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Introduction: Pain assessment is extremely important in patients unable to

communicate and it is often done by clinical judgement. However, assessing pain

using observable indicators can be challenging for clinicians due to the subjective

perceptions, individual di�erences in pain expression, and potential confounding

factors. Therefore, the need for an objective pain assessment method that can

assist medical practitioners. Functional near-infrared spectroscopy (fNIRS) has

shown promising results to assess the neural function in response of nociception

and pain. Previous studies have explored the use of machine learning with

hand-crafted features in the assessment of pain.

Methods: In this study, we aim to expand previous studies by exploring the

use of deep learning models Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and (CNN-LSTM) to automatically extract features from

fNIRS data and by comparing these with classical machine learningmodels using

hand-crafted features.

Results: The results showed that the deep learning models exhibited favourable

results in the identification of di�erent types of pain in our experiment using only

fNIRS input data. The combination of CNN and LSTM in a hybrid model (CNN-

LSTM) exhibited the highest performance (accuracy = 91.2%) in our problem

setting. Statistical analysis using one-way ANOVA with Tukey’s (post-hoc) test

performed on accuracies showed that the deep learning models significantly

improved accuracy performance as compared to the baseline models.

Discussion: Overall, deep learning models showed their potential to learn

features automatically without relying on manually-extracted features and the

CNN-LSTM model could be used as a possible method of assessment of pain

in non-verbal patients. Future research is needed to evaluate the generalisation

of this method of pain assessment on independent populations and in real-life

scenarios.
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1 Introduction

Pain assessment is of utmost importance, particularly in patients who are unable

to communicate their pain level, often referred to as non-verbal patients. In clinical

settings, self-reports using tools such as the visual analogue scale (VAS) or numerical

rating scale (NRS) are widely regarded as the gold standard for determining pain levels

in patients who are able to verbally report or express pain through writing or other

means (Herr et al., 2011). However, it is important to note that in certain clinical

conditions, patients may be unable to provide a self-report of their pain. These conditions

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2024.1320189
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2024.1320189&domain=pdf&date_stamp=2024-02-14
mailto:raul.fernandezrojas@canberra.edu.au
https://doi.org/10.3389/fninf.2024.1320189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2024.1320189/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Fernandez Rojas et al. 10.3389/fninf.2024.1320189

include sedated patients with decreased levels of consciousness,

critically ill patients receiving mechanical ventilation, individuals

with impaired communication abilities, and older adults

experiencing advanced dementia. In such cases, clinicians rely

on a combination of behavioural and physiological indicators to

infer and address pain in non-communicative patients. However,

assessing pain using observable indicators can be challenging

for clinicians due to the subjective nature of pain perception,

individual variability in pain expression, and the potential for

confounding factors that may influence the interpretation of these

indicators. In order to address the challenges associated with using

observable markers to assess pain, there is a need for a reliable

tool that can assist clinicians in obtaining more objective pain

assessments.

A method that has showed promising results to measure

the physiological response associated with pain is functional

near-infrared spectroscopy (fNIRS). fNIRS is a neuroimaging

technique that measures brain activity by monitoring cerebral

haemodynamics and oxygenation non-invasively. In particular,

it measures cortical concentration changes in oxygenated

haemoglobin (HbO) and deoxygenated haemoglobin (HbR)

simultaneously, providing valuable information about brain

activity (Rojas et al., 2016). fNIRS studies have showed that

noxious stimuli in healthy and diseased subjects induce changes

of oxygenation levels in different cortical regions (Ranger and

Gélinas, 2014; Aasted et al., 2016; Fernandez Rojas et al., 2019).

This neuroimaging tool has been previously employed by clinicians

and scientists in different studies in neuroscience. In comparison

with other neuroimaging methods like functional magnetic

resonance imaging (fMRI), electroencephalography (EEG), and

positron emission tomography (PET), fNIRS provides better

temporal and spatial resolution compared to fMRI and EEG,

respectively, and stands out for its safety profile, with no exposure

to harmful ionising radiations, unlike PET. It is less susceptible

to electrical noise since it uses optical sensors to record neural

activity, compared to PET and EEG. In addition, fNIRS systems

are small, lightweight, and highly portable, enabling research in

diverse settings. This portability, unlike the bulky fMRI machines,

allows fNIRS to be used in real-time applications (Fernandez Rojas

et al., 2023). These attributes make this neuroimaging technique a

potential candidate for real-world scenarios.

The use of machine learning algorithms has played a pivotal

role in advancing fNIRS as a valuable tool in pain assessment.

Machine learning refers to the set of methods of data analysis that

can automatically detect patterns in data to make predictions or

classify future data, to find structures such as clusters in the data,

or to extract information to acquire new knowledge and make

intelligent decisions (Lötsch and Ultsch, 2018). In pain research,

machine learning and fNIRS have successfully been applied for

detection and prediction of pain (Pourshoghi et al., 2016; Rojas

et al., 2017c, 2021; Gökçay et al., 2018). In these examples,

machine learning leverages pain-related data to construct a feature

mapping, enabling the identification or prediction of new data by

establishing a distinctive pain signature. However, one limitation

of machine learning models is their dependence on hand-crafted

feature extraction, which necessitates human intervention and

prior domain knowledge to carefully design and select the most

relevant features for effective task-solving by the learning models.

Although this approach has proven to be very effective in many

applications, this can also limit the model performance. Therefore,

it would be desirable tomake learning algorithms less dependent on

hand-crafted features, so that these systems could be less subjective,

less labour intensive, and more efficient (Bengio et al., 2013).

Deep learning has gained popularity in recent years motivated

by its success in various classification tasks and applications. For

instance, in computer vision (Krizhevsky et al., 2012), image

classification (Szegedy et al., 2015), natural language processing

(Sutskever et al., 2014), and automatic speech recognition (Hinton

et al., 2012). An advantage of deep learning methods is the

automatic feature learning from data, which largely contributes

to improvements in model performance. Learned features are

extracted automatically to solve a specific task, which avoids the

level of subjectivity and domain knowledge in the design of hand-

crafted features by learning from raw input data (Plis et al., 2014).

Such algorithms develop a multi-layered, hierarchical structure

of learning and representing data (features), where higher-level

features are defined in terms of lower-level features (Najafabadi

et al., 2015). The hierarchical learning structure in deep learning

algorithms aims to emulate the deep, layered learning process of the

neocortex, which processes sensory input in the human brain. This

involves automatically extracting increasingly complex features

until objects are recognised (Hawkins et al., 2019). This high-level

of abstraction offers more efficient and sophisticated features that

often outperform models that use hand-crafted features.

Several deep learning architectures have been proposed for

time series modelling that can be applied to fNIRS data. In

particular, Convolutional Neural Networks (CNNs) have produced

the greatest impact in many domains since AlexNet (Krizhevsky

et al., 2012) won the ImageNet competition in 2012. Thanks to

this success, CNNs have been adopted for time series analysis in

many different applications. Initially designed for 2D (width and

height) image analysis, CNNs can be used to analyse time series data

by analysing the time varying signals with 1D convolutions (Rim

et al., 2020). A convolution operation refers to the inner product

(multiplication by element and then summation) for different

windowed data and a kernel matrix (also called a filter) (Jin et al.,

2020). In this case, the convolution process is seen as a sliding

window filter applied over the time series to extract temporal

relationships (Lim and Zohren, 2021). The filter can also be seen

as a generic non-linear transformation of a time series (Fawaz

et al., 2019). The same set of filter weights at each time step can

be used (weight sharing) since temporal CNNs are built under the

assumption that relationships are time-invariant across all the time

series. This property allows CNNs to learn filters that are invariant

across the time dimension.

Another popular type of architecture is Recurrent Neural

Network (RNN), which has been used extensively in temporal

forecasting applications (Rangapuram et al., 2018). An RNN

architecture contains an internal memory state that provides the

output of the new data based on the present and the recent

past; for this reason, these architectures are referred as having

memory. This is useful in applications where the output depends

on previous computations, e.g., text analysis, speech, and DNA

sequences (Ravì et al., 2016). However, this model is not suitable
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for tasks that require learning long-range dependencies in the

data, as the difficulty with long-term dependencies arises from

the exponentially small or large weights given to long-term

interactions—an issue described as the vanishing and exploding

gradient problem (Pascanu et al., 2013). An architecture that

addresses this problem is the Long Short-Term Memory (LSTM)

networks. These networks use a memory cell to store long-

term information, regulated through a series of gates (input,

output, and forget gates) that control the flow of information,

and allow gradient flow within the network (Ravì et al., 2016).

This architecture is based on the idea of creating paths through

time that have derivatives that do not vanish by accumulating

information (such as evidence for a particular feature or category)

over a long duration, and once this information is employed, the

neural network can forget the old state (Goodfellow et al., 2016).

LSTMs have the ability to remember patterns for long time series, a

useful property in physiological signal analysis.

Another architecture that explores the complementarity of

CNNs and LSTMs for time series modelling is a hybrid CNN-LSTM

model. This architecture considers the benefits of both models, as

CNNs are good at extracting spatial relationships while reducing

frequency variations, and LSTMs are good at identifying short-

term and long-term dependencies (Ordóñez and Roggen, 2016).

In this architecture, the conventional LSTM network is extended

by adding a feature extraction phase using convolutions, which

potentially enhances the prediction capability of the LSTM network

(Yan et al., 2018). In addition, the use of better features captured

by the CNN layers has showed to improve the performance of

LSTMs in speech recognition tasks, when these model have been

used as two separated models (Sainath et al., 2015). In addition,

the CNN-LSTM architecture has showed more accurate and robust

results in comparison with other architectures in different time-

series classification and regression tasks such as, EEG-based user

identification (Sun et al., 2019), wrist kinematics estimation using

electromyography (EMG) (Bao et al., 2020), fall detection using

accelerometer and gyroscope data (Nait Aicha et al., 2018), and

emotion recognition using heart rate and galvanic skin response

(Kanjo et al., 2019).

In this paper, an empirical comparative study of deep learning

approaches for the objective assessment of pain is presented. The

motivation to utilise deep learning models was to investigate their

potential superiority for classifying different levels of pain without

the need of feature engineering. This paper presents the following

novelties with respect to the current literature: (1) we demonstrated

that the use of deep learning for the identification of different

pain intensities using fNIRS data without the need of feature

engineering; (2) we provided a comparison between classical

machine learning and state-of-the-art deep learning models, based

on time series classification tasks; and (3) We also showed that the

hybrid model composed of a convolutional neural network (CNN)

and long short-termmemory (LSTM)model (namely CNN-LSTM)

achieved the best performance in our problem setting, while the

other independent deep learning models (CNN, LSTM) achieved

remarkable results as well. Finally, this study aims to contribute to

the development of an objective pain assessment method that will

benefit patients who cannot provide a self-report of pain verbally,

in writing, or by other means. Future research will evaluate the

generalisation of this method of pain assessment on independent

populations and in real-life scenarios.

2 Methodology

2.1 Participants

Eighteen healthy adults (15males, 3 females) with amean age of

31.9 years participated in the experiments. Tomaintain consistency

in functional responses attributed to brain lateralisation, all

participants were right-handed. Prior to the initiation of the

experiments, informed consent was obtained from each participant.

Individuals with a history of significant medical disorders, current

unstable medical conditions, or those currently taking medication

were excluded from participation. The experiments were designed

through collaboration between the School of Oral Medicine at

Taipei Medical University (TMU, Taiwan) and the University of

Canberra (UC, Australia), adhering to the principles outlined in

the Declaration of Helsinki guidelines. Approval for this study

was granted through a thorough review process by the TMU Joint

Institutional Review Board under contract number 201307010.

2.2 fNIRS system

Functional NIRS recordings were obtained using the Hitachi

ETG-4000 multichannel optical topography system (Hitachi

Medical Corporation, Tokyo, Japan). This system employs

two near-infrared light wavelengths (695 nm for oxygenated

haemoglobin [oxy-Hb] and 830 nm for deoxygenated haemoglobin

[deoxy-Hb]) to measure haemoglobin concentration changes in

the cerebral cortex. The spectrometer featured a 24-channel cap,

organised into 12 channels per hemisphere (refer to Figure 1). Each

hemispheric probe comprised five sources (red circles) and four

detectors (blue circles), providing a total of twelve source-detector

pairs. Following the EEG 10–20 system, the measurement probes

were centred on the C3 and C4 positions (Rojas et al., 2017b). For

the purposes of this study, only the oxy-Hb signals were utilised

due to their superior signal-to-noise ratio compared to deoxy-Hb

signals (Rojas et al., 2017a). The sampling rate for data acquisition

was set at 10 Hz.

2.3 Pain stimuli

The stimulation protocol followed the quantitative sensory

testing (QST) protocol using the threshold and tolerance of

pain (Rolke et al., 2006). The protocol defines a pain threshold

(low pain) as the lowest stimulus intensity at which stimulation

becomes painful, and pain tolerance (high pain) as the highest

intensity of pain a person can endure. Using a sensory analyser

(Pathway CHEPS, Medoc Ltd., Israel), participants were exposed to

gradually increasing or decreasing temperatures with a thermode

(Rolke et al., 2006), while fNIRS was recorded simultaneously.

The thermode administers both heat and cold to the skin, with

a contact area of 9.0 cm2 and a baseline temperature set at
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FIGURE 1

Head probe arrangement included channels 1–12 over the right hemisphere and channels 13–24 over the left hemisphere, with probes around the

C3 and C4 areas. The source-detector distance was maintained at 3 cm.

32oC. Pain measurements were conducted on the back of the

left hand, where participants pressed a button upon experiencing

pain (threshold test) and the highest intensity of pain (tolerance

test). The temperature of the thermode at the point of becoming

painful or unbearable was recorded as the thermal pain threshold

or thermal pain tolerance, respectively. The use of a thermode

increased the consistency of each test as it represents a set of

standard stimuli applied to all the participants, as compared

to other methods (e.g., cold pressor test) that might introduce

considerable variability in the experimental conditions (McIntyre

et al., 2020).

The experiment comprised two tests: the thermal pain

threshold (low pain) and the thermal pain tolerance (high pain),

with a 2-minute rest between each test. Baseline data were

measured during the initial 60 seconds of the experiments at rest.

Following this, the stimulation was randomly applied between the

threshold and tolerance tests. Figure 2 illustrates the stimulation

paradigm. In this example, three consecutive measurements of

pain threshold for cold and heat are obtained, with a 60-s rest

between cold and heat detection and a 30-s rest between each

repetition of the same stimulus. Based on these measurements the

fNIRS data were organised into four categories for classification:

(0) Low-Cold (low pain), (1) Low-Heat (low pain), (2) High-Cold

(high pain), and (3) High-Heat (high pain). These categories (0–

3) were used to label the database and used as classes for the

classification task. Therefore, each participant completed 4 thermal

tests (repeated 3 times for low-cold, low-heat, high-cold, and high-

heat, respectively); in total, 216 trials were obtained as our dataset,

with 54 trials for each type of thermal test.

In our experimental paradigm, we exposed participants to

multiple types of stimuli (i.e., cold and heat). The rationale to

incorporate various stimuli was to emulate the diversity of pain

sources encountered in real-world scenarios. Pain experiences in

everyday life surpasses simple variations in intensity, encompassing

dimensions that span thermal, electrical, or mechanical aspects,

among others. Our experimental design sought to capture some

of this variability by exposing participants to a range of stimuli,

creating a more authentic representation of pain processing under

varied conditions. The incorporation of diverse stimuli becomes

relevant when considering the activation of different pain receptors.

For instance, cold stimuli predominately engage cold receptors

(TRPM8), while hot stimuli activate heat receptors (TRPV1)

(Takaishi et al., 2016). This inclusion of diverse stimuli was aimed

at developing a robust model capable of generalising across various

types of pain, within our experimental conditions. This approach

enhances the practical utility of our model, especially in real-

world pain assessment scenarios where pain can manifest through

a multitude of sensory channels.

2.4 fNIRS pre-processing

Although, deep neural networks can accept as input raw sensor

signals, motion artefacts in fNIRS data severely affect the quality

of the signals. Therefore, motion artefacts were removed using the

discrete wavelet transform (DWT) (Molavi and Dumont, 2012;

Rojas et al., 2017a). Motion artefacts are observed as spikes in

the amplitude of the fNIRS data with several orders of magnitude

larger than the expected variance of the signals. This behaviour

can be used to detect and eliminate motion artefacts in the fNIRS

data. Following this property, motion artefacts can be determined

by identifying those wavelet coefficients that do not belong to the

probability distribution (i.e., outliers) of the fNIRS captured data.

However, not all large wavelet coefficients are motion artefacts,

thus, a two-tailed Student’s t-test was used to evaluate (with p <

0.05) the resulting wavelet coefficients. The identified coefficients

and their corresponding frequencies are then eliminated in the

wavelet domain, leaving the remaining frequencies intact. Thus, a

fNIRS signal can be free of motion artefacts using this method.

A clear advantage of using this method is that the signal length

remains intact and no data is lost in this process. For more

information regarding the motion artefact removal method, the

interested reader is referred to Molavi and Dumont (2012). In

total, four subjects presented motion artefacts. Figure 3 presents an

example of the cleaning procedure to removemoving artefacts from

the fNIRS signals.

The final step in the pre-processing stage involved a

normalisation procedure and the partition of the fNIRS data

into consecutive segments for the analysis. First, the data was

normalised using the z-score normalisation, and scaled to a
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FIGURE 2

Stimulation paradigm. In this example, we initiated the experiment with the pain threshold test, followed by the pain tolerance test. Each subject

underwent both cold and hot stimuli applications on the back of their hand, and the sequence of stimuli was randomised for each participant.

FIGURE 3

Left illustrates the distribution of wavelet coe�cients for an fNIRS signal, showcasing the impact of motion artefacts on the distribution. On the right,

the outcomes of the motion artefact algorithm are presented. The blue signal represents the original signal with three prominent moving artefacts

(spikes), while the red signal depicts the artefact-free signal post the application of the de-noising procedure.

range of 0–1 per subject. This procedure was done to ensure

an equal contribution of all variables to the classification process

and thus, prevent that variables with greater values influence

the classification results (Horst et al., 2019). In addition, the

scaling process prevents any numerical problem that might

affect the learning and convergence of the networks (Bishop

et al., 1995). Secondly, a sliding window approach was used

to split the multiple channels into small segments that can be

processed by both the classical machine learning and deep learning

models (Creagh et al., 2022). The window size was obtained

empirically, windows of different lengths (10, 20, 30, 40, 50,

and 60 s) were tested; with the 30-s window size producing the

highest accuracy among all classifiers using all data. Therefore,

300 samples (10Hz sample rate) per window were used for the

remaining of the analysis for both the reference models and deep

learning models. After the pre-processing stage, the fNIRS signals

are used to extract features for traditional machine learningmodels,

while they are directly input into the deep learning models for

analysis.

2.5 Learning models

This study proposes the use of deep learning to eliminate

the need for manual feature engineering in the classification of

pain with fNIRS data. In particular, we tested three of the most

successful deep learningmodels for time series classification (Fawaz

et al., 2019; Wang et al., 2020; Lim and Zohren, 2021), these are:

convolutional neural network (CNN), long short-term memory

(LSTM), and CNN-LSTM. As CNNs are good at identifying

spatial relationships and LSTMs are good at temporal modelling,

it is hypothesised that an unified architecture (CNN-LSTM) will

take advantage of each network’s properties to produce better

results (Sainath et al., 2015). In order to test and compare

the proposed models, two experiments were carried out. The

first experiment was designed to obtain reference values using

classical machine learning models by obtaining popular hand-

crafted features as baseline models. In the second experiment, the

CNN, LSTM, and CNN-LSTM models are evaluated separately

without any crafting in feature engineering.
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2.5.1 Reference models
In order to characterise the benefits of the proposed deep

learning models, baseline models were implemented. These models

are based on well-know linear and non-linear machine learning

classifiers. The linear classifiers are linear discriminant analysis

(LDA), logistic regression (LR), and linear support vector machines

(LSVM); while the non-linearc neighbours (KNN), random forest

(RF), and Gaussian support vector machines (GSVM). The

hyperparameters were optimised using Bayesian optimisation for

each classifier, which will be described in detail in the next

subsections. These parameters are the regularisation method [l1, l2,

none] and the regularisation strength C [0.001, 0.01, 0.1, 1, 10, 100]

for LR, the regularisation parameter C [0.01, 0.1, 1, 10, 100] for

both the LSVM and GSVM, additionally the kernel parameter γ

[0.0001, 0.001, 0.01, 0.1] for GSVM, the number of trees [50–500],

maximum tree depth [10–100], and the number of features

considered at each split [auto, sqrt] for RF, the number of

neighbours [3–30] for KNN, and for the LDA classifier no

parameters were optimised as LDA presents a closed-form

solution (Sifaou et al., 2020). The parameters that showed the

highest validation accuracy (refer to Figure 5) were selected as the

optimal parameters.

The hand-crafted features are based on popular statistical

measures: mean, standard deviation, auto correlation, kurtosis,

skewness, floor (min), and ceiling (max) values. In total 168

features (24 channels× 7 features) were obtained. Finally, principal

component analysis (PCA) was implemented to reduce the number

of features, computational complexity, and possible overfitting;

based on the scree plot, the top 8 PCs were selected and used for

classification.

2.5.2 Proposed models
For comparison purposes, the individual models (CNN and

LSTM) shared a similar architecture with the combined model

(CNN-LSTM). This is done with the idea that differences in

performance between the individual and combined models result

from architectural differences rather than better pre-processing or

ad hoc customisations (Ordóñez and Roggen, 2016). Similar to the

reference models, parameter optimisation was carried out using

Bayesian optimisation. The parameters common to the proposed

models are learning rate [0.0001, 0.001, 0.01], batch size [32, 64,

128], L2 weight regularisation [0.1, 0.2, 0.3], number of epochs [100,

200, 300, 400, 500, 1,000], and optimiser [Adam, RMSprop, SGD].

The architecture of the CNN implemented in this study has

the following components. Two 2D convolutional layers (i.e.,

Conv2D) were considered in this architecture, the convolutional

layers included filters with kernel size {3 × 3, 5 × 5} with ReLU

activation function. These kernel sizes allow the network to capture

both the temporal changes and the inter-channel interactions. The

first convolution layer has 64 filters and the second convolution

layer has 32 filters, the convolution kernels have a stride of 1 and

padding of 1. After the convolutional layers, a max-pooling layer

with a pool size of 2, stride of 1, and padding of 1 was implemented.

Then, a dropout layer with a dropout rate of 30% to reduce over-

fitting to the training data (Srivastava et al., 2014). After that, a

flatten layer and a dense fully connected layer with 30 neurons were

implemented. Finally, the output layer gives the final probabilities

for each label using Softmax as activation function.

The LSTM model was implemented using a single LSTM

recurrent layer with 100 hidden units. The reason to use a single

LSTM layer is because LSTMs are prone to over-fitting more

easily than conventional recurrent networks. Deeper networks

can capture more complex patterns but might also be prone

to overfitting, especially with limited data (Bao et al., 2020). A

hyperbolic tangent (tanh) activation function was used in the LSTM

layer. After the LSTM layer, a dropout layer with 30% dropout

rate was adopted. Then, the output of the LSTM layer is flattened

and fed into a fully connected layer with 50 neurons and ReLU

activation. The final layer is another fully connected layer with four

nodes and Softmax activation for classification.

In the hybrid mode, the CNN-LSTM has a similar architecture

as the individual CNN and LSTM models described above. The

output data from the CNN layers serve as input to the LSTM

layer. Thus, the number of layers remained the same, with two

convolutional layers and a single LSTM layer. To maintain the

temporal nature of the data expected by the LSTM layer, a

TimeDistributed wrapper was applied to each layer of the CNN

model. Overall, the architecture of this CNN-LSTM is composed

of: two convolution layers followed by a maxpooling layer and a

dropout layer, a flatten layer to format the data into the shape

required by the LSTM, then a LSTM layer followed by dropout layer

and flatten layer, a fully connected layer, and finally another fully

connected layer as output layer to make predictions using Softmax

activation. Figure 4 presents the architecture of the compared

models in this study.

2.6 Optimisation of learning models

To discover the optimal combination of various options that

need to be explored, a grid search can be performed to explore

every possible combination. However, this approach can become

computationally intensive due to a combinatorial explosion

(Haddad et al., 2020). To address this challenge, we utilised a

Bayesian optimisation approach using the Optuna framework, to

reduce computational complexity (Akiba et al., 2019). Optuna

utilises the Tree-structured Parzen Estimator (TPE) by default,

known for its efficiency and significantly lower computational cost

compared to a grid search method (Bergstra et al., 2011). The

number of trials was kept to the default (100 trials) for all models.

An automatic early stopping (i.e., pruning) for unpromising trials

was employed to reduce optimisation time. A pruner using the

asynchronous successive halving algorithm was used with default

parameters. Given the balanced distribution of the dataset across all

classes, the optimisation objective focused on maximising accuracy

throughout all trials and models.

The parameter optimisation process was completed using an

inner 10-fold cross validation within the training set. In this

process, the dataset is divided into 10 equal parts (folds), nine

folds are used for training the model with different sets of

hyperparameters and the remaining one fold to evaluate themodel’s

performance. This process is repeated for all 10 folds, ensuring

that each fold serves as the test set once. After completing the
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FIGURE 4

Network structure of the baseline models. (A) Convolutional neural network (CNN), (B) long short-term memory (LSTM), and (C) CNN-LSTM

architecture.

10 iterations of training and evaluation, the model with the best

average accuracy is selected as the final optimised model. This final

model with the best parameter was applied to the test set (i.e.,

the subject left out in the current iteration). Figure 5 presents the

graphical representation of this process.

2.7 Model evaluation

We employed a leave-one-subject-out cross-validation

approach using the optimised parameters for each model. In

this method, the learning models were trained with the data of
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FIGURE 5

Graphical representation of the optimisation and classification process.

17 participants and then tested with the data of the remaining

participant. This process was iteratively repeated until all subjects

had been included in the testing dataset (refer to Figure 5 for a

visual representation). Four standard performance metrics were

used to compare the deep learning models. These metrics are:

accuracy, precision, recall, and F1 score. These metrics are based on

the confusion matrix and under one-vs.-all multiclass classification

approach with four classes (k = 4): (1) low-cold pain, (2) low-heat

pain, (3) high-cold pain, and (4) high-heat pain. Table 1 provides

a summary of each metric, where P and N denote the number of

positive and negative samples, respectively. True Positive (TP)

represents the count of correctly predicted samples belonging to

the positive class, True Negative (TN) signifies the number of

correctly predicted samples in the negative class. False Positive

(FP) indicates the count of incorrectly predicted samples in the

positive class (Type I error), while False Negative (FN) refers to

the number of incorrectly predicted samples in the negative class

(Type II error) (Tharwat, 2020). In our multi-class problem the

macro-average for all metrics was computed, the macro-average

computes the metric treating all classes equally (each class has the

same weight in the average) since all classes have the same number

of samples, and then take the arithmetic mean of each individual

class (Sokolova and Lapalme, 2009). Finally, Figure 6 presents an

overview of the overall methodology used in this study.

In addition, a statistical hypothesis test was implemented on

accuracies of the learning models. One-way analysis of variance

(ANOVA) was used to compare the classifiers and Tukey’s test

as post-hoc test. A p value that is >0.05 was not considered

statistically significant. The statistical test is designed to evaluate if

the models perform equally well and to determine if the difference

is statistically significant. Therefore, the null hypothesis of this test

is: Ho : The mean accuracy value is the same across all classifiers. In

other words, if the null hypothesis is retained (reject = FALSE) in

the comparison between the proposed models and baseline models,

it will indicate not only that baseline models are at most as accurate

as the proposed models, but also that there are not significant

differences between the performance of the models.

3 Results

This paper explores the use of deep learning for the objective

assessment of pain using fNIRS data. In order to characterise

the benefits of the proposed deep learning models, three baseline

models (LDA, LR, SVM) were implemented, using well-established

statistical hand-crafted features. First, this section provides the

temperature readings during the experiment. Then, the accuracy

scores and other performance metrics from both the baseline

models and the proposed methods are presented.

3.1 Threshold and tolerance of pain

Subject’s pain perception was obtained using the thermal

threshold and tolerance test following the QST protocol. Using

this method four temperature readings were obtained from

each participant (please refer to Section 2.3), these are: pain

threshold (low pain) and pain tolerance (high pain) of cold
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TABLE 1 Performance metrics using macro-averaging for the multi-class classification problem in this study.

Metric Formula Note

Accuracy

∑k
i=1

TPi+TNi
TPi+FNi+FPi+TNi

k
The average per-class effectiveness of a classifier.

PrecisionM

∑k
i=1

TPi
TPi+FPi
k

The average per-class agreement of the data labels with the positive labels given by the classifier.

RecallM

∑k
i=1

TPi
TPi+FNi
k

Effectiveness of a classifier to identify positive labels.

F1-scoreM
2∗PrecisionM∗RecallM
PrecisionM+RecallM

Relations between data’s positive labels and those given by a classifier.

Where k, total number of classes; i, individual class; TP, true positive; TN, true negative; FP, false positive; FN, false negative;M, macro-averaging.

FIGURE 6

Overview of data acquisition and data analysis process. The subject is stimulated with heat or cold stimuli while fNIRS data is recorded

simultaneously. The fNIRS data is cleaned of motion artefacts. Then, the data is segmented in overlapping windows of 30 s each. The deep learning

models are fed with the windowed data to make a prediction based on that. Finally, a level of pain is obtain (low, high) from the two di�erent stimuli

(cold, heat) is obtained as output from the deep learning models.

FIGURE 7

Thermal threshold (low pain) and tolerance (high pain) levels perceived by the participants after cold (A) and heat (B) stimuli. Horizontal black lines

are the median values across all participants for each test. Pain threshold (tests 1–3) and pain tolerance (tests 4–6).

and heat stimuli. The averaged temperature readings from each

stimulus are presented in Figure 7. The plot presents temperature

recordings of threshold (Tests 1-3) and tolerance (Test 4–6) of cold

(Figure 7A) and heat (Figure 7B) stimuli across all participants.

Median temperature recordings (± standard deviations) from pain

thresholds (initial pain sensation) of cold (12.45 ± 1.97,12.05 ±

1.93, 12.45 ± 2.22◦C) and hot stimuli (42.70 ± 2.44, 42.80 ± 2.75,

42.95 ± 2.92◦C) exhibited smaller temperature values than those

from pain tolerance (highest pain sensation) of cold (3.40 ± 2.07,

2.40 ± 2.71, 1.45 ± 2.12◦C) and heat stimuli (48.00 ± 1.92, 49.10

± 2.11, 49.70 ± 1.82◦C). These four levels were used to define the

four classes for the classification task, which correspond to the two

types of pain (cold and heat) at two levels of pain (low and high).

In order to validate experimental conditions, the temperature

readings were analysed employing a Wilcoxon signed-rank

test. Figure 7 illustrates that, as expected, cold pain tolerance

corresponds to lower temperatures, while hot pain tolerance

corresponds to higher temperatures. A significant difference (p <

0.05) was found between cold pain threshold and tolerance

(p = 0.0018), as well as hot pain threshold and tolerance
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(p = 0.002), affirming that experimental conditions align with

anticipated responses.

3.2 Performance of the reference models

The performance of the reference models using classical

machine learning techniques and hand-crafted features is presented

in Table 2. These results are presented based on four standard

performance evaluation metrics (please refer to Section 2.7 for

more details): accuracy, precision, recall, and F1 scores. The

TABLE 2 Comparison of the average (±std) performance metrics of the

baseline models, LDA, LR, LSVM, KNN, GSVM, and RF.

Model Accuracy F1-score Precision Recall

LDA 53.6± 4.4 53.4± 4.3 54.7± 4.3 53.6± 4.4

LR 62.1± 2.6 61.6± 2.6 61.5± 2.9 60.0± 2.6

LSVM 72.9± 3.8 72.6± 3.9 72.8± 4.0 71.8± 3.8

KNN 59.7± 2.1 52.9± 4.3 65.0± 3.7 58.9± 2.3

GSVM 71.3± 4.6 71.1± 4.7 72.4± 4.5 71.6± 4.3

RF 68.3± 3.3 68.4± 3.5 76.5± 2.2 68.2± 3.3

All results are presented in percentage (%).

baseline models had contrasting results, LDA exhibited the lowest

accuracy out of the three reference models with an overall accuracy

of 53.5 ± 4.4. The KNN model presented the second lowest

performance with an accuracy of 59.7 ± 2.1. The LR model

presented an accuracy of 62.1 ± 2.6. The RF classifier exhibited an

accuracy of 68.3 ± 3.3. The GSVM presented the second highest

accuracy among all classifiers, with an accuracy of 71.3 ± 4.6.

The LSVM model presented the best performance with an overall

accuracy of 72.93 ± 3.8 in our multiclass problem. In addition, the

confusionmatrices for all reference models is presented in Figure 8.

The confusion matrices revealed that in most cases, the classifiers

misclassified instances of class 3 (high pain heat) with the other

classes, resulting in a lower true positive rate for class 3.

3.3 Performance of the deep learning
models

The performance of the proposed deep learning models are

presented in Table 3. The individual CNN and LSTM methods

exhibited a similar performance with an accuracy of 86.4% ± 16.8

and 88.4%±21.1, respectively. The hybrid CNN-LSTM architecture

exhibited the highest accuracy in our experimental conditions

with 91.2% ± 11.7. Overall, the CNN-LSTM model presented the

best results in all of the performance metrics in this study. In

FIGURE 8

Confusion matrices summarising the models’ performance. Each entry is presented as a percentage normalised to the total number of data samples.

The vertical axis present the ground truth labels and the horizontal axis shows the predicted label determined by each class, (0) low pain cold, (1) low

pain heat, (2) high pain cold, and (3) high pain heat.
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general, all deep learning models exhibited acceptable results to

classify the different levels of pain stimulation without the need

of featured engineering and only using minimally preprocessed

fNIRS data. The confusion matrices for the three deep learning

models is presented in Figure 9. Similar to the reference models,

the confusion matrices indicate that the deep learning models often

misclassified instances of class 3 (high pain heat) with other classes,

leading to a reduced true positive rate for class 3.

Finally, the statistical analysis using the accuracy results was

carried out. The ANOVA results showed that the p-value (p =

2.2811e − 12, F-statistic = 13.69) is smaller than the significance

level (0.05), which indicates to reject the null hypothesis that

there are no significant differences in performance between the

models. The post-hoc test (refer to Table 4) exhibited the models

that presented statistically significant differences with respect to the

accuracy results. From these results, it is evident that the proposed

deep learning models exhibited significantly better performance

against the baseline models (LR, LDA, SVM, KNN, GSVM, RF). In

particular, the CNN-LSTMmodel presented statistically significant

differences against all the reference models, LDA (p = 0.0), LR

(p = 0.0001), LSVM (p = 0.0145), KNN (p = 0.0), GSVM

(p = 0.0056), RF (p = 0.001); while the individual CNN and

LSTM exhibited significant differences against LDA (CNN p =

0.0, LSTM p = 0.0), LR (CNN p = 0.0001, LSTM p = 0.0),

GSVM (LSTM p = 0.0306), RF (CNN p = 0.001, LSTM p =

0.0065). It is also evident that CNN, LSTM, and CNN-LSTM

models perform equally well, as there are no statistically significant

difference between them.

TABLE 3 Comparison of the average (±std) performance metrics of the

proposed CNN, LSTM, and CNN-LSTMmodels.

Model Accuracy F1-score Precision Recall

CNN 86.4± 16.8 85.1± 19.1 89.7± 13.9 86.1± 13.4

LSTM 88.4± 21.1 86.4± 24.95 89.8± 16.4 88.1± 20.8

CNN-LSTM 91.2± 11.7 91.0± 12.1 92.2± 10.1 90.8± 11.3

All results are presented in percentage (%).

4 Discussion

This study explores the use of deep learning models for the

objective assessment of pain using fNIRS data. In particular, we

used deep learning as a method to reduce the level of subjectivity

and domain knowledge in feature engineering. Also, we compared

different deep learning models to propose a possible method for

pain assessment. The results showed that the deep learning models

exhibited favourable results to identify the four different types

of pain using only fNIRS input data. In addition, among the

deep learning models compared in this study, the combination of

CNN and LSTM in a single hybrid model exhibited the highest

performance in our problem setting.

One objective of this study was to explore the possibility

to use deep learning to eliminate the need for manual feature

extraction. In a previous study (Rojas et al., 2019), the use

of different domains (time, frequency, and wavelet) to extract

several features was explored, the results showed that using 69

features, with a combination of features from the three different

domains, produced an accuracy of 88.41% using a Gaussian

SVM. In another study, mean values of the oxy-HB signals

were employed as feature extraction technique with an accuracy

of 85.76% using a SVM with quadratic kernel (QSVM) and

employing the mean values of the oxy-HB signals (Shamsi and

Najafizadeh, 2020). In a study by Lopez-Martinez et al. (2019), 80

features were obtained from discretised values using the continuous

wavelet transform with an accuracy of 69% using a Gaussian

SVM. In a study by Zeng et al. (2023), different functional

connectivity features based on global and local nodalmeasures were

obtained, and after feature selection, the top seven most important

features obtained an accuracy of 75.59% using logistic regression.

Feature selection is a powerful technique that helps identify and

eliminate irrelevant features, thus, classification performance can

be improved. Recently, it has been suggested that feature selection

could enhance the performance of deep learning methods (Chen

et al., 2020); therefore, considering feature selection may be

explored in our future work. In general, the explored deep learning

models show comparable results without relying on subjective

FIGURE 9

Confusion matrices summarising the deep learning models’ performance. Each entry is presented as a percentage normalised to the total number of

data samples. The vertical axis present the ground truth labels and the horizontal axis shows the predicted label determined by each class, (0) low

pain cold, (1) low pain heat, (2) high pain cold, and (3) high pain heat.
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TABLE 4 Post-hoc results, using Tukey’s test, based on the accuracy results of all deep learning models.

Group 1 Group 2 Mean di�. p value Lower Upper Reject

CNN CNN-LSTM 4.706 0.9907 -11.45 20.86 FALSE

CNN GSVM -15.13 0.0844 -31.29 1.02 FALSE

CNN KNN -26.67 0.0 -42.83 -10.51 TRUE

CNN LDA -31.71 0.0 -47.87 -15.55 TRUE

CNN LR -24.98 0.0001 -41.14 -8.82 TRUE

CNN LSTM 1.92 1 -14.23 18.08 FALSE

CNN LSVM -13.63 0.1685 -29.79 2.52 FALSE

CNN RF -17.69 0.0213 -33.85 -1.53 TRUE

CNN-LSTM GSVM -19.84 0.0056 -36 -3.68 TRUE

CNN-LSTM KNN -31.38 0.0 -47.54 -15.22 TRUE

CNN-LSTM LDA -36.42 0.0 -52.58 -20.26 TRUE

CNN-LSTM LR -29.68 0.0 -45.84 -13.52 TRUE

CNN-LSTM LSTM -2.78 0.9998 -18.94 13.37 FALSE

CNN-LSTM LSVM -18.33 0.0145 -34.49 -2.17 TRUE

CNN-LSTM RF -22.39 0.001 -38.55 -6.23 TRUE

GSVM KNN -11.54 0.3687 -27.7 4.62 FALSE

GSVM LDA -16.58 0.0398 -32.74 -0.42 TRUE

GSVM LR -9.84 0.5876 -26 6.31 FALSE

GSVM LSTM 17.05 0.0306 0.89 33.21 TRUE

GSVM LSVM 1.5 1 -14.65 17.66 FALSE

GSVM RF -2.55 0.9999 -18.71 13.6 FALSE

KNN LDA -5.04 0.9854 -21.2 11.11 FALSE

KNN LR 1.69 1 -14.46 17.85 FALSE

KNN LSTM 28.59 0.0 12.43 44.75 TRUE

KNN LSVM 13.04 0.2145 -3.11 29.2 FALSE

KNN RF 8.98 0.6998 -7.17 25.14 FALSE

LDA LR 6.73 0.9196 -9.42 22.89 FALSE

LDA LSTM 33.63 0.0 17.47 49.79 TRUE

LDA LSVM 18.08 0.0168 1.92 34.24 TRUE

LDA RF 14.02 0.1418 -2.13 30.18 FALSE

LR LSTM 26.9 0.0 10.74 43.06 TRUE

LR LSVM 11.34 0.3917 -4.81 27.5 FALSE

LR RF 7.29 0.8796 -8.87 23.45 FALSE

LSTM LSVM -15.55 0.0686 -31.71 0.6 FALSE

LSTM RF -19.61 0.0065 -35.77 -3.45 TRUE

LSVM RF -4.05 0.9966 -20.21 12.1 FALSE

Statistically significant differences between compared models are presented in bold text. Reject = TRUE indicates to reject the null hypothesis (Ho) at the 5% significance level.

manually extracted features or domain expertise to define features,

reducing human intervention that might bias the interpretation of

data (Silberg and Manyika, 2019).

The second objective of this study was to compare different

deep learning models and to identify a potential method for

pain assessment directly using fNIRS data. In particular, the

hybrid CNN-LSTM model showed the best results (accuracy =

91.2%), performing consistently better than the other models

in most metrics. In addition, the CNN-LSTM architecture was

the only model that exhibited statistically significant better
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performance than all three reference models (LDA, LR, SVM).

The CNN model also showed good results (accuracy = 86.4%).

It is to noteworthy that CNNs have had a significant impact

in various domains since AlexNet (Krizhevsky et al., 2012)

won the ImageNet competition in 2012. The LSTM network

exhibited the lowest performance (accuracy = 88.4%). It is widely

known that the challenge with LSTMs is their requirement

for a substantial amount of data to train effectively. This may

lead to poor performance as LSTMs may struggle to generalise

well and may memorise noise in the training data (Siami-

Namini et al., 2019). Overall, the proposed models (LSTM,

CNN, CNN-LSTM) exhibited acceptable performance in our

experimental conditions.

The combination of CNN and LSTM in a single architecture

(CNN-LSTM) outperformed the other deep learning models in our

experimental setting. This type of hybrid architecture has shown

better performance than many other state-of-the-art models in

many time series applications. In recent neuroimaging studies,

this hybrid architecture has found applications such as, EEG data

for screening of depression with an accuracy of 99% (Sharma

et al., 2021), mental state monitoring (workload, vigilance, fatigue)

using fNIRS with an accuracy of 85.9% (Mughal et al., 2021),

or epileptic seizure recognition using EEG with an accuracy

of 99.39% (Xu et al., 2020). In these applications, the CNN

architectures serve the dual purpose of filtering out noise from

the input data and extracting valuable information crucial for the

final prediction; While LSTM architectures possess the capability

to identify both short-term and long-term dependencies. In

this CNN-LSTM approach, the CNN is employed to gradually

extract higher-level features and identify spatial relationships

between the sequences of observations, and then these features

are fed into the LSTM model to learn temporal relationships

of the data and predict based on that (Rojas et al., 2021).

The basic idea of the application of this hybrid architecture

is to exploit and combine the advantages of these two deep

learning techniques.

We acknowledge that there are limitations of our study

that deserve consideration. It is possible that participants who

were included in this study had pathologies or other disorders

that were unknown by the subjects and therefore unknown

by the investigators, this may confound the pain measures

obtained during our experiments. It is important to highlight

this since it has been reported that some disorders (e.g., anxiety,

mood, or eating disorders) affect considerably the perception

and tolerance of pain (Pistoia et al., 2013), which may have

altered the results of this study. In addition, we studied the

performance of deep learning models to classify different levels

of pain using fNIRS data and we collected fNIRS from a small

number of participants (n = 18); while this preliminary

results help us to identify relevant information about our

experimental conditions, setup, and deep learning models, this

limitation should be addressed by including a larger number of

participants in our future research. Finally, direct comparisons

with other studies in the literature are difficult due to their use of

different experimental conditions, different neuroimaging methods

(e.g., EEG, PET), number of subjects, data transformations,

cleaning procedures, or heavy optimisation in the implemented

learning models.

5 Conclusions

This study demonstrates that the use of fNIRS in combination

with deep learning models is a possible tool for the assessment

of pain in experimental conditions. Deep learning models have

demonstrated their capacity to automatically extract features

from fNIRS data and have the potential to offer an enhanced

approach for pain assessment, which could prove valuable for non-

verbal patients in future applications. The outcomes presented

in this study contribute to the progression of understanding

pain assessment through fNIRS as a diagnostic method, marking

a significant stride towards establishing a physiologically-driven

diagnosis of human pain. Such advancements not only hold

promise for vulnerable populations unable to self-report pain but

also have broader implications for the general population.

Future research will centre on leveraging various sensor

modalities, including but not limited to heart rate, respiration,

galvanic skin response, and electroencephalography, for pain

assessment. Employing a multi-modal approach that employs data

from diverse sensors holds the promise of enhancing the robustness

and comprehensiveness of real-time human pain assessment. This

integrated strategy aims to unveil potential interrelationships

among different sensor modalities, offering mutual support in the

presence of artefacts or signal quality challenges. Furthermore, the

exploration of diverse multi-modal data fusion techniques will be

instrumental in unlocking the full potential of multiple sensors in

our forthcoming investigations.
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