
TYPE Original Research

PUBLISHED 10 February 2023

DOI 10.3389/fninf.2023.941696

OPEN ACCESS

EDITED BY

Thomas Nowotny,

University of Sussex, United Kingdom

REVIEWED BY

Marcel Stimberg,

Sorbonne Université, INSERM, CNRS, Institut de

la Vision, France

Johanna Senk,

Julich Research Center (HZ), Germany

*CORRESPONDENCE

Martin Paul Nawrot

martin.nawrot@uni-koeln.de

RECEIVED 23 May 2022

ACCEPTED 16 January 2023

PUBLISHED 10 February 2023

CITATION

Schmitt FJ, Rostami V and Nawrot MP (2023)

E�cient parameter calibration and real-time

simulation of large-scale spiking neural

networks with GeNN and NEST.

Front. Neuroinform. 17:941696.

doi: 10.3389/fninf.2023.941696

COPYRIGHT

© 2023 Schmitt, Rostami and Nawrot. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

E�cient parameter calibration and
real-time simulation of large-scale
spiking neural networks with GeNN
and NEST

Felix Johannes Schmitt, Vahid Rostami and Martin Paul Nawrot*

Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany

Spiking neural networks (SNNs) represent the state-of-the-art approach to the

biologically realistic modeling of nervous system function. The systematic calibration

for multiple free model parameters is necessary to achieve robust network

function and demands high computing power and large memory resources. Special

requirements arise from closed-loop model simulation in virtual environments

and from real-time simulation in robotic application. Here, we compare two

complementary approaches to e�cient large-scale and real-time SNN simulation.

The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple

CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly

parallel GPU-based architecture to gain simulation speed. We quantify fixed and

variable simulation costs on single machines with di�erent hardware configurations.

As a benchmark model, we use a spiking cortical attractor network with a topology

of densely connected excitatory and inhibitory neuron clusters with homogeneous

or distributed synaptic time constants and in comparison to the random balanced

network. We show that simulation time scales linearly with the simulated biological

model time and, for large networks, approximately linearly with the model size as

dominated by the number of synaptic connections. Additional fixed costs with GeNN

are almost independent of model size, while fixed costs with NEST increase linearly

with model size. We demonstrate how GeNN can be used for simulating networks

with up to 3.5 · 106 neurons (> 3 · 1012 synapses) on a high-end GPU, and up to

250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was

achieved for networks with 100, 000 neurons. Network calibration and parameter grid

search can be e�ciently achieved using batch processing. We discuss the advantages

and disadvantages of both approaches for di�erent use cases.

KEYWORDS

computational neuroscience, attractor neural network, metastability, real-time simulation,

computational neuroethology, spiking neural network (SNN)

Introduction

Information processing in animal nervous systems is highly efficient and robust. The vast

majority of nerve cells in invertebrates and vertebrates are action potential generating (aka

spiking) neurons. It is thus widely accepted that neural computation with action potentials in

recurrent networks forms the basis for sensory processing, sensory-to-motor transformations,

and higher brain function (Abeles, 1991; Singer and Gray, 1995). The availability of increasingly

detailed anatomical, morphological, and physiological data allows for well-defined functional

SNNs of increasing complexity that are able to generate testable experimental predictions

at physiological and behavioral levels. SNNs have thus become a frequent tool in basic

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.941696
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.941696&domain=pdf&date_stamp=2023-02-10
mailto:martin.nawrot@uni-koeln.de
https://doi.org/10.3389/fninf.2023.941696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.941696/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

(Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000), translational

(McIntyre and Hahn, 2010; Eliasmith et al., 2012), and clinical

(Hammond et al., 2007; Kasabov and Capecci, 2015) neuroscience

research. In the applied sciences, brain-inspired SNNs have the

potential to shape future solutions for intelligent systems (Neftci et al.,

2013; Chicca et al., 2014; Schuman et al., 2022). This specifically

includes spike-based approaches to machine learning (Gütig and

Sompolinsky, 2006; Indiveri et al., 2010; Schmuker et al., 2014; Gütig,

2016; Pfeiffer and Pfeil, 2018; Zenke and Ganguli, 2018; Tavanaei

et al., 2019; Rapp et al., 2020), reservoir computing (Büsing et al.,

2010; Tanaka et al., 2019), and brain-inspired control architectures

for artificial agents and robots (Helgadóttir et al., 2013; Rapp and

Nawrot, 2020; Sakagiannis et al., 2021; Bartolozzi et al., 2022;

Feldotto et al., 2022). Computation with attractor networks has

been hypothesized as one hallmark of brain-inspired computation

(Hopfield, 1982; Amit and Brunel, 1997) and, with increasing

evidence, has been implicated in decision-making (Finkelstein et al.,

2021), working memory (Sakai and Miyashita, 1991; Inagaki et al.,

2019), and sensory-motor transformation (Mazzucato et al., 2019;

Wyrick andMazzucato, 2021; Mazzucato, 2022; Rostami et al., 2022).

The conventional tool for the simulation of SNNs are CPU-based

simulation environments. Several well-adopted simulators are in

community use (Brette et al., 2007; Tikidji-Hamburyan et al., 2017),

each of which has typically been optimized for specific purposes such

as the simulation of complex neuron models with extended geometry

and detailed biophysics (Hines and Carnevale, 2001), the convenient

implementation of neuron dynamics by means of coupled differential

equations (Stimberg et al., 2019), or the implementation of the

Neural Engineering Framework (NEF) (Eliasmith and Anderson,

2003; Bekolay et al., 2014). The NEural Simulation Tool (NEST,

https://www.nest-simulator.org/, Gewaltig and Diesmann, 2007) that

we consider here was designed for the parallelized simulation of large

and densely connected recurrent networks of point neurons. It has

been under continuous development since its invention under the

name of SYNOD (Diesmann et al., 1995, 1999; Rotter and Diesmann,

1999; Morrison et al., 2005, 2007; Jordan et al., 2018) and enjoys a

stable developer and a large user community. More recently, new

initiatives have formed to harness GPU-based simulation speed for

the modeling of SNNs (Fidjeland et al., 2009; Nageswaran et al.,

2009; Mutch et al., 2010; Brette and Goodman, 2012; Florimbi

et al., 2021; Golosio et al., 2021; Ben-Shalom et al., 2022). The

GPU-enhanced Neural Network (GeNN) simulation environment

(https://genn-team.github.io/genn/) developed by Thomas Nowotny

and colleagues (Yavuz et al., 2016; Knight and Nowotny, 2021;

Knight et al., 2021) is a code generation framework (Blundell et al.,

2018) for SNNs and their use in computational neuroscience and

for machine learning (Knight and Nowotny, 2022). Neuromorphic

hardware (Ivanov et al., 2022; Javanshir et al., 2022) provides an

alternative substrate for the simulation of SNNs and is not considered

here.

The present study aims to evaluate the use of a GPU-based

simulation technique (GeNN) in comparison with a CPU-based

simulation technique (NEST) with respect to simulation speed

independent of network size and in the context of efficient parameter

search. We restricted our benchmark approach to simulations on

single machines with multiple CPU cores. These machines can be

considered standard equipment in a computational lab. In addition

we compare simulation performance on a high-end GPU with

an affordable low-cost GPU that can be used, e.g., for teaching

purposes. Based on our experience, we provide practical advice in the

Supplementary material along with documented code.

Results

Spiking neural attractor network as
benchmark model

We performed simulations of the spiking cortical attractor

network model established by Rostami et al. (2022). This network

inherits the overall network structure of the random balanced

network (RBN, Van Vreeswijk and Sompolinsky 1996; Brunel 2000)

with random recurrent connections (drawn from the Bernoulli

distribution) among excitatory and inhibitory neurons (Figure 1A)

but introduces a topology of strongly interconnected pairs of

excitatory and inhibitory neuron populations (E/I clusters, Figure 1B)

by increasing the intra-cluster synaptic weights (see SectionMaterials

and methods). This E/I clustered network exhibits a complex pattern

of spontaneous network activity, where each cluster can dynamically

switch between a state of low (baseline) activity and states of increased

activity (Figure 1). This network behavior marks the desired feature

of metastability (Rost et al., 2018; Mazzucato et al., 2019; Rostami

et al., 2022) where the network as a whole cycles through different

attractors (or network-wide states) that are defined by the possible

cluster activation patterns.

The pairwise Bernoulli connectivity scheme with a connection

probability p between any pair of neurons implies that the number

of synapses M scales quadratically with the number of neurons N

as M = pN2. For the chosen network parameters, we obtain an

overall connectivity parameter of p ≈ 0.3 (see Section Materials

and methods). The clustered network topology in our benchmark

model results from stronger synaptic excitatory and inhibitory

weights within each E/I cluster than between different E/I clusters

(Figure 1B). This compartmentalized architecture suits well our

benchmarking purpose because it is reminiscent for whole-system

or multi-area modeling in large-scale models that involve several

neuropiles or brain areas (Schmidt et al., 2018; Rapp and Nawrot,

2020). We kept the number of clusters fixed to NQ = 20.

Benchmark approach and quantification of
simulation costs

We benchmark performance by measuring the wall-clock time of

the simulation. We differentiate fixed costs Tfix that are independent

of the biological model time to be simulated, and variable costs

Tvar determined by the simulation speed after model generation (see

Section Materials and methods). We used two different hardware

configurations for CPU-based simulation with NEST (servers S2

and S3 in Table 1) and two hardware configurations for GPU-based

simulation with GeNN (Table 1) comparing a low-cost GPU (S1) with

a state-of-the-art high-end GPU (S3). With GeNN, we tested two

different approaches to store the connectivity matrix of the model

(Knight and Nowotny, 2021). The SPARSE connectivity format (Sp)

stores the matrix in a sparse representation. The PROCEDURAL

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.nest-simulator.org/
https://genn-team.github.io/genn/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 1

Metastable network activity emerges by introducing excitatory-inhibitory clusters in the random balanced network. (A) Sketch of RBN architecture with

one excitatory neuron pool (gray shaded circle, 80% of all neurons) and one inhibitory neuron pool (red shaded circle, 20% of all neurons). Excitatory

neurons (black triangles) and inhibitory neurons (red circles) make random connections within and across pools, respectively. The respective connection

strengths are tuned such that for each neuron, on average, the total synaptic input current balances excitatory and inhibitory input currents. (B) Sketch of

excitatory-inhibitory (E/I) cluster topology. Both, excitatory and inhibitory neuron pools are tiled into clusters (small shaded circles) of strongly

interconnected neurons (indicated by darker shading). In addition, each excitatory cluster is strongly and reciprocally connected to one corresponding

inhibitory cluster such that the balance of excitatory and inhibitory synaptic input is retained for all neurons. In our network definition, a single parameter

JE+ determines the cluster strength in terms of synaptic weights and allows to move from the RBN (JE+ = 1) to increasingly strong clusters by increasing

JE+ > 1. The model uses exponential leaky Integrate-and-Fire (I&F) neurons, and all neurons receive weak constant input current. (C, D) Raster plot of

excitatory (black) and inhibitory (red) spiking activity in a network of N = 25, 000 neurons during 5 s of spontaneous activity after an initial warm-up time

of 1 s was discarded. Shown are 8% of the total neuron population. The spike raster plots are generated from GeNN simulations. (C) The RBN (JE+ = 1.0,

IthE = 2.6, IthI = 1.9) exhibits irregular spiking of excitatory and inhibitory neurons with constant firing rates that are similar for all excitatory and inhibitory

neurons, respectively. (D) The E/I clustered network (JE+ = 2.75, IthE = 1.6, IthI = 0.9) shows a metastable behavior, where di�erent individual E/I clusters

can spontaneously assume states of high activity and fall back to spontaneous activity levels. The overall firing rates are higher than in the RBN.

TABLE 1 Hardware configurations and benchmark setups.

CPU GPU

No. of cores Clock speed [GHz] Memory [GB] Architecture No. of CUDA-cores Memory [GB] Performance (single) [TFLOPS]

Server 1 (S1) Ubuntu 16.04 LTS

Dual AMD Opteron 6380 GeForce GTX 970

2× 16 2.5 128 Maxwell 1,664 4 3.5

Server 2 (S2) Ubuntu 16.04 LTS

Dual Intel Xeon E5-2630 v4 -

2× 10 2.2 192 - - - -

Server 3 (S3) Ubuntu 20.04 LTS

Intel Xeon Gold 6248R Quadro RTX A6000

24 3.0 128 Ampere 10,752 48 38.7

connectivity (Pr) regenerates the connectivity on demand, i.e., after

a spike has occurred.

Fixed costs for GeNN are high but
independent of network size

We find that for NEST, the overall fixed costs scale approximately

linearly with the network connectivity as expressed in the total

number of connections M ∝ N2 (Figure 2), while the overall

fixed costs stay approximately constant for GeNN and essentially

over the complete range of tested network sizes. The fixed costs

add up different contributions as shown in Figure 2A and in

Supplementary Figure S5. These are model definition, building of

the model, and loading of the model for GeNN and node creation

and creation of connections for NEST (see Section Materials and

methods). For NEST, compilation of the model (Build phase of

GeNN) is not needed because it uses pre-compiled neuron and

synapse models (Diesmann and Gewaltig, 2002) in combination

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 2

Fixed costs of simulation. (A) Individual costs for execution phases of

NEST and GeNN for two network sizes of N = 5, 000 and N = 50, 000

neurons. The GPU-based simulation requires expensive model

compilation (Build). NEST uses pre-compiled neuron models. Note

that the y-axis has di�erent linear scales for low (≤4) and high (≥4)

values of fixed costs. (B, C) Total fixed costs in seconds over network

size for the di�erent simulators and hardware configurations as

indicated. Total fixed costs are approximately constant across network

size for the GPU-based simulation with the PROCEDURAL

connectivity, while they have a small slope for the SPARSE

connectivity. (C) Extends (B) for larger network sizes. Note that the

x-axis in (B) is linear in N, while the x-axis in (C) is linear in M.

with exact integration (Rotter and Diesmann, 1999). The fixed

costs of GeNN are dominated by the wall-clock time required for

building the model and these appear to be essentially independent

of model size. The costs of model definition and loading the

model increases with model size, but make only a negligible

contribution to the overall fixed costs. Thus, for a small network

size of N = 5, 000 neurons, the overall fixed costs amount

to ≈ 30 s and ≈ 3min for the PROCEDURAL and SPARSE

connectivity, respectively, compared to only 3 s with NEST. This

picture changes for a 10 times larger network with N = 50, 000

neurons. Now, the wall-clock time for setting up the model with

NEST is more costly than building with GeNN (PROCEDURAL

connectivity) on our hardware configurations. The fixed costs

TABLE 2 Maximum network size NRT within real-time limit.

E/I-model NRT [s] MRT/106

GeNN-Pr-S3 20,500 129

GeNN-Pr-S1 6,400 13

GeNN-Sp-S3 102,000 3,204

GeNN-Sp-S1 26,900 223

NEST-S3 15,000 69

NEST-S2 7,900 19

RBN NRT [s] MRT/106

GeNN-Pr-S3 24,300 182

GeNN-Sp-S3 160,000 7,885

NEST-S3 27,500 233

E/I-model, τsyn ∈ U NRT [s] MRT/106

GeNN-Pr-S3 17,200 91

GeNN-Sp-S3 47,400 692

NEST-S3 15,100 70

The real-time limit for the E/I-model was determined in simulation steps of 500 neurons. The

real-time limits of the RBN and E/I-model with heterogeneous synaptic time constants were

estimated with a linear interpolation between the nearest data points (cf. markers in Figure 4C).

Simulations comprised 10 s of biological model time with 1t = 0.1 ms.

for NEST increase quadratically in N (linear in M) on both

hardware configurations and eventually exceed fixed costs with

GeNN (Figure 2B).

The maximal network size that we were able to simulate is

indicated by the end points in the benchmark graphs in Figures 2B,

C. It is bound by the available memory, which is required for storing

the network model and the data recorded during simulation. In the

case of simulation with NEST, this bound is determined by the RAM

configuration (Table 2). The larger RAM size of 192GB on S2 allowed

for a maximum network connectivity of M = 4 · 109 synapses and

N ≈ 114, 000 neurons, while on the faster server configuration S3

with 128GB RAM, the limit was reached earlier (Figure 2B). With

GeNN, the limiting factor for the network size and connectivity

is the hardware memory on the GPU itself. The PROCEDURAL

connectivity allows for a more efficient usage of the GPU memory

(Supplementary Figure S3) at the expense of simulation speed and

allowed for a network size of > 3.5 · 106 neurons and > 3, 000 · 109

synapses on the high-end GPU (S3) and a respectable size of N ≈

250, 000 neurons (M ≈ 20 · 109 synapses) on the low-cost GPU

(S1).

Variable costs scale linearly with biological
model time and approximately linearly with
network connectivity

We first quantify wall-clock time Tvar in dependence on

the simulated biological model time Tbio for a fixed network

size of N = 50, 000 (Figure 3A). As to be expected, simulation

time grows approximately linearly with the number of

simulated time steps and thus, for a pre-defined simulation

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 3

Variable costs of simulation and real-time limitation. (A) Wall-clock

time Tvar as a function of simulated biological model time Tbio. (B)

Real-time factor RT = Tvar/Tbio as a function of network size.

Real-time capability requires a variable cost factor that remains below

RT = 1 (dashed line). On the high-end GPU, simulation faster than

real-time can be achieved for a network size of N ≈ 100, 000 neurons

and M ≈ 3.1 · 109 synapses. With the best performing NEST

configuration, a network of N ≈ 15, 000 neurons and M ≈ 0.1 · 109

synapses can be simulated in real-time. GeNN-Pr-S1 is congruent with

NEST-S2 in this view. (C) As in (B) for larger network size. Wall-clock

time scales almost linearly with the total number of synapses M (and

thus with N
2) for large network sizes. All simulations have been

conducted with a time resolution of 1t = 0.1ms in biological model

time. (B, C) The x-axis is linear in M (top axis).

time constant 1/1t, is proportional to the simulated time

with

Tvar ∝
1

1t
· Tbio

for all tested hardware platforms. We see considerably faster

simulations with the SPARSE connectivity compared to the

PROCEDURAL connectivity in our network with a total

connectivity of p ≈ 0.308. Interestingly, a previous publication

by Knight and Nowotny (2021) considering the RBN with a lower

connectivity density of p = 0.1 found that PROCEDURAL

connectivity performs equally fast or even faster, which could be due

to their lower connectivity density.

Next, we analyzed the relation between wall-clock time and

network size. As shown in Figures 3B, C, the proportionality factor

Tvar/Tbio for NEST shows an approximate linear dependence on the

total number of synapses M for large network sizes and the variable

costs are thus proportional to the squared number of neurons

Tvar ∝ pN2 ·Tbio with linear scale factor p, denoting network-specific

connectivity.

For GeNN, the graph shows a convex relation between Tvar/Tbio

and lower range network sizes. For increasing network size, this

relation becomes increasingly linear in N2. Additional model-related

factors may contribute, in particular, the average spiking activity of

neurons and the resulting spike traffic (see Section Discussion).

Real-time simulation is defined as Tsim = Tbio. For applications

in neurorobotics or when using SNNs for real-world machine

learning application, we may require the simulation to run equally

fast or faster than real time. For our attractor network model, we

determined a maximum network size of NRT = 102, 000 that

fulfills the real-time requirement using GeNN on the high-end GPU

(Figure 3B and Table 2).

The RBN is a standard model in computational neuroscience and

is used widely for the simulation of cortical activity. We therefore

repeated our calibrations for the RBN in direct comparison to

the E/I clustered network using the fastest hardware configuration

(S3). As shown in the Supplementary Figure S1, the fixed costs

are identical for both network types. This was to be expected as

the overall network connectivity is identical in both cases. The

variable costs show the same general dependence on network size

(Supplementary Figure S1C) but are smaller for the RBN mainly due

to the overall lower firing rates (Figure 1).

Simulation costs with heterogeneous
synaptic time constants

Thus far, all neuron and synapse parameters were identical

across the network with fixed synaptic weight and time constant

for excitatory and inhibitory synapses, respectively. We now

introduce heterogeneity of the excitatory and inhibitory synaptic

time constants using uniform distributions with the means

corresponding with the parameter values used earlier and with

a standard deviation of ±5%. Using the same aforementioned

neuron model in NEST, the heterogeneity applies across postsynaptic

neurons, while for each neuron, all incoming synapses have

identical time constants for excitatory and inhibitory synapses,

respectively (see Section Materials and methods). In GeNN, we

defined the neuron model and synapse model independently

and synaptic time constants are heterogeneously distributed

across all excitatory and inhibitory synapses individually,

independent of postsynaptic neuron identity (see Section

Discussion).

As a first result, we observe that the E/I clustered network

retains the desired metastable network dynamics with distributed

synaptic time constants as shown in Figure 4A. When comparing the

simulation costs to the homogeneous case on the fastest hardware

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 4

Metastability and simulation costs for networks with heterogeneous

synaptic time constants. (A) Raster plot of excitatory (black) and

inhibitory (red) spiking activity in a network of N = 25, 000 neurons

with heterogeneous synaptic time constants during 5 s of

spontaneous activity shows the desired metastable behavior where

di�erent individual clusters can spontaneously assume states of high

and low activities. A portion of 8% of neurons from each of the 20

clusters is shown. Network parameters are identical to Figure 1D:

JE+ = 2.75, IthE = 1.6, and IthI = 0.9. The spike raster plot is generated

from a GeNN simulation. (B) Total fixed costs in dependence of

network size for the E/I model with (dotted lines) and without (solid

lines) distributed synaptic time constants when simulated with NEST

(green) or GeNN. For NEST, the fixed costs are indistinguishable for

both model variants. For GeNN, the fixed costs are independent of

network size but considerably higher with distributed synaptic time

constants. (C) Real-time factor in dependence of network size. For

NEST, the variable costs are the same in the case of homogeneous

and heterogeneous synaptic time constants, while GeNN has

increased variable costs in the heterogeneous case. Note that the

x-axis in (B) is linear in N, while the x-axis in (C) is linear in M.

configurations (S3), we find that fixed costs did not increase with

NEST and show an indistinguishable dependence on network size

(Figure 4B). However, with GeNN, fixed costs remain independent

TABLE 3 Fixed costs (Tfix) and variable costs (Tvar) for simulating networks

of size N = 50.000 during 10 s of biological model time.

E/I-model Tfix [s] Tvar [s]

GeNN-Pr-S3 13.6 24.9

GeNN-Pr-S1 21.6 80.3

GeNN-Sp-S3 117.3 5.2

GeNN-Sp-S1 202.8 19.8

NEST-S3 41.9 80.8

NEST-S2 104.7 280.3

RBN Tfix [s] Tvar [s]

GeNN-Pr-S3 13.4 16.0

GeNN-Sp-S3 116.6 3.3

NEST-S3 41.7 26.4

E/I-model, τsyn ∈ U Tfix [s] Tvar [s]

GeNN-Pr-S3 128.2 30.2

GeNN-Sp-S3 298.9 10.3

NEST-S3 41.9 78.5

Top: Standard benchmark model with clustered connectivity (JE+ = 10) and homogeneous

synaptic time constants (E/I-model). Middle: Random balanced network (RBN) without

clustering (JE+ = 1) and homogeneous synaptic time constants. Bottom: Clustered network

model with (JE+ = 10) and with heterogeneous synaptic time constants (τsyn ∈ U).

of network size but were strongly increased in comparison to the

homogeneous case, for both the SPARSE and the PROCEDURAL

approaches.

For the variable costs, there is again no increase with NEST with

the same linear dependence on network size as in the homogeneous

case (Figure 4C). This was to be expected, as NEST, by default, stores

one propagator for the excitatory and one for the inhibitory input

per neuron. Thus, the per neuron integration of the postsynaptic

current is performed identically to the homogeneous case. In GeNN,

on the other hand, we use independent synapse models where each

individual synapse has a different time constant. This requires to

perform the integration over time independently. Hence, we observe

a considerable increase in variable costs that follows the same convex

dependency on network size as in the homogeneous case (Figure 4C).

For the duration of 10 s of biological model time used here and for a

network size of 50.000 neurons, the total costs with GeNN are higher

than that of NEST (Table 3, see Section Discussion).

E�cient approach to parameter grid search

Achieving robust model performance requires the vital and

computationally demanding step of model calibration with respect to

independent model parameters (see Section Discussion). Generally,

the total costs for a parameter optimization directly scale with

the number of samples tested for the considered parameter

combinations. In our spiking attractor benchmark model, we have

22 independent parameters (cf. Tables 6, 7). To this end, we perform

a 2D grid search investigating the average firing rate across the entire

population of excitatory neurons in dependence on two parameters:

the constant background stimulation currents IxE and IxI measured

in multiples of the rheobase current IxX = IthX · IrheoX (Figure 5).

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 5

Two-dimensional parameter grid search with GeNN and NEST. (A) Shown are a subset of 4× 4 spike raster plots as generated from simulations with NEST.

The respective parameter values are indicated by the red point markers in (B). In each raster, 8% of neurons from each of the 20 clusters are displayed.

The network size was N = 25, 000 and the clustering parameter was JE+ = 2.75 as in Figures 1D, 4. (B) Average spontaneous firing rates of all excitatory

neurons in dependence of IthE and IthI across the complete grid of 40× 40 parameter pairs when simulated with NEST. The run-time for completing the

grid search was 29,692 s (≈8h: 15min). (C) Same as in (B) for the simulation with GeNN in batch mode (batch size 40). The red point marker indicates the

parameter combination used for the spike raster plot in Figure 1D. The required run-time was 2,809 s (≈47min). The dependence of wall-clock time on

the average firing rate is analyzed for NEST and GeNN in Supplementary Figure S2.

We sampled a grid of 40 × 40 parameter values, and for each

sample point, our benchmarkmodel is simulated for 10 s of biological

model time. This results in a total simulated biological model time

of 16,000 s for a network size of N = 25, 000 neurons and M =

193 · 106 connections. We obtain plausible spike raster plots for

different combinations of the background stimulation of excitatory

and inhibitory neuron populations, and metastability emerges in a

large parameter regime (Figure 5A). The activity of the excitatory

populations increases along the IthE-axis and decreases with stronger

stimulation of the inhibitory neurons. The comparison of average

firing rates across the excitatory population in simulations with NEST

(Figure 5B) and GeNN (Figure 5C) shows only negligible differences

due to the random network structure.

We first compared this grid search for simulation with NEST on

different servers and with different parallelization schemes (Table 4).

For each parameter combination, a new network instance was

generated ensuring independent samples. The fastest grid search

is achieved using server S3 (single CPU socket) with one worker

that uses all available cores as threads. This parallelization scheme

reduces the run-time by 40% in comparison to a scheme with six

simulations run in parallel with four threads each. The observed

advantage of using a single worker is in line with the results of

Kurth et al. (2022). The results are different on S2 with its two

CPU sockets where five parallel simulations, each with four threads,

resulted in a slightly improved performance compared to the case

of a single simulation on all cores. Performing the same grid search

with GeNN using independent network instances for each parameter

combination required a total of 4.500 s and was thus 6.6 times faster

than the independent grid search with NEST.

TABLE 4 Run-time of 40 × 40 grid search with GeNN and NEST with

di�erent hardware configurations and parallelization schemes.

GeNN

Server Batch size Run-time [s]

S3 40 2, 809

S3 1 4, 500

S1 4 13, 080

S1 1 14, 491

NEST

Server nW / nT Run-time [s]

S3* 1 / 24 18, 028

S3 1 / 24 29, 692

S3 6 / 4 49, 403

S2 1 / 20 83, 848

S2 5 / 4 81, 631

nw denotes the number of workers and nT the number of threads used for CPU simulation on

multiple cores. S3* denotes the NEST simulation approach where a single network instance is set

up once and reused for all samples in the grid.

To maximize GPU utilization and to save fixed costs, we here

propose an alternative batch mode for the parameter search with

GeNN. It uses the same network connectivity for all instances in a

batch and thus reduces memory consumption while using all cores of

the GPU. To this end, we distributed the instances of a single batch

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

pseudorandomly across the entire grid. The identical connectivity

introduces correlations across all network instances within a single

batch (see Section Discussion), while a batch size of 1 results in

fully independent networks. The shortest run-time was achieved for a

batch size of 40 (Table 4) and resulted in a significant speed-up factor

of 1.6 when compared to a batch size of one.

To match the batch mode in GeNN, we tested an alternative

approach with NEST in which we generate the network model

only once and then re-initiate this same network for all parameter

combinations in the grid. Now, network connectivity is identical

across the complete parameter grid and thus not independent (see

Section Discussion). In this approach, the reduced fixed costs for

model setup (combined phases of node creation and connection)

considerably reduced the overall wall-clock time for completing the

grid search by almost 40% (S3* in Table 4), resulting in a speed-up

factor of 1.7 compared to the simulation of independent network

instances. The batch-mode approach with GeNN was thus 6.4 times

faster than the single network instance approach with NEST (S3*).

We observed a considerable dependence of wall-clock time on

the average firing rate for the grid search in NEST simulations. This

dependence is comparably weak in the currently tested SPARSEmode

with GeNN (Supplementary Figure S2).

Discussion

Limitations of the present study

We here restricted our benchmark simulations with NEST and

GeNN to single machines with multiple CPU cores equipped with

either a high-end or low-cost GPU (Table 1). We may consider

this type of hardware configuration as standard equipment in

computational labs. In our simulations with NEST on a single-

processor machine (S3), we found that matching the number of

threads to the number of cores was most efficient, in line with the

results reported by Kurth et al. (2022), while on a dual-processor

machine (S1), matching the number of threads and cores resulted

in a small loss of speed compared to multiple simulations run in

parallel (Table 4). We did not attempt to use the message passing

interface (MPI) for distributing processes across the available cores.

As pointed out by a previous study (Ippen et al., 2017), this can

increase simulation performance with respect to simulation speed but

at the same time considerably increases memory consumption, which

would further limit the achievable network size.

NEST is optimized for distributed simulation by means of

efficient spike communication across machines and processes

(Kunkel et al., 2012, 2014; Ippen et al., 2017; Jordan et al., 2018;

Pronold et al., 2022). This allows for scaling from single machines to

multiple machines and allowed for the simulation of very large SNNs

on supercomputers with thousands of compute nodes (Kunkel et al.,

2014; Jordan et al., 2018; Schmidt et al., 2018). For the E/I cluster

topology of our benchmark model, however, we do not expect a good

scaling behavior of simulation speed in distributed environments

for two reasons. One limiting factor for simulation speed is the

communication of spikes between machines and the spike delivery

on each machine. In NEST, communication between machines is

optimized by communicating packages of sequential spikes, which

requires a sufficiently large minimal synaptic delay (Morrison et al.,

2005), and thus, spike delivery on each machine dominates the cost

of communication (Jordan et al., 2018; Pronold et al., 2022). Our

current model implementation uses the minimum synaptic delay of

only a single time step (0.1ms). Second, the E/I cluster model shares

the structural connectivity of the RBN (Figure 1), where the topology

of excitatory and inhibitory clusters is defined through connection

strengths while connectivity is unaffected and comparably high with

a pairwise connection probability of p ≈ 0.3. In future work, we will

consider an alternative structural definition of the cluster topology

where the number of connections between E/I clusters is reduced,

while it remains high within clusters. Simulating one or several E/I

clusters on a single machine could then benefit distributed simulation

due to a reduced spike communication between machines. A cluster

topology defined by connectivity also opens the possibility to form

clusters by means of structural plasticity (Gallinaro et al., 2022). We

note that, in our current network definition and for large network

size, the number of synapses per neuron exceeds biological realistic

numbers in the order of 10,000 synapses per neuron reported in

the primate neocortex (Boucsein et al., 2011; Sherwood et al., 2020).

However, here we deliberately used a fixed connectivity scheme

across the complete investigated range of network sizes. The large

number of synapses creates a high computational load for the spike

propagation.

A number of GPU-based simulators are currently in use for

SNN simulation, such as ANNarchy (Vitay et al., 2015), CARLsim

(Niedermeier et al., 2022), BINDSnet (Hazan et al., 2018), GeNN,

and NEST GPU (Golosio et al., 2021). These use different design

principles (Brette and Goodman, 2012; Vlag et al., 2019) that are

optimal for specific use cases. NEST GPU, for example, follows the

design principle of NEST allowing for the distributed simulation of

very large networks on multiple GPUs (on multiple machines) using

MPI. Simulation of the multi-area multi-layered cortical network

model as defined in Schmidt et al. (2018) with a size ofN = 4.13 · 106

neurons has recently been benchmarked on different systems. Knight

and Nowotny (2021) found that NEST simulation on the JURECA

system (Thörnig, 2021) at the Jülich Supercomputing Center was ≈

15 times faster than simulation withGeNNon a single GPU (NVIDIA

TITAN RTX). The recent work by Tiddia et al. (2022) found that

NEST GPU (parallel simulation on 32 GPUs, NVIDIA V100 GPU

with 16 GB HBM2e) outperformed NEST (simulated on JUSUF HPC

cluster, Von St. Vieth, 2021, and JURECA) by at least a factor of two.

Kurth et al. (2022) reported the real-time factor for the multi-

layered model of a single cortical column introduced by Potjans and

Diesmann (2014) with about N = 80, 000 neurons and 0, 3 · 109

synapses for a simulation with GeNN as RT = 0.7 (NVIDIA Titan

RTX) and with NEST as RT = 0, 56 (cluster with two dual-processor

machines with 128 cores each). For networks with approximately

the same number of neurons and a higher number of connections,

we here report similar real-time factors. With GeNN-Sp-S3, we

achieved RT = 0, 7 (cf. Figure 3) for the E/I cluster network with

N = 80, 500 neurons and 2 · 109 synapses, and RT = 0, 56 (cf.

Supplementary Figure S1) for the corresponding RBN. The faster

simulation of the RBN results from a lower average firing rate of ≈

0.9 spikes/s as compared to≈ 8.5 spikes/s in the E/I cluster network.

Providing comparable benchmarks for the simulation of SNNs

across different simulation environments and different hardware

systems is generally hampered by two factors. First, different

simulators use different design principles. To fully exploit their

Frontiers inNeuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

capabilities in a benchmark comparison, one needs to optimize for

each simulator and use case. Second, the community has not agreed

on standardized benchmark models (Kulkarni et al., 2021; Steffen

et al., 2021; Albers et al., 2022; Ostrau et al., 2022). The RBN is widely

used in computational neuroscience (cf. Supplementary Figure S1).

However, its definition varies considerably across studies, e.g., with

respect to connection probabilities, fixed vs. distributed in-degrees of

synaptic connections, neuron and synapsemodels, or the background

stimulation by constant or noise current input. Second, SNN

simulation environments are subject to continuous development

affecting optimization for speed and memory consumption, which

complicates comparability across different versions. We thus did

not attempt to directly compare the run-time performance obtained

for the model simulations considered in the present study to the

performances reported in previous studies.

NEST provides a high degree of functionality, good

documentation, and many implemented neuron and synapse

models. This results in a high degree of flexibility allowing, for

instance, to introduce distributed parameters by using a NEST

function that passes the respective distribution parameters as

arguments when initializing the model, which is then set up from

scratch. One obvious limitation of the flexibility of GeNN is the

high fixed costs for model definition and building the model on

the CPU and for loading the model on the GPU before it can be

initialized. This limits its flexible use in cases where non-global

parameters of a model change, which cannot be changed on the

GPU. We would thus like to encourage the development of a method

that automatically translates selected model parameters into GeNN

variables for a given model definition, allowing to change those

model parameters without recompilation between simulations. This

functionality would allow to fully exploit the simulation speed on the

GPU and benefit the time-to-solution while reducing the likelihood

of implementation errors.

E�cient long-duration and real-time
simulation on the GPU

Our results show that GPU-based simulation can support the

efficient simulation over long biological model times (Figure 3). This

is desirable, e.g., in spiking models that employ structural (Deger

et al., 2012; Gallinaro et al., 2022) or synaptic (Vogels et al., 2011;

Sacramento et al., 2018; Zenke and Ganguli, 2018; Illing et al., 2021;

Asabuki et al., 2022) plasticity to support continual learning and the

formation and recall of short-term (on the time scale of minutes),

middle-term (hours), or long-term (days) associative memories.

Similarly, simulating nervous system control of behaving agents in

approaches to computational neuroethology may require biological

model time scales of minutes to hours or days. The low variable

simulation costs achieved with GeNN can also benefit real-time

simulation of SNNs, e.g., in robotic application.

We here considered spiking networks in the approximate size

range from one thousand to a few million neurons. This range

covers the complete nervous system of most invertebrate and of

small vertebrate species as shown in Figure 6 and Table 5, including,

for instance, the adult fruit fly Drosophila melanogaster with N ≈

100, 000 neurons in the central brain (Raji and Potter, 2021), the

European honeybeeApis melliferawithN ≈ 900, 000 (Witthöft, 1967;

Menzel, 2012; Godfrey et al., 2021), and the zebrafishDanio reriowith

N ≈ 10 · 106. In mammals, it covers a range of subsystems from a

single cortical column with approximately 30, 000− 80, 000 neurons

(Boucsein et al., 2011; Potjans and Diesmann, 2014; Markram et al.,

2015) to the complete neocortex of the mouse (N ≈ 5 · 106 neurons)

(Herculano-Houzel et al., 2013). Models exceeding this scale are

currently still an exception (Eliasmith and Trujillo, 2014; Kunkel

et al., 2014; Van Albada et al., 2015; Jordan et al., 2018; Igarashi

et al., 2019; Yamaura et al., 2020) and typically require the use of a

supercomputer.

Benchmarking with grid search

Spiking neural networks have a large set of parameters. These

include connectivity parameters and parameters of the individual

neuron and synapse models. Thus, both in scientific projects and for

the development of real-world applications of SNNs, model tuning

through parameter search typically creates the highest demand in

computing time. Currently available methods (Feurer and Hutter,

2019) such as grid search or random search (LaValle et al., 2004;

Bergstra and Bengio, 2012), Bayesian optimization (Parsa et al., 2019),

and machine learning approaches (Carlson et al., 2014; Yegenoglu

et al., 2022) require extensive sampling of the parameter space. We

therefore suggest to include the parameter search in benchmarking

approaches to the efficient simulation of large-scale SNNs.

To this end, we exploited two features of GeNN: batch processing

and the on-GPU initialization of the model. Batch processing was

originally introduced to benefit the execution of machine learning

tasks with SNNs. It enables the parallel computation of multiple

model instances within a batch. In our example with a network

size of N = 25, 000 and for simulating a biological model time

of 10 s, we obtained a speed-up factor of 1.6 for a batch size of 40

compared to a single model instance per run. The current version

of GeNN requires that all model instances of a batch use identical

model connectivity. Thus, quantitative results, e.g., of the average

firing rates (Figure 5) are correlated across all samples within one

batch (for batch size > 1). We distributed the 40 instances of one

batch pseudorandomly across the grid such that correlations are not

systematically introduced among neighboring samples in the grid.

An important future improvement of the batch processing that will

allow for different connectivity matrices within a batch and thus

for independent model connectivities is scheduled for the release

of GeNN 5.0 (https://github.com/genn-team/genn/issues/463). The

possibility to initialize and re-initialize a once defined model and

connectivity on the GPU (Knight and Nowotny, 2018) uses the

flexibility of the code generation framework. This allows to define,

build, and load themodel to the GPU once and to repeatedly initialize

the model on the GPU with a new connectivity matrix (per batch). It

also allows for the variable initialization of, e.g., the initial conditions

of model variables such as the neurons’ membrane potentials. In

addition, global parameters can be changed during run-time. After

initialization of a model this allows, for example, to impose arbitrary

network input as pre-defined in an experimental protocol.

We here propose that the batch processing with GeNN can

be efficiently used not only to perform parameter search but also

to perform batch simulations of the identical model with identical

connectivity in parallel. This can be beneficial, e.g., to generate

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://github.com/genn-team/genn/issues/463
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 6

Full system modeling with spiking neurons. Wall-clock time relative to simulated biological model time Tvar / Tbio over a realistic range of network sizes for

spiking network simulation. Network size is projected to the total number of neurons per hemisphere for subsystems in the mouse (top) and in the CNS of

invertebrate and small vertebrate model species (bottom); (see also Table 5). The graph sketches the quadratic dependence on network size N for large N

fitted for the PROCEDURAL connectivity simulation method with GeNN (Figure 3, see Section Materials and methods). The solid line shows the range of

network sizes covered in our simulations (cf. Figure 2) using a high-end GPU with 48GB RAM (S3, Table 2). The dashed line extrapolates to a maximum

size of 10 million neurons assuming larger GPU RAM that would allow to cover the neocortex of the mouse and the complete CNS of the zebrafish.

multiple simulation trials for a given stimulation protocol allowing

for across-trial statistics, or to efficiently generate responses of

the same model to different stimulation protocols within a single

batch. In NEST, this can be efficiently achieved by re-initialization

of the identical network (Table 4). We note that we have tested

one additional alternative approach to the grid search with NEST

where we set up the model connectivity once and, afterwards,

for each initialization reconstructed the network from the stored

connectivity. This leads to a significant reduction in performance for

large networks (data not shown).

Networks with heterogeneous neuron and
synapse parameters

SNNs are typically simulated with homogeneous parameters

across all neuron and synapse elements of a certain type. Using

heterogeneous parameters that follow experimentally observed

parameter distributions increases the biological realism of a model

and has been argued to benefit model robustness and neuronal

population coding (Mejias and Longtin, 2012, 2014; Lengler et al.,

2013; Tripathy et al., 2013; Gjorgjieva et al., 2016; Litwin-Kumar et al.,

2016). In the present study, we performed benchmark simulations

with heterogeneity in the single parameter of synaptic time constant

to quantify its effect on simulation costs. The efficient solution

provided by NEST for the specific neuron model used here does

neither increase fixed costs nor variable costs (Figure 4) in line with

the results of Stimberg et al. (2019), albeit with the limitation to one

single time constant per synapse type (excitatory and inhibitory) for

each postsynaptic neuron. NEST offers an alternative neuron model

that allows the definition of an arbitrary time constant for each

synapse (see Section Materials and methods) that was not tested in

the present study. In GeNN, we had deliberately defined our neuron

and synapse models separately (see Section Materials and methods),

because in future work, we aim at introducing stochasticity of

synaptic transmission to capture the inevitable variability of synaptic

transmission in biology (Nawrot et al., 2009; Boucsein et al., 2011)

that has been argued to support efficient population coding (Lengler

et al., 2013).

Metastability emerges robustly in attractor
networks with large E/I clusters and
heterogeneous synaptic time constants

With respect to attractor network computation, an important

question is whether the functionally desired metastability can be

reliably achieved in large networks and for large population sizes

of neuron clusters. In our previous work, we had limited our study

of attractor networks to a maximum network size of 5, 000 neurons

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 5 Number of neurons of selected model organisms and subsystems.

Neurons
[·103]

References

Invertebrate

Round worm (Caenorhabditis

elegans)

0.302 White et al., 1986

Fruit fly larva (Drosophila

melanogaster)

15 Eschbach and Zlatic, 2020

California sea hare (Aplysia

californica)

20 Zhao and Wang, 2009

Fruit fly adult (Drosophila

melanogaster)

70–200 Godfrey et al., 2021

Raji and Potter, 2021

Ant (Novomessor spp.) 90 Godfrey et al., 2021

European honeybee, worker

(Apis mellifera)

600–900 Witthöft, 1967

Godfrey et al., 2021

Vertebrate

Human: Medial Superior olive 15.5 Kulesza, 2007

Zebrafish larva (Danio rerio) 90 Bruzzone et al., 2021

Sprague Dawley rat: Basal ganglia 2,900 Oorschot, 1996

Zebrafish adult (Danio rerio) 10,000 Hinsch and Zupanc, 2007

Smoky shrew (Sorex fumeus) 39,490 Sarko et al., 2009

Mouse (C57BL/6J) per hemisphere

Piriform cortex 350 Herculano-Houzel et al., 2013

Entorhinal cortex 400 Herculano-Houzel et al., 2013

Visual cortex V1 476 Herculano-Houzel et al., 2013

Motor cortex M1+M2 508 Herculano-Houzel et al., 2013

Hippocampus 1,500 Herculano-Houzel et al., 2013

Olfactory bulb 1,520 Parrish-Aungst et al., 2007

Cortex 5,049 Herculano-Houzel et al., 2013

and could show that the topology of excitatory-inhibitory clusters

benefit metastability for a varying number and size of clusters while

pure excitatory clustering failed to support metastability for larger

cluster size (Rost et al., 2018; Rostami et al., 2022). In our calibration

approach of Figure 5, we simulated networks of N = 25, 000

with a cluster size of 1, 000 excitatory and 250 inhibitory neurons.

This results in the robust emergence of metastable activity for a

reasonable regime of excitatory and inhibitory background currents.

Metastability was retained when introducing distributed excitatory

and inhibitory time constants (Figure 4). We hypothesize that, due

to its local excitation-inhibition balance (Rostami et al., 2022), the

E/I cluster topology affords metastability for very large network and

cluster sizes.

Materials and methods

Hardware configurations

We perform benchmark simulations on hardware systems that

can be considered as standard equipment in a computational research

lab. We did not attempt to use high performance computing facilities

that, for most users, are available only for highly limited computing

time and require an overhead in scheduling simulation jobs. We

employ three computer server systems specified in Table 1, which

were acquired between 2016 and 2022. The amount of investment at

the time of purchase has been fairly stable on the order of $7, 000 −

$10, 000 depending on whether a state-of-the-art GPU was included.

Servers S1 and S3 are equipped with GPUs. The GeForce GTX 970

(S1; NVIDIA, Santa Clara, USA) can now be considered a low-

cost GPU in the price range of $300. The Quadro RTX A6000 (S3;

NVIDIA, Santa Clara, USA) is one example of current state-of-the-art

high-endGPUs, for which prices vary in the range of $3, 000−$5, 000.

We use the job scheduler HTCondor (Thain et al., 2005) on all

servers independently, with one job scheduler per server. We ensure

acquisition of all cores and the complete GPU to a running job and

prevent other jobs from execution till the running job is finished.

Simulators

We benchmark with the Neural Simulation Tool (NEST)

(Gewaltig and Diesmann, 2007) and the GPU-enhanced Neuronal

Networks (GeNN) framework (Yavuz et al., 2016) that follow different

design principles and target different hardware platforms. The

Neural Simulation Tool (NEST) (Gewaltig and Diesmann, 2007) is

targeted toward computational neuroscience research and provides

various biologically realistic neuron and synapse models. Since the

introduction of NESTML (Plotnikov et al., 2016), it also allows

custom model definitions for non-expert programmers. NEST uses

the so-called simulation language interpreter (SLI) to orchestrate the

simulation during run-time as a stackmachine. This allows amodular

design of the whole simulator and thus the usage of pre-compiled

models. NEST supports parallelization across multiple threads via

Open Multi-Processing (OpenMP) as well as multiple processes,

which can be distributed across multiple machines via the message

passing interface (MPI). It is suitable for the whole range of desktop

workstations to multi-node high-performance clusters. We use NEST

version 3.1 (Deepu et al., 2021) (in its standard cmake setting) with

the Python interface PyNEST (Eppler et al., 2009) and Python version

3.8 to define our model and control the simulation.

GeNN is a C++ library to generate code from a high-level

description of the model and simulation procedure. It employs

methods to map the description of the neuron models, the network

topology, as well as the design of the experiment to plain C++ code,

which then is built for a specific target. GeNN supports single-

threaded CPUs or a GPU with CPU as host. The scope of GeNN is

broader than that of NEST. With features like the batch-mode, which

allows for inference of multiple inputs, GeNN becomes especially

useful for machine learning tasks with SNNs as well as for general

research in computational neuroscience. GeNN is more rigid in the

network topology and in its parameters after the code generation is

finished. It does not support general reconfiguration of the network

during the simulation. If GeNN is used on a GPU, the CPU is

used to generate and build the simulation code and orchestrate the

simulation. All other time-consuming processes such as initialization

of the connectivity and variables of the model, update of state

variables during simulation, and spike propagation are performed

by the GPU. The model construction in the GPU memory is run

by loading the model or can be rerun by reinitializing the model,

which affects the connectivity and state variables, as well as the spike

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

buffers. The code generation framework in GeNN allows for a heavily

optimized code depending on the use case. One of these optimization

possibilities is the choice of connectivity matrices. Here, we utilize

only the SPARSE and the PROCEDURAL connectivity as explained

below.

SPARSE connectivity. The connectivity matrix is generated on

the GPU during the loading of the model and if the model is

reinitialized. It is persistent during the simulation. No additional

computational load is generated during the simulation.

PROCEDURAL connectivity. Single elements of the

connectivity matrix are generated on demand during simulation for

the spike propagation. Only fixed random seeds are saved during the

loading of the model and if the model is reinitialized. An additional

computational load is caused during the simulation, but the memory

consumption is low.

Furthermore, we use global synapse models for all simulations

except for simulations with distributed synapse parameters. In

simulations with distributed synaptic time constants, we use synapse

models with individual postsynaptic model variables. We use the

released GeNN version 4.6.0 and a development branch of version

4.7.0, which is now merged into the main and released (commit

ba197f24f), with its Python interface PyGeNN (Knight et al., 2021)

and Python version 3.6.

Neuron models and network architectures

We use the spiking neural network described by Rostami et al.

(2022) as benchmarking model. This model uses leaky integrate-and-

fire neurons with exponentially shaped postsynaptic currents. The

subthreshold dynamics evolves according to

dV

dt
=

−(V − EL)

τm
+

Isyn + Ix

Cm

and the synaptic current to a neuron i evolves according to

τ
ij
syn

dI
ij
syn

dt
= − I

ij
syn + Jij

∑

k

δ

(

t − t
j

k

)

Iisyn =
∑

j

I
ij
syn,

where t
j

k
is the arrival of the kth spike of the presynaptic neuron j and

δ is the Dirac delta function.

We use the NEST model iaf _psc_exp, which employs an exact

integration scheme as introduced by Rotter and Diesmann (1999)

to solve the above equations efficiently for two different synaptic

input ports. The input ports can have different time constants. We

implement the same integration scheme in GeNN but modify it to

fit only one synaptic input port while treated as piece-wise linear to

combine different synapse types in terms of their time constant.

We follow the widely used assumption that 80% of neurons in

the neocortex are excitatory while 20% are inhibitory to build the

network model, which is based on the statistical work in the mouse

neocortex by Braitenberg and Schüz (1998). Connections between

neurons are established with the probabilities pEE = 0.2, pEI =

pIE = pII = 0.5. Autapses and multapses are excluded. Excitatory

and inhibitory populations are divided into NQ clusters by increasing

the weights of intra-cluster connections while decreasing the weights

of inter-cluster connections. Weights are calculated to ensure a local

balance between excitation and inhibition, as introduced before for

binary networks (Rost et al., 2018). Parameters are given in Tables 6,

7. For comparability, we matched our parameters to those used in

previous related works (Litwin-Kumar and Doiron, 2012; Mazzucato

et al., 2015; Rost, 2016; Rostami et al., 2022). Synaptic weights JXY
as well as the background stimulation currents are scaled by the

membrane capacitance C. By this scaling, the capacitance has no

influence on the dynamics of the network but only on the magnitude

of PSCs and the background stimulation currents. Following previous

studies, we set the value of capacitance to C= 1pF.

In our model, each neuron can be presynaptic and postsynaptic

partner to all other neurons. As a result, the number of synapses

M scales quadratically with the neuron number N. We calculate the

expectation of the number of synapses M by using the assumption

of portioning into 80% excitatory and 20% inhibitory neurons

and calculating the expected number of synapses between the

combinations of both by using the connection probabilities. Due

to our exclusion of autapses, we have to reduce the number

of postsynaptic possibilities by one for the connections among

excitatory neurons as well as among inhibitory neurons. The overall

network connectivity p = 0.308 is determined by

E(M) = (N · 0.8) · (pEE · (N · 0.8− 1)+ pIE · (N · 0.2))

+ (N · 0.2) · (pEI · (N · 0.8)+ pII · (N · 0.2− 1))

= 0.308 · N2
− 0.25 · N ≈ 0.308 · N2.

(1)

In addition, we implement a model with excitatory and inhibitory

synaptic time constants drawn from a uniform distribution with

the same means as provided in Table 6 and a standard deviation

of 5% of the mean. In NEST, this is achieved by using the

nest.random.uniform function as argument for the parameters

tau_syn_ex and tau_syn_in of the neuron model. This results in

distributed synaptic time constants across neurons. Thus, all synaptic

inputs of one input type (excitatory and inhibitory) to a postsynaptic

neuron have the same time constant. Replacing the neuron model by

a multisynapse neuronmodel (e.g., iaf _psc_exp_multisynapse) would

enable to use different time constants for subsets of the synaptic

inputs of a single neuron. In GeNN, we implement the distribution of

synaptic time constants by re-implementing the postsynaptic model

of an exponential PSC. We provide the decay factor exp(− 1t
τsyn

) as

variable to minimize the calculations during the simulation. GeNN

only allows random number initialization for variables and not for

parameters. Parameters within a group (neurons as well as synapses

are generated as groups) have to be the same in GeNN. To initialize

the decay factors corresponding to the uniform distribution of

synaptic time constant, we define a custom variable initialization

method. The generated network model does not enforce the same

synaptic time constants for all inputs of a neuron. Deviating from the

NEST model, the synaptic time constants are thus distributed across

all connections rather than across neurons. A limited distribution

across neurons as in NEST could be implemented in GeNN by

implementing the synapse dynamics in the neuron model.

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 6 Constant model parameters for all simulation modalities.

Parameter Unit Value

Simulation resolution 1t ms 0.1

Resting potential EL mV 0

Threshold voltage Vth mV 20

Reset voltage Vr mV 0

Membrane capacitance C pF 1

Membrane time constant (exc. neurons) τm
E ms 20

Membrane time constant (inh. neurons) τm
I ms 10

Synaptic time constant (exc. synapses) τsyn
E ms 3

Synaptic time constant (inh. synapses) τsyn
I ms 2

Synaptic delay Dsyn ms 0.1

Absolute refractory period τr ms 5

Connectivity probability EE pEE - 0.2

Connectivity probability others pEI , pIE , pII - 0.5

Relative strength of inhibition g - 1.2

Number of clusters NQ - 20

Proportionality factor inhibitory to excitatory clustering RJ - 3/4

TABLE 7 Variable model parameters for di�erent simulation modalities.

Value

Parameter Unit 5,000 50,000 Var N Grid

Number exc. neurons NE - 4,000 40,000 0.8 · N 20,000

Number inh. neurons NI - 1,000 10,000 0.2 · N 5,000

Current stimulation exc. neurons IxE pA 2.13 2.13 2.13 0.95–2.9

Current stimulation inh. neurons IxI pA 1.24 1.24 1.24 0.7–1.675

Clustering strength exc. neurons JE+ - 10.0 10.0 10.0 2.75

Synaptic weight EE (RBN) JEE pA 0.329 0.104 f (N) 0.147

Synaptic weight IE (RBN) JIE pA 0.250 0.079 f (N) 0.112

Synaptic weight EI (RBN) JEI pA –0.877 –0.277 f (N) –0.392

Synaptic weight II (RBN) JII pA –1.337 –0.423 f (N) –0.598

f (N) denotes the dependency of the synaptic weights (JXY) on the network size. JE+ is the clustering strength of the excitatory neurons and influences the inhibitory clustering strength via the

proportionality factor RJ . Implementation details are described in Rostami et al. (2022).

Simulations

We perform two different sets of simulations with all tested

combinations of a server and a simulator. We enforce a maximum

run-time of 5 h per simulation. The first set contains simulations

of two networks with the sizes of 5,000 and 50,000 neurons and

simulation times of 0, 1, 5, 25, 50, 100, 175, 350, 625, 1,250, and 2,500

s of biological model time (0 s is used to determine the fixed costs

for simulation preparation). We discard 10% as presimulation time

from our analyses of network activity. We execute each simulation

five times with different seeds of the random number generator. All

simulations in the second set are 10 s long (biological model time; 1

s presimulation time and 9 s simulation time), and we used network

sizes between 500 neurons and ≈ 3, 6million neurons. We execute

each simulation 10 times with different seeds of the random number

generator. Based on the recorded wall-clock times, we determine the

maximum network size for each configuration that fulfills real-time

requirements.

For GeNN, we use the spike recorder, which saves the spikes

during the simulation in the RAM of the GPU and allows a block

transfer of all spikes for a given number of simulation steps. The

consumption of GPU-RAM is composed of themodel with all its state

variables and connectivity matrix, and of the memory for the spike

recorder. The memory consumption of the model is independent of

the simulated biological model time, but heavily dependent on the

network size and the choice of the connectivity matrix type. The

size of the memory of the spike recorder depends on the network

size and the number of simulation steps, and thus on the simulated

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

biological model time. The dependence of the memory consumption

on network size and biological model time to be simulated is

analyzed in Supplementary Figure S3. We implement a partitioning

of simulations into sub-simulations, if the GPU-RAM is too small to

fit the model and the spike recorder in one simulation. We determine

the maximum number of simulation steps for a large network that fits

in the GPU-RAM and use this number as a heuristic. If the product of

network size and simulation steps exceeds the heuristic, we iteratively

divide the simulation into two until the product of both is smaller

than the heuristic. As a fallback mechanism, we include an error

handling to divide the simulation further, if the model and the spike

recorder do not fit the GPU-RAM. We transfer the spikes from the

GPU to the host after each sub-simulation and process them into one

list containing the neuron-ID and the spike time by a thread pool

with a size of 16 workers. A greater number of workers exceeded

the available RAM on our servers for large networks. All simulations

are performed once with the SPARSE connectivity format and once

with the PROCEDURAL connectivity. We delete the folder with the

generated and compiled code before we submit the first job to the

scheduler to prevent the use of code from previous code generation

runs. We run one complete sequence of all different biological model

times before switching to the other matrix type. This ensures that the

code is generated five and 10 times, respectively, for the two different

simulation sets.

We use the same order of execution for our simulations in NEST.

We match the number of OpenMP threads of the simulations in

NEST to the number of cores available nT = ncores on the server.

We do not utilize parallelization with MPI to minimize memory

consumption (Ippen et al., 2017) and despite possible advantages in

speed.

We additionally simulate the E/I cluster network model with

distributed synaptic time constants with both simulators on S3

as described earlier. The network with JE+ = 1 represents the

random balanced network (RBN) with constant background current

stimulation. For this, we use the same code and parameters as for the

clustered network model for all calibrations.

Grid search

We implement a general framework to perform a grid search.

The framework takes multiple parameters and generates a regular

mesh grid of the parameter values. It simulates each point in the

grid, analyzes the network activity in the simulation, and saves the

result together with its position in the grid to a pickle file. Pickle

is a module from the Python Standard Library, which can serialize

and de-serialize Python objects and save them to binary files. Pickle

allows saving multiple objects in one file. Simulations are performed

with the same network definition as used for the simulations before.

All simulations of individual samples are 10 s long (biological model

time; 1 s presimulation time and 9 s simulation time). We simulate a

2D grid with 40× 40 samples.

We implement the grid search in GeNN by utilizing the

batch-mode with nBatch network instances in each run. We add

global parameters to the model description. Global parameters are

not translated into constants during compilation, but can be set

independently for each instance in a batch and can be modified

during run-time. The instances share all other parameters and the

specific connectivity matrices. We use the SPARSE connectivity

format and generate the simulation code only one time and

then reinitialize the network after each batch and set the global

parameters to their respective values. The reinitialization regenerates

the connectivity matrix and resets all state variables as well as the

spike buffer. The parameters as well as the batch size nbatch can only

be changed by recompilation. Each time a number of samples equal

to nbatch is drawn without replacement from the grid until all points

in the grid are simulated. If fewer samples as nbatch are left, the free

slots are filled by setting the global parameters to 0; the results of these

slots are ignored. After a simulation, the spike times are transferred in

a block transfer and are processed by nW = 24 workers into a matrix

with the size 2 × nspikes × nbatch, where the first row contains the

spike times, the second row the ID of the neuron, which emitted the

spike, and the third dimension corresponds to the different network

instances in the batch. We use the same representation of the spike

times and the senders for GeNN and NEST. The processing takes a

reasonable amount of computation time as GeNN implements the

spike recorders in the neuron populations and returns no global

IDs but instead IDs for the neurons in the specific population.

Afterward, we analyze the spike times serially for each instance with

the specific analyses, which are the firing rates of the excitatory

and inhibitory populations in this grid search. The process writes

the results afterward to the pickle file. We test the grid search with

different batch sizes on S1 and S3 (see Table 4).

We implement the grid search in NEST by creating a list of all

parameters in the grid and then parallelizing the simulations with

Pathos by nW workers. The workers import NEST independently,

thus each simulation is completely independent. Each worker utilizes

nT threads. We match the number of cores available on the system:

ncores = nW ·nT . The workers write the results to one pickle file, which

is protected by a lock to ensure data integrity by only allowing one

worker to write at a time. This pickle file does not contain by default

the spike times but instead only the result of the specific analyses

applied. We test different combinations of nW and nT on S2 and S3

(see Table 4).

We extend the NEST implementation for grid search by

allowing the re-use of a once set up network. Before each run, the

spike recorder is reset to zero events, the membrane voltages are

reinitialized, and the parameters are set for the current run. All runs

thus use the same network with fixed connectivity.

Definition of fixed and variable simulation
costs

We divide the simulation cost into fixed and variable costs:

Tsim = Tfix + Tvar.

The fixed costs involve all steps necessary to set up and prepare

the model before the first simulation step. They are independent

of the biological model time to be simulated. The variable costs

involve the actual propagation of the network state during each

time step and the overall wall-clock time used for data collection

during a simulation. We include timestamps in the simulation scripts

to access the run-time of different execution phases. Due to the

different design principles, not all phases of GeNN can be mapped

to NEST. Table 8 shows the defined phases and the commands,

Frontiers inNeuroinformatics 14 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 8 Execution phases of simulation.

GeNN NEST

F
ix
ed

Model model.add_neuron_population() Node creation nest.Create()

definition model.add_synapse_population() Connection nest.Connect()

Build model.build() nest.Prepare()

Load model.load()

V
ar
ia
b
le

Simulation model.step_time() Simulation nest.Run()

Download model.pull_recording_buffers Download nest.GetStatus(spike_recorder)

_from_device() + conversion to spike

+ conversion to spike representation

representation nest.Cleanup()

which are executed in each phase. We included in the model

definition phase of GeNN all steps necessary to set up the model

description and the simulation itself. This contains the definition

of neurons, their connectivity, the setup of the spike recorders, the

stimulation of neurons, and the definition of the neuron parameters,

as well as the parameters of the simulation itself, such as the time

resolution. During the build phase in GeNN, the code generation

is executed based on the defined model and the code is compiled

for its target, which in our case is the specific server with a GPU.

This process is not necessary for NEST because of its design using

an interpreter to orchestrate the simulation by using pre-compiled

models. The load phase in GeNN contains the construction of the

model and all needed procedures to simulate it in the host memory

and in the GPU memory and the initialization of the model. This

includes the connectivity, variables of the model, and variables of

the general simulation. The initialization of the model can be also

re-run manually to generate a fresh model based on the currently

loaded code, as used for the grid search with GeNN. The model

setup in NEST comprises the node creation and the connection

phase. The former creates the structures of neurons, spike recorders

and stimulation devices, and the general simulation parameters such

as the parallelization scheme. In the latter, the structures of the

connectivity of nodes is created. Due to the ability of NEST to use

distributed environments, presynaptic connectivity structures can

only be created after the calibration of the system. This calibration

contains the determination of delays between MPI processes if used,

the allocation of buffers, and calibrating nodes. The simulation phase

contains for both simulators the propagation of the state and the

delivery of spikes. In the case of GeNN, each call of the simulate

function only simulates one time step and thus the call has to be

issued as many times as needed to complete the simulation. In

the case of NEST, this is done automatically. The download phase

contains the query of the recorded spikes and the generation of our

used format of representation as described for the grid search. In the

case of GeNN, the conversion is proceeded by the transfer of the

recorded spikes from the GPU to the host.

We report the median values of fixed and

variable simulation costs across repeated simulations.

Supplementary Figure S4 additionally provides the mean

and standard deviation for the calibrations shown in

Figure 3.

Extrapolation to large network sizes

We can approximate the parabolic dependence of the

proportionality factor RT = Tvar/Tbio on the number of neurons N

for the PROCEDURAL simulation approach with GeNN (Figures 3B,

C) by the polynomial function

ϕ(N,ααα) = α2 · 0.308N
2
+ α1 · N + α0

ℓ =

n
∑

i=1

(

λ

F(N)
+ (1− λ)

) (

ϕ(N, a)i − RTi

RTi

)2

ααα = a
ααα
rgmin (ℓ) .

(2)

To this end, we used a weighted least squares fit of Equation

2 with three modifications: (i) We scale the quadratic term by the

connection density p = 0.308 to relate this term to the number

of synapses M, (ii) we use the relative error, and (iii) we weigh the

samples by the inverse of the density along the independent variable

N. This balances the influence of the large network with a smaller

number of samples and the larger number of samples for small

networks with the factor λ = 0.75. We estimate the density F(N)

by a kernel density estimation using a Gaussian kernel (σ = 10, 000

neurons). The resulting fit is used for the extrapolation of Tvar/Tbio

to larger network sizes as shown in Figure 6. Simulation of larger

networks will require larger GPU RAM.

Data availability statement

The original contributions presented in the study are publicly

available. This data can be found here: https://github.com/nawrotla

b/SNN_GeNN_Nest.

Author contributions

FS and MN designed the research and wrote the manuscript.

FS carried out simulations and analysis of results. VR and MN

supervised project. All authors contributed to the article and

approved the submitted version.

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://github.com/nawrotlab/SNN_GeNN_Nest
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Funding

This research was supported by the German Research Foundation

through the Collaborative Research Center Key Mechanisms of

Motor Control in Health and Disease (DFG-CRC 1451, grant

no. 431549029 to MN, https://www.crc1451.uni-koeln.de/). FS was

funded through the DFG Research Training Group Neural Circuit

Analysis (DFG-RTG 1960, grant no. 233886668).

Acknowledgments

We are grateful to James Knight for his support with GeNN.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.

941696/full#supplementary-material

References

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge:
Cambridge University Press.

Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood, K., Patronis,
A., et al. (2022). A modular workflow for performance benchmarking of neuronal
network simulations. Front. Neuroinform. 16, 837549. doi: 10.3389/fninf.2022.83
7549

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous
activity and local structured activity during delay periods in the
cerebral cortex. Cereb. Cortex 7, 237–252. doi: 10.1093/cercor/7.
3.237

Asabuki, T., Kokate, P., and Fukai, T. (2022). Neural circuit mechanisms of hierarchical
sequence learning tested on large-scale recording data. PLoS Comput. Biol. 18, 1–25.
doi: 10.1371/journal.pcbi.1010214

Bartolozzi, C., Indiveri, G., and Donati, E. (2022). Embodied neuromorphic
intelligence. Nat. Commun. 13, 1024. doi: 10.1038/s41467-022-28487-2

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D., et
al. (2014). Nengo: a Python tool for building large-scale functional brain models. Front.
Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. G., Sanghevi,
H., et al. (2022). NeuroGPU: Accelerating multi-compartment, biophysically
detailed neuron simulations on GPUs. J. Neurosci. Methods 366, 109400.
doi: 10.1016/j.jneumeth.2021.109400

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13, 281–305.

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al. (2018).
Code generation in computational neuroscience: a review of tools and techniques. Front.
Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Boucsein, C., Nawrot, M. P., Schnepel, P., and Aertsen, A. (2011). Beyond the cortical
column: abundance and physiology of horizontal connections imply a strong role for
inputs from the surround. Front. Neurosci. 5, 32. doi: 10.3389/fnins.2011.00032

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal
Connectivity. Berlin; Heidelberg: Springer Berlin Heidelberg.

Brette, R., and Goodman, D. F. (2012). Simulating spiking neural networks on GPU.
Network Comput. Neural Syst. 23, 167–182. doi: 10.3109/0954898X.2012.730170

Brette, R., Rudolph,M., Carnevale, T., Hines,M., Beeman, D., Bower, J. M., et al. (2007).
Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput.
Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Bruzzone, M., Chiarello, E., Albanesi, M., Miletto Petrazzini, M. E., Megighian, A.,
Lodovichi, C., et al. (2021). Whole brain functional recordings at cellular resolution
in zebrafish larvae with 3d scanning multiphoton microscopy. Sci. Rep. 11, 11048.
doi: 10.1038/s41598-021-90335-y

Büsing, L., Schrauwen, B., and Legenstein, R. (2010). Connectivity, dynamics, and
memory in reservoir computing with binary and analog neurons. Neural Comput. 22,
1272–1311. doi: 10.1162/neco.2009.01-09-947

Carlson, K. D., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2014). An efficient
automated parameter tuning framework for spiking neural networks. Front. Neurosci. 8,
10. doi: 10.3389/fnins.2014.00010

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic
electronic circuits for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388.
doi: 10.1109/JPROC.2014.2313954

Deepu, R., Spreizer, S., Trensch, G., Terhorst, D., Vennemo, S. B., Mitchell, J., et al.
(2021). Nest 3.1. Zenodo. doi: 10.5281/zenodo.5508805

Deger, M., Helias, M., Rotter, S., and Diesmann, M. (2012). Spike-timing dependence
of structural plasticity explains cooperative synapse formation in the neocortex. PLoS
Comput. Biol. 8, 1–13. doi: 10.1371/journal.pcbi.1002689

Diesmann, M., and Gewaltig, M.-O. (2002). “NEST: an environment for neural
systems simulations,” in Forschung und wisschenschaftliches Rechnen, Beiträge zum
Heinz-Billing-Preis 2001, GWDG-Bericht (Göttingen: Ges. für Wiss. Datenverarbeitung).
Available online at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
74eebbc23056acb83796673c6bb51dd41deb21db

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1995). Synod: An environment
for neural systems simulations language interface and tutorial. Technical report, The
Weizmann Institute of Science, 76100 Rehovot.

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1999). Stable propagation
of synchronous spiking in cortical neural networks. Nature 402, 529–533.
doi: 10.1038/990101

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et
al. (2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain models.
Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform. 2, 2008.
doi: 10.3389/neuro.11.012.2008

Eschbach, C., and Zlatic, M. (2020). Useful road maps: studying Drosophila larva’s
central nervous system with the help of connectomics. Curr. Opin. Neurobiol. 65,
129–137. doi: 10.1016/j.conb.2020.09.008

Feldotto, B., Eppler, J. M., Jimenez-Romero, C., Bignamini, C., Gutierrez, C. E.,
Albanese, U., et al. (2022). Deploying and optimizing embodied simulations of large-
scale spiking neural networks on HPC infrastructure. Front. Neuroinform. 16, 884180.
doi: 10.3389/fninf.2022.884180

Feurer, M., and Hutter, F. (2019). Hyperparameter Optimization, Cham: Springer
International Publishing.

Frontiers inNeuroinformatics 16 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://www.crc1451.uni-koeln.de/
https://www.frontiersin.org/articles/10.3389/fninf.2023.941696/full#supplementary-material
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1371/journal.pcbi.1010214
https://doi.org/10.1038/s41467-022-28487-2
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.jneumeth.2021.109400
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fnins.2011.00032
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1038/s41598-021-90335-y
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.3389/fnins.2014.00010
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.1371/journal.pcbi.1002689
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74eebbc23056acb83796673c6bb51dd41deb21db
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74eebbc23056acb83796673c6bb51dd41deb21db
https://doi.org/10.1038/990101
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/j.conb.2013.09.009
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1016/j.conb.2020.09.008
https://doi.org/10.3389/fninf.2022.884180
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Fidjeland, A. K., Roesch, E. B., Shanahan,M. P., and Luk,W. (2009). “NeMo: a platform
for neural modelling of spiking neurons using GPUs,” in 2009 20th IEEE International
Conference on Application-Specific Systems, Architectures and Processors (Boston, MA:
IEEE), 137–144.

Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Romani, S., and Svoboda, K.
(2021). Attractor dynamics gate cortical information flow during decision-making. Nat.
Neurosci. 24, 843–850. doi: 10.1038/s41593-021-00840-6

Florimbi, G., Torti, E., Masoli, S., D’Angelo, E., and Leporati, F. (2021). Granular
layEr simulator: design and multi-gpu simulation of the cerebellar granular layer. Front.
Comput. Neurosci. 15, 630795. doi: 10.3389/fncom.2021.630795

Gallinaro, J. V., Gašparovi,ć, N., and Rotter, S. (2022). Homeostatic control of synaptic
rewiring in recurrent networks induces the formation of stable memory engrams. PLoS
Comput. Biol. 18, e1009836 doi: 10.1371/journal.pcbi.1009836

Gewaltig, M.-O., and Diesmann,M. (2007). Nest (neural simulation tool). Scholarpedia
2, 1430. doi: 10.4249/scholarpedia.1430

Gjorgjieva, J., Drion, G., and Marder, E. (2016). Computational implications of
biophysical diversity and multiple timescales in neurons and synapses for circuit
performance. Curr. Opin. Neurobiol. 37, 44–52. doi: 10.1016/j.conb.2015.12.008

Godfrey, R. K., Swartzlander, M., and Gronenberg, W. (2021). Allometric analysis of
brain cell number in Hymenoptera suggests ant brains diverge from general trends. Proc.
R. Soc. B Biol. Sci. 288, 20210199. doi: 10.1098/rspb.2021.0199

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. S. (2021).
Fast simulations of highly-connected spiking cortical models using gpus. Front. Comput.
Neurosci. 15, 627620. doi: 10.3389/fncom.2021.627620

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label
learning. Science 351, aab4113. doi: 10.1126/science.aab4113

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization in
Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357–364.
doi: 10.1016/j.tins.2007.05.004

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,
et al. (2018). BindsNET: a machine learning-oriented spiking neural networks library in
Python. Front. Neuroinform. 12, 89. doi: 10.3389/fninf.2018.00089

Helgadóttir, L. I., Haenicke, J., Landgraf, T., Rojas, R., and Nawrot, M. P. (2013).
“Conditioned behavior in a robot controlled by a spiking neural network,” in 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA:
IEEE), 891–894.

Herculano-Houzel, S., Watson, C., and Paxinos, G. (2013). Distribution of neurons
in functional areas of the mouse cerebral cortex reveals quantitatively different cortical
zones. Front. Neuroanat. 7, 35. doi: 10.3389/fnana.2013.00035

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hinsch, K., and Zupanc, G. (2007). Generation and long-term persistence of new
neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146, 679–696.
doi: 10.1016/j.neuroscience.2007.01.071

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Igarashi, J., Yamaura, H., and Yamazaki, T. (2019). Large-scale simulation of a
layered cortical sheet of spiking network model using a tile partitioning method. Front.
Neuroinform. 13, 71. doi: 10.3389/fninf.2019.00071

Illing, B., Ventura, J., Bellec, G., and Gerstner, W. (2021). “Local plasticity rules can
learn deep representations using self-supervised contrastive predictions,” in Advances
in Neural Information Processing Systems, Vol. 34, eds M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan (Curran Associates, Inc.), 30365–30379.

Inagaki, H. K., Fontolan, L., Romani, S., and Svoboda, K. (2019). Discrete attractor
dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217.
doi: 10.1038/s41586-019-0919-7

Indiveri, G., Stefanini, F., and Chicca, E. (2010). “Spike-based learning with a
generalized integrate and fire silicon neuron,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems (Paris: IEEE), 1951–1954.

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front. Neuroinform. 11,
30. doi: 10.3389/fninf.2017.00030

Ivanov, D., Chezhegov, A., Grunin, A., Kiselev, M., and Larionov, D.
(2022). Neuromorphic artificial intelligence systems. Front. Neurosci. 16, 95626.
doi: 10.3389/fnins.2022.959626

Javanshir, A., Nguyen, T. T., Mahmud, M. A. P., and Kouzani, A. Z. (2022).
Advancements in algorithms and neuromorphic hardware for spiking neural networks.
Neural Comput. 34, 1289–1328. doi: 10.1162/neco_a_01499

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et
al. (2018). Extremely scalable spiking neuronal network simulation code: from
laptops to exascale computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.
00002

Kasabov, N., and Capecci, E. (2015). Spiking neural network methodology for
modelling, classification and understanding of EEG spatio-temporal data measuring
cognitive processes. Inf. Sci. 294, 565–575. doi: 10.1016/j.ins.2014.06.028

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: a Python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs Outperform current HPC and
neuromorphic solutions in terms of speed and energy when simulating a highly-
connected cortical model. Front. Neurosci. 12, 941. doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain simulations with
procedural connectivity. Nat. Comput. Sci. 1, 136–142. doi: 10.1038/s43588-020-00022-7

Knight, J. C., and Nowotny, T. (2022). “Efficient GPU training of LSNNs using
EProp,” in Neuro-Inspired Computational Elements Conference, NICE 2022 (New York,
NY:. Association for Computing Machinery), 8–10.

Kulesza, R. J. (2007). Cytoarchitecture of the human superior olivary complex: medial
and lateral superior olive. Hear Res. 225, 80–90. doi: 10.1016/j.heares.2006.12.006

Kulkarni, S. R., Parsa, M., Mitchell, J. P., and Schuman, C. D. (2021). Benchmarking the
performance of neuromorphic and spiking neural network simulators. Neurocomputing
447, 145–160. doi: 10.1016/j.neucom.2021.03.028

Kunkel, S., Potjans, T., Eppler, J., Plesser, H. E., Morrison, A., andDiesmann,M. (2012).
Meeting the memory challenges of brain-scale network simulation. Front. Neuroinform.
5, 35. doi: 10.3389/fninf.2011.00035

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J., et al.
(2014). Spiking network simulation code for petascale computers. Front. Neuroinform. 8,
78. doi: 10.3389/fninf.2014.00078

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2022). Sub-realtime
simulation of a neuronal network of natural density. Neuromorphic Comput. Eng. 2,
021001. doi: 10.1088/2634-4386/ac55fc

LaValle, S. M., Branicky, M. S., and Lindemann, S. R. (2004). On the relationship
between classical grid search and probabilistic roadmaps. Int. J. Rob. Res. 23, 673–692.
doi: 10.1177/0278364904045481

Lengler, J., Jug, F., and Steger, A. (2013). Reliable neuronal systems: the importance of
heterogeneity. PLoS ONE 8, e80694. doi: 10.1371/journal.pone.0080694

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability in
balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505.
doi: 10.1038/nn.3220

Litwin-Kumar, A., Rosenbaum, R., and Doiron, B. (2016). Inhibitory stabilization and
visual coding in cortical circuits with multiple interneuron subtypes. J. Neurophysiol. 115,
1399–1409. doi: 10.1152/jn.00732.2015

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C.
A., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163,
456–492. doi: 10.1016/j.cell.2015.09.029

Mazzucato, L. (2022). Neural mechanisms underlying the temporal organization of
naturalistic animal behavior. arXiv. doi: 10.7554/eLife.76577

Mazzucato, L., Fontanini, A., and La Camera, G. (2015). Dynamics of multistable
states during ongoing and evoked cortical activity. J. Neurosci. 35, 8214–8231.
doi: 10.1523/JNEUROSCI.4819-14.2015

Mazzucato, L., La Camera, G., and Fontanini, A. (2019). Expectation-induced
modulation of metastable activity underlies faster coding of sensory stimuli. Nat.
Neurosci. 22, 787–796. doi: 10.1038/s41593-019-0364-9

McIntyre, C. C., and Hahn, P. J. (2010). Network perspectives on the mechanisms of
deep brain stimulation. Neurobiol. Dis. 38, 329–337. doi: 10.1016/j.nbd.2009.09.022

Mejias, J. F., and Longtin, A. (2012). Optimal heterogeneity for coding in spiking neural
networks. Phys. Rev. Lett. 108, 228102. doi: 10.1103/PhysRevLett.108.228102

Mejias, J. F., and Longtin, A. (2014). Differential effects of excitatory and inhibitory
heterogeneity on the gain and asynchronous state of sparse cortical networks. Front.
Comput. Neurosci. 8, 107. doi: 10.3389/fncom.2014.00107

Menzel, R. (2012). The honeybee as a model for understanding the basis of cognition.
Nat. Rev. Neurosci. 13, 758–768. doi: 10.1038/nrn3357

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).
Advancing the boundaries of high-connectivity network simulation with distributed
computing. Neural Comput. 17, 1776–1801. doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007). Exact subthreshold
integration with continuous spike times in discrete-time neural network simulations.
Neural Comput. 19, 47–79. doi: 10.1162/neco.2007.19.1.47

Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: A GPU-Based Framework for
Simulating Cortically-Organized Networks. MIT CSAIL.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009). A configurable simulation environment for the efficient simulation of large-
scale spiking neural networks on graphics processors. Neural Netw. 22, 791–800.
doi: 10.1016/j.neunet.2009.06.028

Nawrot, M. P., Schnepel, P., Aertsen, A., and Boucsein, C. (2009). Precisely timed signal
transmission in neocortical networks with reliable intermediate-range projections. Front.
Neural Circ. 3, 2009. doi: 10.3389/neuro.04.001.2009

Frontiers inNeuroinformatics 17 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://doi.org/10.1038/s41593-021-00840-6
https://doi.org/10.3389/fncom.2021.630795
https://doi.org/10.1371/journal.pcbi.1009836
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.conb.2015.12.008
https://doi.org/10.1098/rspb.2021.0199
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1038/nn1643
https://doi.org/10.1016/j.tins.2007.05.004
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.3389/fnana.2013.00035
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1016/j.neuroscience.2007.01.071
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.3389/fninf.2019.00071
https://doi.org/10.1038/s41586-019-0919-7
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fnins.2022.959626
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1016/j.ins.2014.06.028
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1016/j.heares.2006.12.006
https://doi.org/10.1016/j.neucom.2021.03.028
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1177/0278364904045481
https://doi.org/10.1371/journal.pone.0080694
https://doi.org/10.1038/nn.3220
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.7554/eLife.76577
https://doi.org/10.1523/JNEUROSCI.4819-14.2015
https://doi.org/10.1038/s41593-019-0364-9
https://doi.org/10.1016/j.nbd.2009.09.022
https://doi.org/10.1103/PhysRevLett.108.228102
https://doi.org/10.3389/fncom.2014.00107
https://doi.org/10.1038/nrn3357
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.3389/neuro.04.001.2009
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J. (2013).
Synthesizing cognition in neuromorphic electronic systems. Proc. Natl. Acad. Sci. U.S.A.
110, E3468-E3476. doi: 10.1073/pnas.1212083110

Niedermeier, L., Chen, K., Xing, J., Das, A., Kopsick, J., Scott, E., et al. (2022).
“CARLsim 6: an open source library for large-scale, biologically detailed spiking neural
network simulation,” in 2022 International Joint Conference on Neural Networks (IJCNN)
(Padua: IEEE), 1–10.

Oorschot, D. E. (1996). Total number of neurons in the neostriatal, pallidal,
subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study
using the cavalieri and optical disector methods. J. Compar. Neurol. 366, 580–599.
doi: 10.1002/(SICI)1096-9861(19960318)366:4andlt;580::AID-CNE3andgt;3.0.CO;2-0

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2022). Benchmarking
neuromorphic hardware and its energy expenditure. Front. Neurosci. 16, 873935.
doi: 10.3389/fnins.2022.873935

Parrish-Aungst, S., Shipley, M., Erdelyi, F., Szabó, G., and Puche, A. (2007).
Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J. Comp. Neurol.
501, 825–836. doi: 10.1002/cne.21205

Parsa,M.,Mitchell, J. P., Schuman, C. D., Patton, R.M., Potok, T. E., and Roy, K. (2019).
“Bayesian-based hyperparameter optimization for spiking neuromorphic systems,” in
2019 IEEE International Conference on Big Data (Big Data) (Los Angeles, CA: IEEE),
4472–4478.

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Plotnikov, D., Rumpe, B., Blundell, I., Ippen, T., Eppler, J. M., andMorrison, A. (2016).
“NESTML: a modeling language for spiking neurons,” in Modellierung 2016, eds S. Betz
and U. Reimer (Karlsruhe).

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical microcircuit:
relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24,
785–806. doi: 10.1093/cercor/bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and Kunkel,
S. (2022). Routing brain traffic through the von Neumann bottleneck: efficient cache
usage in spiking neural network simulation code on general purpose computers. Parallel
Comput. 113, 102952. doi: 10.1016/j.parco.2022.102952

Raji, J. I., and Potter, C. J. (2021). The number of neurons in Drosophila and mosquito
brains. PLoS ONE 16, 1–11. doi: 10.1371/journal.pone.0250381

Rapp, H., and Nawrot, M. P. (2020). A spiking neural program for sensorimotor
control during foraging in flying insects. Proc. Natl. Acad. Sci. U.S.A. 117, 28412–28421.
doi: 10.1073/pnas.2009821117

Rapp, H., Nawrot, M. P., and Stern, M. (2020). Numerical cognition based on precise
counting with a single spiking neuron. iScience 23, 100852. doi: 10.1016/j.isci.2020.101283

Rost, T. (2016). Modelling Cortical Variability Dynamics. (Ph.D. thesis). Freie
Universität Berlin.

Rost, T., Deger, M., and Nawrot, M. P. (2018). Winnerless competition in clustered
balanced networks: inhibitory assemblies do the trick. Biol. Cybern. 112, 81–98.
doi: 10.1007/s00422-017-0737-7

Rostami, V., Rost, T., Riehle, A., van Albada, S. J., and Nawrot, M. P. (2022).
Excitatory and inhibitory motor cortical clusters account for balance, variability, and task
performance. bioRxiv. doi: 10.1101/2020.02.27.968339

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybern. 81, 381–402.
doi: 10.1007/s004220050570

Sacramento, J. A., Ponte Costa, R., Bengio, Y., and Senn, W. (2018). “Dendritic
cortical microcircuits approximate the backpropagation algorithm,” in Advances in
Neural Information Processing Systems, Vol. 31, eds S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Montréal, QC: Curran
Associates), 8721–8732. Available online at: https://proceedings.neurips.cc/paper/2018/
file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf

Sakagiannis, P., Jürgensen, A.-M., and Nawrot, M. P. (2021). A realistic
locomotory model of drosophila larva for behavioral simulations. bioRxiv.
doi: 10.1101/2021.07.07.451470

Sakai, K., and Miyashita, Y. (1991). Neural organization for the long-
term memory of paired associates. Nature 354, 152–155. doi: 10.1038/3541
52a0

Sarko, D. K., Catania, K., Leitch, D. B., Kaas, J. H., and Herculano-Houzel,
S. (2009). Cellular scaling rules of insectivore brains. Front. Neuroanat. 3, 2009.
doi: 10.3389/neuro.05.008.2009

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada,
S. J. (2018). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359.
doi: 10.1371/journal.pcbi.1006359

Schmuker, M., Pfeil, T., and Nawrot, M. P. (2014). A neuromorphic network for
generic multivariate data classification. Proc. Natl. Acad. Sci. U.S.A. 111, 2081–2086.
doi: 10.1073/pnas.1303053111

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Date, P., and Kay, B. (2022).
Opportunities for neuromorphic computing algorithms and applications. Nat. Comput.
Sci. 2, 10–19. doi: 10.1038/s43588-021-00184-y

Sherwood, C. C., Miller, S. B., Karl, M., Stimpson, C. D., Phillips, K. A., Jacobs, B.,
et al. (2020). Invariant synapse density and neuronal connectivity scaling in primate
neocortical evolution. Cereb. Cortex 30, 5604–5615. doi: 10.1093/cercor/bhaa149

Singer, W., and Gray, C. M. (1995). Visual feature integration and
the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586.
doi: 10.1146/annurev.ne.18.030195.003011

Steffen, L., Koch, R., Ulbrich, S., Nitzsche, S., Roennau, A., and Dillmann,
R. (2021). Benchmarking highly parallel hardware for spiking neural
networks in robotics. Front. Neurosci. 15, 667011. doi: 10.3389/fnins.2021.66
7011

Stimberg, M., Brette, R., and Goodman, D. F. M. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N.,
Takeda, S., et al. (2019). Recent advances in physical reservoir computing:
a review. Neural Networks 115, 100–123. doi: 10.1016/j.neunet.2019.0
3.005

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier,
T., and Maida, A. (2019). Deep learning in spiking neural
networks. Neural Networks 111, 47–63. doi: 10.1016/j.neunet.2018.1
2.002

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing in practice:
the Condor experience. Concurrency Pract. Exp. 17, 323–356. doi: 10.1002/cpe.938

Thörnig, P. (2021). JURECA: data centric and booster modules
implementing the modular supercomputing architecture at jülich
supercomputing centre. J. Largescale Res. Facilit. 7, A182. doi: 10.17815/jlsrf-
7-182

Tiddia, G., Golosio, B., Albers, J., Senk, J., Simula, F., Pronold, J., et al.
(2022). Fast simulation of a multi-area spiking network model of macaque cortex
on an MPI-GPU cluster. Front. Neuroinform. 16, 883333. doi: 10.3389/fninf.2022.88
3333

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A. (2017).
Software for brain network simulations: a comparative study. Front. Neuroinform. 11, 46.
doi: 10.3389/fninf.2017.00046

Tripathy, S. J., Padmanabhan, K., Gerkin, R. C., and Urban, N. N. (2013). Intermediate
intrinsic diversity enhances neural population coding. Proc. Natl. Acad. Sci. U.S.A. 110,
8248–8253. doi: 10.1073/pnas.1221214110

Van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of asynchronous
networks is limited by one-to-one mapping between effective connectivity and
correlations. PLoS Comput. Biol. 11, e1004490. doi: 10.1371/journal.pcbi.1004490

Van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726.
doi: 10.1126/science.274.5293.1724

Vitay, J., Dinkelbach, H. O., and Hamker, F. H. (2015). ANNarchy: a code generation
approach to neural simulations on parallel hardware. Front. Neuroinform. 9, 19.
doi: 10.3389/fninf.2015.00019

Vlag, M. A., v. d., Smaragdos, G., Al-Ars, Z., and Strydis, C. (2019). Exploring complex
brain-simulation workloads on multi-GPU deployments. ACM Trans. Arch. Code Optim.
16, 1–25. doi: 10.1145/3371235

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011). Inhibitory
plasticity balances excitation and inhibition in sensory pathways and memory networks.
Science 334, 1569–1573. doi: 10.1126/science.1211095

Von, S.t., and Vieth, B. (2021). JUSUF: Modular Tier-2 supercomputing and cloud
infrastructure at jülich supercomputing centre. J. Largescale Res. Facilit. 7, A179.
doi: 10.17815/jlsrf-7-179

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure of the
nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Londo. B
Biol. Sci. 314, 1–340. doi: 10.1098/rstb.1986.0056

Witthöft, W. (1967). Absolute Anzahl und Verteilung der Zellen im Hirn der
Honigbiene. Zeitschrift für Morphologie der Tiere 61, 160–184. doi: 10.1007/BF00298776

Wyrick, D., and Mazzucato, L. (2021). State-dependent regulation of
cortical processing speed via gain modulation. J. Neurosci. 41, 3988–4005.
doi: 10.1523/JNEUROSCI.1895-20.2021

Yamaura, H., Igarashi, J., and Yamazaki, T. (2020). Simulation of a human-
scale cerebellar network model on the K computer. Front. Neuroinform. 14, 16.
doi: 10.3389/fninf.2020.00016

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework for
accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Yegenoglu, A., Subramoney, A., Hater, T., Jimenez-Romero, C., Klijn, W., Pérez
Martín, A., et al. (2022). Exploring parameter and hyper-parameter spaces of
neuroscience models on high performance computers with learning to learn. Front.
Comput. Neurosci. 16, 885207. doi: 10.3389/fncom.2022.885207

Zenke, F., and Ganguli, S. (2018). SuperSpike: supervised learning inmultilayer spiking
neural networks. Neural Comput. 30, 1514–1541. doi: 10.1162/neco_a_01086

Zhao, Y., Wang, D. O., and Martin, K. C. (2009). Preparation of aplysia sensory-motor
neuronal cell cultures. J. Vis. Exp. 8, 1355. doi: 10.3791/1355-v

Frontiers inNeuroinformatics 18 frontiersin.org

https://doi.org/10.3389/fninf.2023.941696
https://doi.org/10.1073/pnas.1212083110
https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4andlt;580::AID-CNE3andgt;3.0.CO;2-0
https://doi.org/10.3389/fnins.2022.873935
https://doi.org/10.1002/cne.21205
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1016/j.parco.2022.102952
https://doi.org/10.1371/journal.pone.0250381
https://doi.org/10.1073/pnas.2009821117
https://doi.org/10.1016/j.isci.2020.101283
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1101/2020.02.27.968339
https://doi.org/10.1007/s004220050570
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
https://doi.org/10.1101/2021.07.07.451470
https://doi.org/10.1038/354152a0
https://doi.org/10.3389/neuro.05.008.2009
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1073/pnas.1303053111
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1093/cercor/bhaa149
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.3389/fnins.2021.667011
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1002/cpe.938
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fninf.2022.883333
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.1073/pnas.1221214110
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1145/3371235
https://doi.org/10.1126/science.1211095
https://doi.org/10.17815/jlsrf-7-179
https://doi.org/10.1098/rstb.1986.0056
https://doi.org/10.1007/BF00298776
https://doi.org/10.1523/JNEUROSCI.1895-20.2021
https://doi.org/10.3389/fninf.2020.00016
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fncom.2022.885207
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.3791/1355-v
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST
	Introduction
	Results
	Spiking neural attractor network as benchmark model
	Benchmark approach and quantification of simulation costs
	Fixed costs for GeNN are high but independent of network size
	Variable costs scale linearly with biological model time and approximately linearly with network connectivity
	Simulation costs with heterogeneous synaptic time constants
	Efficient approach to parameter grid search

	Discussion
	Limitations of the present study
	Efficient long-duration and real-time simulation on the GPU
	Benchmarking with grid search
	Networks with heterogeneous neuron and synapse parameters
	Metastability emerges robustly in attractor networks with large E/I clusters and heterogeneous synaptic time constants

	Materials and methods
	Hardware configurations
	Simulators
	Neuron models and network architectures
	Simulations
	Grid search
	Definition of fixed and variable simulation costs
	Extrapolation to large network sizes

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

