROIs for
Subj1. It provides a better understanding of PSD features behavior
and their spatial organization in the obtained states. For illustrative
purposes, we describe the most essential properties of found states
in terms of PSD features for the practitioner Subj1, according to
Figure 7. ey are also reĘected in the statistical signiĕcance and
information values of these features.

From Figure 7, we can observe high Gamma activity in the right
frontal area in the 1st and 2nd states at the beginning and the end
of the meditation, which monotonously decreases and stabilizes
from the 3rd state. ere are also sharp drops of theta, alpha, and
beta powers in the 5th and 8th states (for theta, not in all the
brain regions; the pre-frontal and le temporal areas have their own
trend). Delta activity increases from the 1st state in all the brain areas
and peaks in the pre-frontal region in the 5th state.

Statistical plots similar to Figure 7 for all types of EEG features
used as input in the SDA (PSD, PSD ratio, coherence index,
and PLV index features) can be found in Supplementary material
for each of the three practitioners Subj1, Subj2, and Subj3
(Supplementary Figures 6–17).

Topographic maps of PSD features of practitioner Subj1,
represented in Figure 8, illustrate their PSD dynamics and
localization for all obtained states in the recording and the number
and localization of signiĕcant features; the same picture is given for
Subj1_surrogate data for contrast. Analogous topographic plots for
Subj2 vs. Subj2_surrogate and Subj3 vs. Subj3_surrogate are given
in Supplementary Figures 18–20.

3.4 Information value analysis

Since the functional states obtained by SDA in the original EEG
data are well-deĕned, i.e., differ from each other substantially and
have a lot of statistically signiĕcant features, we thresholded features
with medium and strong predictive power (IV ≥ 0.4) during the
IV analysis.

Table 4 represents the detailed IV analysis results for Subj1.
Total average IV and proportion of features with IV ≥ 0.4 (features
with medium and strong predictive power) are given in comparison
with surrogate data Subj1_surrogate. In Table 4 for all the states,
we observe the same pattern as in the feature statistical signiĕcance
analysis. Information values of features are substantially higher for
the obtained partition into states of initialmeditation recording than
for corresponding surrogate data.
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e total average IV for Subj1 varies from 0.3 to 0.97 depending
on state, and the proportion of features with IV ≥ 0.4 (which
corresponds to sufficiently high predictive power) varies from 17 to
61% from the total number of 1,875 EEG features. In contrast, the
average IV for surrogate data Subj1_surrogate does not exceed 0.07,
which means the absence of predictive power, and the proportion
of important features (IV ≥ 0.4) is zero, i.e., there are no important
features at all for obtained states.

Table 4 also provides detailed information on the proportion
of important features in different feature groups for Subj1 (ĕve
frequency band groups and six type-speciĕc groups of EEG
features). is allows us to analyze and compare the importance
of different groups of features for obtained states within the
EEG recording of meditation. e Supplementary material section
contains an extension of Table 4 with the addition of nine brain
region groups and analogous results for practitioners Subj2 and
Subj3 in comparison with surrogate data Subj2_surrogate and
Subj3_surrogate, respectively (Supplementary Tables 15–17).

e total average IV and the proportion of features with IV ≥
0.4 averaged over states for each of the 30 subjects Subj1–Subj30 can
be found in Supplementary Table 3 and varies in the range 0.21–0.83
with an average of 0.44 for IV score and in the range 14–54% with
an average of 30% for the proportion of important features. On the
contrary, the average IV score for surrogate data does not exceed
0.05, and the proportion of important features is zero.

Feature predictive power based on the IV analysis is conĕrmed
by the quality measures of classiĕcation models predicting obtained
functional states, which are described in the next section.

3.5 Predictive modeling analysis

From Figure 9A, we can see sufficiently high accuracy and
F1 quality measures of all the models (even based only on PSD-
related features, without using coherence and PLV indices) in the
multiclass classiĕcation task of predicting obtained state structure
for practitioner Subj1 (accuracy 0.82 on the best model), pointing
to well-separated nine functional states in his meditation recording,
captured by SDA, in contrast with surrogate data Subj1_surrogate
(accuracy 0.16 on the best model), showing model performance
comparable to random choice for all the three classiĕers, which
points to almost absence of state structure in data.

e confusion matrix in Figure 9B illustrates sufficiently good
multiclass classiĕcation results for all states of Subj1 recording
except for states 7 and 9, inwhich one-third to one-half of the epochs
are misclassiĕed. As we can see from Table 4 with the IV analysis
results, states 7 and 9 contain only 7%, that is, about 70 epochs.ey
are the smallest ones on par with state 4, but they have less important
PSD and PSD ratio features (used in the modeling process) than
state 4, according to Table 4.ese two factors (small size and lack of
predictive power) cause underĕtting of the classiĕers in states 7 and
9 on PSD features, which we can also observe in binary classiĕcation
results represented in Figure 9C.

All the binary classiĕers perform well for all states of Subj1
practice recording except states 7 and 9 (0.79 balanced accuracy
and 0.92 ROC AUC on average). All three models corresponding to
states 7 and 9 have low balanced accuracy but reasonably high ROC

AUC score, which means good enough ranking of probability rates
but incorrect choice of threshold for classifying events and non-
events due to lack of events in the dataset, which is not compensated
by the predictive power of features.

In contrast, all the binary classiĕers for all states of surrogate
data Subj1_surrogate have balanced accuracy and ROC AUC scores
comparable to random choice (0.5± 0.02 for balanced accuracy and
0.5 ± 0.1 for ROC AUC), which means poor predictive power of
EEG features in states and conĕrms the absence of state structure
in the surrogate data. e analogous tables for Subj2 and Subj3 and
their corresponding surrogate data with similar results can be found
in Supplementary Figures 21, 22.

Figure 10 illustrates the discussed pattern by representing the
ROC curves for all the states of Subj1 and Subj1_surrogate for binary
classiĕcation models, which provide the best average performance
in balanced accuracy (Logistic Regression for Subj1 and XGBoost
for Subj1_surrogate). From Figure 10, we can conclude that binary
classiĕcationmodels for surrogate data Subj1_surrogate, reĘected in
ROC curves, are close to completely random classiĕcation for all the
predicted states.

On the other hand, ROC curves for all the states of Subj1′s
meditation recording have a clearly deĕned convex shape, and
their ROC-AUC varies from 0.86 to 1 depending on the state,
even for PSD-only dataset, which indicates a fairly good predictive
power of PSD features in states and therefore well-separated
functional states, obtained by SDA. e analogous plots for Subj2
and Subj3, in contrast with Subj2_surrogate and Subj3_surrogate,
respectively, demonstrating a similar pattern are represented in
Supplementary Figures 23, 24.

Multiclass classiĕcation models for all 30 practitioners’
meditation recordings demonstrate fairly high performance
(whereas they used only PSD-related features, although the SDA
also used coherence and PLV indices as input) varying in accuracy
from 0.49 to 0.88 with an average of 0.67 and in F1 score from
0.41 to 0.86 with an average of 0.64, as opposed to an average 0.15
accuracy and 0.11 F1 score on the best model for surrogate data,
comparable to random choice.

Average binary classiĕers performance (on PSD and PSD ratio
features only) for all 30 subjects varies in balanced accuracy from
0.6 to 0.91 with a mean value of 0.74 and in ROC AUC score from
0.79 to 0.99 with a mean of 0.91 in contrast with surrogate data
demonstrating random classiĕcation for all the predicted states (0.5
± 0.02 for balanced accuracy and 0.5 ± 0.15 for ROC AUC).

Multiclass classiĕers and average binary classiĕer performance
metrics for each of the 30 subjects Subj1–Subj30 can be found in
Supplementary Table 3.

4 Discussion

e goal of this study was to develop an approach for analyzing
EEG recordings of the meditative process with eight strictly
regulated states in Buddhist monks to check for long-lasting quasi-
stationary segments comparable in their number and duration to the
stages of the meditative process.

e SDA approach is the initial step in the study of a
meditative process with a strictly regulated number of stages, the
so-called dissolution process in Buddhism. e neurophysiology
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FIGURE 9

Predictive modeling analysis for Subj1 in comparison with Subj1_surrogate. (A) Multiclass classification accuracy and F1 score on test data (stratified
sample of size 0.4 of the entire dataset) for three types of classifies predicting nine states produced by the SDA. (B) Multiclass confusion matrix for
test data using the classifier with the best performance (Logistic Regression for Subj1 and XGBoost for Subj1_surrogate). (C) Binary classification
balanced accuracy and ROC AUC on test data for three types of classifications predicting each state.

of this type of meditation is addressed for the ĕrst time in
the world.

e main challenge is that monks-subjects
cannot give reports on the transition from one
stage to another during the meditation process;
that is why we introduced SDA as essentially a
data-driven technique.

e SDA can be considered as a preprocessing step for
further neurophysiological data description and generalization
on a sample of more than 30 meditation recordings of
monk-subjects recorded in the same paradigm described
in the Section 2 with strictly controlled and ecologically
valid experimental conditions (staged Guhyasamaja
meditation protocol, subject’s questionnaire aer practice,
and EEG recorded in monasteries located in India
and Nepal).

e results of the SDA states annotation obtained
for the 30-subject sample are given in the Section 3 and
Supplementary material sections. e neurophysiological
results are planned to be published as a separate article,
while in this study, we present the SDA as a method
designed speciĕcally to process such a unique dataset
and trace Guhyasamaja meditation hidden dynamics
on EEG.

4.1 SDA performance

We performed a comprehensive initial validation of the
proposed algorithm that veriĕed the high sensitivity of SDA and the
high quality of detection of functional states in EEG recordings in
the presence of a non-stationary structure in a given feature space.
e following methods are used in the study to check the quality of
the developed algorithm.

4.1.1 SDA performance on rearranged states
To verify the sensitivity of the SDA and stability of obtained

functional states in the practitioners’ recordings, i.e., potential stages
of meditative practice protocol, we randomly rearranged the found
states and ensured that SDA stably reproduces them.

e small deviation of found change-points in the rearranged
data (<10 s), see Figure 5B and Supplementary Table 6, conĕrms
the presence of a well-deĕned stable structure of functional
states (presumably, stages of meditation) in the practitioners’ EEG
recordings, accurately captured by the SDA.

Well-deĕned state structure of EEG data assumes a signiĕcant
difference in the feature space between time-adjacent functional
states. At the same time, non-neighboring states can be very similar,
for example, states can alternate. If two similar functional clusters
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FIGURE 10

ROC curve plots for binary classifiers, predicting states obtained by SDA for Subj1 and Subj1_surrogate. ROC curves are represented for the
classifiers, showing the best average performance (Logistic Regression for Subj1 and XGBoost for Subj1_surrogate). Blue ROC curve corresponds to
Subj1, orange one to Subj1_surrogate, and green dotted diagonal line denotes a completely random classifier. The AUC (Area Under Curve) is the
area enclosed by the ROC curve. A perfect classifier has AUC = 1, while a completely random classifier has AUC = 0.5.

become adjacent as a result of the rearrangement of the initial
states, and their cluster distance is too small, the SDA, applied to
the reordered data, can treat them as a single cluster and offer a
better partition into states in terms of clustering quality measures
underlying the algorithm.

We encounter such a situation in the case of Subj2 and Subj3with
randomly rearranged states, as shown in Figure 5B. e partition of
Subj2’s rearranged data into nine states, obtained by SDA, accurately
captures all the eight reordered initial functional states (and places
an additional state boundary), while the partition into eight states
differs in one state boundary from the reordered initial one because
some similar non-neighboring initial states become adjacent aer
rearrangement, and the algorithm ĕnds a better partition with
slightly higher average Silhouette score and Centroid distance. A
similar situation is with Subj3’s rearranged data—the partition into
11 states captures all the 10 reordered initial functional states,
while the partition into 10 states differs in one state boundary,
which provides slightly better average clustering quality metrics. See
Figure 5B and Supplementary Tables 6, 7 for details.

4.1.2 SDA performance on real and surrogate
EEG data

1. We calculated the Ward and Centroid distances between
functional states obtained by the SDA, as well as three main
intrinsic (i.e., without ground truth) clustering quality metrics
(state-adapted Silhouette, Calinski-Harabasz, and Davies-
Bouldin), totally ĕve types of measures, for the original
recordings compared with corresponding surrogate EEG with
shuffled epochs. We found considerable differences between
the original and surrogate data, ranging from 4 to 100 times
depending on the type of quality measure (see the Section 3).

2. For each pair of functional states and each state vs.
global average, the statistical signiĕcance of all EEG features
was calculated using the Mann–Whitney and the Wilcoxon
criteria with Bonferroni correction for the practitioners’
recordings compared to surrogate EEG data. e statistical
analysis revealed a considerable amount of signiĕcantly
different features for the practitioners’ recordings and an
inconsequential amount for surrogate data.
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3. For each functional state, the information values of all
EEG features were calculated for both the practitioners and
surrogate data, and the comparison results were analyzed. is
enabled us to assess the features predictive power for states
detected by the SDA in cases of the presence/absence of time-
continuous structure within the data and to reveal the most
important features for each state obtained in the recordings.
e IV analysis also revealed a substantial number of important
EEG features for all found states in participants’ recordings and
an insigniĕcant number of them in the surrogate data.

4. For all the recordings, as well as for the surrogate data, binary
classiĕcation models were built to predict the occurrence of
an epoch in each found state, as well as multiclass models, to
predict the entire partition using threemethods (SVM, Logistic
Regression, and XGBoost classiĕers). en, the analysis and
comparison of quality metrics of the classiĕcation results were
performed to assess the predictive power of EEG features
for obtained states of subjects and surrogate data. We got
sufficiently high accuracy in predicting functional states within
recording for all the practitioners, which conĕrmed the strong
predictive power of EEG features for them and the quality of
prediction comparable to random selection for corresponding
surrogate data.

To conclude, the State-Detecting Algorithm (SDA) has
successfully passed all the listed validations.

4.2 Limitations of the study

is study faces certain limitations, with the choice of a suitable
control condition being a crucial yet challenging aspect. While
options such as repetitive meditation by the same subjects or
recording their resting state were considered, there is no guarantee
that these conditions will serve as a deĕnitive and proper control.
In the case of repetitive meditations, there is a pitfall that each
meditative practice is a unique self-induced state; there is no
guarantee that the same subject will produce the same number of
states with comparative duration and neural characteristics. At the
same time, the resting state recording of experienced practitioners
could reĘect potential biases and may not fully encapsulate the
diverse dynamics present in other cognitive states.

Furthermore, establishing a clear connection between the
obtained functional states and distinctmeditation stages is vital for a
comprehensive understanding of the SDA algorithm’s applicability.
In this study, we present the SDA and its validation on real and
surrogate data and a general methodology, how to obtain and
analyze the states of an individual EEG recording of Guhyasamaja
meditation on an example of 30 subjects (3 monks recordings
were taken for an extended demonstration). Our next article will
be dedicated to a more extensive exploration and systematization
of the diverse states observed in 30 Guhyasamaja meditation
recordings. e analysis of the between-monks variability and
revealing trends observed in the sample will be the focus of a distinct
and forthcoming study.

In addition, we would like to check the SDA performance on
more conventional datasets to prove that this approach has the

potential for wide application. It is essential to conduct further
testing on datasets with publicly available ground truth (GT)
labeling, particularly in scenarios such as sleep stages classiĕcation.
ese limitations will also be addressed in the next articles.

5 Conclusion

To solve the problem of detecting stages in ongoing EEG
recording of Buddhist Tantric Guhyasamaja meditation, i.e., the
optimal change-points between different functional states, in the
absence of ground truth, we proposed a data-driven unsupervised
algorithm based on hierarchical clustering techniques called State-
Detecting Algorithm (SDA). To the best of our knowledge, this is
considered the ĕrst automated unsupervised data-driven method
that ĕnds natural time-continuous functional clusters in time-series
data, withmaximizing differences between time-adjacent clusters in
a given feature space.

e performance of the proposed SDA was investigated
on Guhyasamaja meditation EEG recordings of 30 Buddhist
practitioners in comparison with surrogate data obtained by
shuffling epochs of the original EEG recordings.

e dramatic contrast of SDA performance on the meditation
practice EEG recordings and surrogate data was observed. Post-hoc
analyses of the real meditation recordings revealed:

1) Clustering quality metrics of the practitioners’ EEG data
partition into states are several times higher than the values for
surrogate data.

2) Signiĕcant statistical differences between time-adjacent states
were observed in a substantial amount of EEG features.

3) Information value analysis revealed a considerable number of
features with strong predictive power for each state.

4) Supervised ML classiĕcation algorithms are easily trained to
predict the states obtained by SDA with high accuracy.

In contrast, none of these results were replicated on surrogate
data with the lack of temporal structure.

An additional test of the sensitivity of the SDA was carried
out, showing that aer randomly rearranging the obtained states in
practitioners’ EEG data, the algorithm stably reproduces them. is
indicates not only the high sensitivity and robustness of the SDA but
also the presence of a well-deĕned state structure in the Buddhist
practitioners’ meditation recordings.

During the study, the most important neural features and
their localization in the cerebral cortex were identiĕed for all
discovered functional states for each practitioner based on the
information value metric, their level of statistical signiĕcance, and
their contribution to the accuracy of classiĕcationmodels predicting
the states.

e SDA developed to detect time-continuous data segments
that differmost in the behavior of features may be of use not only for
EEGdata but also for time-series data of arbitrary naturewith a non-
stationary temporal structure in a given feature space for capturing
and investigating hidden functional states.

Furthermore, we plan to present the results of a
comparative analysis of the functional states obtained
using the SDA on 30 EEG recordings of Buddhist Tantric
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Guhyasamaja meditation practice performed by 30
Tibetan monks, reveal common tendencies, and describe
the behavior of general neural correlates accompanying
the practice.
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