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Spiking neural network simulations are a central tool in Computational

Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A

broad range of simulators and software frameworks for such simulations exist

with di�erent target application areas. Among these, PymoNNto is a recent

Python-based toolbox for spiking neural network simulations that emphasizes

the embedding of custom code in a modular and flexible way. While PymoNNto

already supports GPU implementations, its backend relies on NumPy operations.

Here we introduce PymoNNtorch, which is natively implemented with PyTorch

while retaining PymoNNto’s modular design. Furthermore, we demonstrate

how changes to the implementations of common network operations in

combination with PymoNNtorch’s native GPU support can o�er speed-up over

conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations.

Overall, we show how PymoNNto’s modular and flexible design in combination

with PymoNNtorch’s GPU acceleration and optimized indexing operations

facilitate research and development of spiking neural networks in the Python

programming language.

KEYWORDS

spiking neural network (SNN), comparison, simulator, GPU accelerated, e�cient

implementation

1 Introduction

Computer simulations are a central tool for the scientific study of complex systems.

In Neuroscience, owing to the great complexity of the brain and nervous system,

computer simulations have become indispensable for scientific progress. Accordingly,

various simulators have been designed with a different focus on model generation and

analysis.

Brian 2 (Goodman and Brette, 2009; Stimberg et al., 2019) stands out because it

allows for representing neural dynamics directly as differential equations with physical

units. NEST (Gewaltig and Diesmann, 2007) excels in running large-scale simulations

(Jordan et al., 2018) on computing clusters and serves as a reference implementation for

neuromorphic hardware (van Albada et al., 2018) and NeuronGPU is currently integrated

into the NEST initiative as NEST GPU to provide GPU acceleration (Golosio et al., 2021).

BindsNET (Hazan et al., 2018), SpikeJelly (Fang et al., 2023), Norse (Pehle and Pedersen,

2021), PySNN (Büller, 2019), Rockpool (Muir et al., 2023), cuSNN (Paredes-Valles et al.,

2020), and snnTorch (Eshraghian et al., 2023) facilitate the use of spiking neural networks

for machine learning-oriented experiments.
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NEURON (Carnevale and Hines, 2006) and Genesis (Bower

et al., 2003) focus on detailed neuron models with intrinsic

compartments. On the other hand, ANNarchy (Vitay et al.,

2015) offers the advantage of supporting rate coding models.

Some other simulators, such as CARLSim (Nageswaran et al.,

2009; Niedermeier et al., 2022), prioritize efficient and machine-

oriented implementations, allowing models to run on robotics

hardware. Libraries like Nengo (Bekolay et al., 2014) facilitate

chaining up trained spiking sub-networks to approximate different

mathematical functions. There are simulators available for

designing complex neuronal networks and the nervous system of

whole organism in 3D, such as NeuroConstruct (Ghahremani et al.,

2022). Some of these simulators provide native GPU support, for

example GENN (Yavuz et al., 2016) and NeMo (Fidjeland, 2014),

while others offer extensions like Brian2Cuda (Alevi et al., 2022) or

Brian2GeNN (Stimberg et al., 2020). Efforts have also been made

to streamline model development with PyNN (Davison et al., 2009)

or NeuroML (Gleeson et al., 2010) by providing uniform languages

for model descriptions independent of the underlying simulator.

Among these simulators, PymoNNto (Vieth et al., 2021) has a

simple skeleton while being modular and extendable. Its simplicity

makes it unchallenging and lets researchers concentrate on the

model, while its modularity and extendability allow for novel

and unconventional model design. Although the flexibility of

PymoNNto allows for the use of hardware accelerators such as

GPUs, this requires hardware-specific implementation of modules.

Hence, we here introduce PymoNNtorch, a PyTorch-adapted

version of PymoNNto. Using PyTorch (Paszke et al., 2019) instead

of Numpy (Harris et al., 2020) as the tensor-computing backend

allows utilizing the same module on various computing hardware

supported by PyTorch and, consequently, precludes repetitive

implementation.

When deciding among different simulators for a particular

project, computation speed is always a central concern. Even

though hardware accelerators can significantly decrease the

simulation time, the impact of an efficient implementation is

substantial. As PymoNNto(rch) only provides a framework, its

efficiency heavily depends on the user implementation of neural,

synaptic, and sundry other dynamics. Thus, in this article,

we present some simple but also subtle methods to efficiently

implement operations commonly used in spiking neural network

(SNN) simulations. The changes may appear minor, but we

show that they can yield enormous speed-ups. In particular, our

results demonstrate that efficient implementations can speed up

simulations by over three orders of magnitude compared to naive

implementations.

Furthermore, we have developed two representative models

and conducted an analysis of their respective efficiencies for

different versions of the NEST, ANNarchy and Brian 2 simulators.

The first model combines Leaky Integrate and Fire (LIF) neurons

with a simple step-wise STDP function (see below). Such a learning

rule is also quite common and similar concepts can be found in

various works about the SORN model Lazar et al. (2009) or other

works like Masquelier and Thorpe (2007), Rolls (2010), Stocco et al.

(2010), Soures et al. (2017), Tomasello et al. (2018), or Gautam and

Kohno (2021) to name some examples. The second one is a more

conventional model consisting of the Izhikevich neuron model

combined with a standard widely used trace STDP rule (Song et al.,

2000; Cohen et al., 2007; Galluppi et al., 2015; Qiao et al., 2019).

The results of this analysis show that PymoNNto(rch), if

the user implements the behaviors carefully, can outperform

comparing simulators, especially with a simpler Hebbian

learning rule and dense connectivity. Moreover, using hardware

accelerators, such as a GPU, can considerably accentuate the

improvements. Such custom, fast and easily expandable network

simulations in combination with novel learning and stability

mechanisms hold a great potential advancing the field of

computational neuroscience.

2 Methods

Due to the mutual underlying structure between PymoNNto

and PymoNNtorch, we only present the essential parts and

highlight the differences. For more details, we recommend the

original PymoNNto publication (Vieth et al., 2021) and its online

documentation.1 Afterwards, we explain how a model can be

created using PymoNNto(rch) and how it internally processes

the simulation. Then, we investigate faster implementations for

operations prevalent in spiking neural networks. The source

code for PymoNNto2 and PymoNNtorch3 is publicly available

under the MIT license on their corresponding GitHub pages.

Documentations and tutorials can be found on the ReadtheDocs

pages.1 ,4

2.1 Architecture

Any simulator has restrictions on the configuration of

the simulation, and PymoNNto(rch) is no exception. As it is

common in computational neuroscience, PymoNNto(rch) adopts a

discrete time-based simulation framework, where simulation time

discretely advances and the system state is updated according to the

last time step. Distinct from ordinary, PymoNNto(rch) separates

the model components from their dynamics. This separation

allows expressing the structure of a model, abstract definitions of

components and their relations to other components while keeping

behavior parts simple and easily modifiable, hence facilitating

experimentation.

Figure 1 depicts the internal design of PymoNNtorch. Each

class derived from NetworkObject is an abstract component, and

each class derived from Behavior is responsible for dynamics,

where each component could accept multiple behaviors. Behaviors

attached to a component (1) have a unique integer key responsible

for the order of execution, (2) can modify the components’s

properties, and (3) apply dynamics during the simulation.

Just as in PymoNNto, PymoNNtorch has four integral object

classes as follows:

1 https://pymonnto.readthedocs.io/

2 https://github.com/trieschlab/PymoNNto

3 https://github.com/cnrl/PymoNNtorch

4 https://pymonntorch.readthedocs.io/
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FIGURE 1

Class inheritance structure of PymoNNtorch. This UML diagram only represents PymoNNtorch’s fundamental classes. The arrows indicate the

inheritance relationship. The classes and functions in red are what distinguishes PymoNNtorch from PymoNNto.

1. NeuronGroup:

It is reasonable to consider neurons with similar characteristics

as a single homogeneous population. This approach leads to

a more efficient execution while simultaneously simplifies

the model. A NeuronGroup is a component designed to

serve as the structure for a population of neurons. It holds

two dictionaries for the afferent and efferent synapses it

is connected to. A NeuronGroup also has an auxiliary

function, entitled vector, to initialize population-size tensors.

These tensors are suitable for storing various properties

such as membrane potential and firing state. During the

simulation, a NeuronGroup does not execute anything

itself. Instead, the attached behaviors perform the desired

instructions.

2. SynapseGroup:

Similarly, to expedite synapse creation and synaptic

calculation, SynapseGroup has been designed. It holds

the connected pre- and post-synaptic populations. The

auxiliary function matrix creates a matrix to represent the

synaptic connections from the pre-synaptic population to

the post-synaptic population. Like any other component,

without any behavior attached to it, a SynapseGroup is

inactive.

3. Network:

While the structure of neurons and synapses in the brain are

inseparable from their functionalities, the same does not hold

for a simulation on conventional computer architectures. A

central process should be responsible for holding the structure
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FIGURE 2

(A) Visualization of a hypothetical network with multiple neuron groups shown by circles and arrows representing synapse groups between them.

Behaviors of a neuron group, a synapse group, and the network with their corresponding key are shown on the right. (B) Shows a pipeline of

behaviors execution in a single step of simulation on the sample network presented. Note that numbers inside the circles are the keys that behaviors

are attached via them to a component. These keys determine the execution order of behaviors with regard to the component holding them.

of the model and executing its instructions. Resultantly, the

Network class has been designed. Although a Network is still

a component and can have its own network-wide behaviors,

it possesses all the components and their associated behaviors.

A network is also responsible for advancing the simulation

and managing the order in which behaviors are executed.

Changing the hardware on which the simulation executes, is

as easy as creating the network with a desired device as an

argument.

4. Behavior:

In a complex system, components can be distinguished by

the dynamics they act upon. Breaking down the dynamics

into smaller and simpler dynamics and replicating them is

essential to apprehending the components and the whole

system. Therefore, the Behavior class is designed to be

responsible for adding dynamics to the components it attaches

to. The crux of the simulation is to execute these behaviors.

In order to generate a new behavior, a derived class from

Behavior should be made and subsequently, the initialize

and forward methods should be overloaded. The initialize

method is responsible for creating variables for the behavior

itself as well as the attached component and the forward

method applies the dynamics to the variables during the

simulation. Both methods receive the component they are

attached to as an argument. In Section 2.3, we present

guidelines on how to implement behaviors in an efficient

way.

All components and behaviors inherit from the TaggableObject,

which allows for conveniently finding any component, behavior,

or tagged belongings within them. Moreover, what makes

PymoNNtorch different from PymoNNto is that all the

components and behaviors are based on the torch.nn.Module,

which facilitates working with the tensors in PyTorch. All the

auxiliary functions like vector(), matrix(), and their root function

tensor() return PyTorch tensors, and they internally manage the

datatype and the device of the tensor. Also, Recorders accumulate

the state of variables in the device where the network resides.

Although PymoNNtorch and PymoNNto are designed to

simulate spiking neural networks, they are suitable for simulating

any graph-like structure as long as the computation of each

component can be performed on local variables only. One can see

NeuronGroups as nodes and SynapseGroups as edges of a graph.

Additionally, a novel structure can be easily made by inheriting

from the NetworkObject class.

2.2 Simulation process

To make a model, first a Network instance should be

created. This instance will contain all the NeuronGroups and

SynapseGroups created later. It also collects all the behaviors and

organizes them based on the provided priority keys. Creating a

component requires implementing new behaviors or reutilizing

already implemented ones and attaching them to that component.

Once all components have been created, the initialize method of

the network should be called to ask each behavior to run its own

initialize method to prepare their required variables and set the

initial conditions on them. Then the simulate_iterations method

of the network should be called to make a loop to execute all the

behaviors’ forward method repeatedly. Note that the priority keys

associated with behaviors are not local but rather global. Figure 2

depicts a sample network and the execution order of its behaviors.

2.3 Fast network implementation

In the preceding section, we explored the fundamental

components of PymoNNto(rch) and observed that the behavior

modules could contain arbitrary Python code from various

libraries, including NumPy and PyTorch. In this section, we

demonstrate how basic SNN operations can be improved and

efficiently implemented using NumPy and PyTorch functions.

These optimized operations can be effectively employed to

accelerate the performance of a wide range of custom network
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S = 5000
D = 10000

‘‘Numpy’’
src = np.random.rand(S) < 0.01 # 1% spikes
dst = np.random.rand(D) < 0.01 # 1% spikes
W1 = np.random.rand(D, S) # dense weight matrix (D×S)

‘‘PyTorch’’ # d = ‘cpu’ or ‘gpu’
src = torch.rand(S, device=d) < 0.01
dst = torch.rand(D, device=d) < 0.01
W1 = torch.rand(D, S, device=d)

‘‘Numpy’’
W1.dot(src) # 14.8ms (naive) *Baseline

‘‘PyTorch’’
torch.tensordot(W1, src, dims=([1],[0])) # CPU: 15.1ms, GPU: 1.7ms

models. We will incorporate these enhancements into our

implementations in both PymoNNto and PymoNNtorch,

subsequently subjecting them to comparison against other

simulators.

To facilitate a more precise comparison of the individual

improvements, we employ timing measurements to gauge the

computational cost of each operation. These measurements

represent the average execution time based on 1,000 independent

runs and are presented alongside the respective code lines. All

measurements in this artile were conducted on an Amazon AWS

EC2 instance. The details regarding the software and hardware are

described in the Supplementary material. All the code examples,

experiments, and results can be found on GitHub.5

In the following examples, we will begin by presenting a naive

implementation of desired calculation (depicted in the red code

block) and then demonstrate how it can be improved (shown in

the green code block). We assume an SNN simulation running in

discrete time steps, two groups of neurons and a group of dense

synapses connecting them. To represent the firing states of these

neuron groups, we employ binary spike vectors labeled as “src”

and “dst,” containing 5,000 and 10,000 neurons, respectively. The

synapses are characterized by a dense weight matrix denoted asW1,

encompassing a total of 50 million synapses.

Initially, we set the variables with the following parameters:

2.3.1 Synapse operation
The transmission of information across synapses is a vital

aspect of neural networks. The most basic method involves

employing a straightforward matrix-vector product, which can be

implemented as follows:

5 https://github.com/saeedark/Fast-SNN-PymoNNto-rch

However, considering that the spike vector comprises only

zeros and ones, we can sidestep resource-intensive multiplications

and achieve equivalent results through indexing and summation.

This optimization alone results in more than a roughly six-fold or

higher increase in speed:

2.3.2 Weight matrix storage
In the two previous code blocks, the weight matrix W1

possesses dimensions D×S, where D represents the size of

the destination neuron group, and S denotes the size of the

source neuron group. While this notation aligns with standard

mathematical conventions and obviates the necessity for an

additional transpose operation during synaptic transmission

simulation, it can be computationally inefficient from a practical

standpoint, as most memory access is not aligned with the row-

major convention utilized for storing matrix elements in memory.

Figure 3 provides a visual representation of the memory storage

for both D×S and S×D matrices. In this illustration, the orange

and green “bars” symbolize the input synapses for two exemplar

neurons. To obtain the cumulative input to a single neuron, we

must sum the weights of active inputs within a single bar. However,

when using the “intuitive” D×S synapse matrix approach, the

values within a single bar are dispersed across the memory block

which is not cache-friendly.

Switching the dimensions such that all values within the

same “bar” are stored in a contiguous memory section enables

the CPU/GPU to request an entire memory block rather than

individual values. This optimization can significantly expedite

processing. Modifying the code accordingly, as demonstrated

below, yields a remarkable speed-up of up to 38-fold compared to

the baseline version:

‘‘Numpy’’
np.sum(W1[:, src], axis=1) # 2.2ms (6.6×)

‘‘PyTorch’’
torch.sum(W1[:, src], dim=1) # CPU: 4.1ms (3.5×), GPU: 0.3ms (39.2×)
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"NumPy"
W2 = np.random.rand(S, D) # dense weight matrix (SxD)
np.sum(W2[src] , axis=0) # 0.58ms (25×)

"PyTorch"
W2 = torch.rand(S, D, device=d)
torch.sum(W2[s], dim=0) # CPU: 0.38ms (38×), GPU: 0.11ms (130×)

FIGURE 3

S×D weight matrix (left) and its transposed D×S version (right) along with their corresponding memory allocations (bottom). The orange and green

rows/columns signify the a�erent weights of two exemplar neurons, which must be combined to calculate the input for each neuron.

FIGURE 4

Three types of STDP functions, with di�erent levels of detail.

2.3.3 Synaptic plasticity
SNNs are often trained using various forms of unsupervised

Hebbian-like learning rules that take into account the activities

of pre- and post-synaptic neurons. A special rule is spike

timing-dependent plasticity (STDP) (Markram et al., 1997), which

considers the relative timing of pre- and post-synaptic spikes.

Numerous methods exist for implementing these kind of

learning rules. In this context, we consider the simple approach

of correlating (possibly time-shifted) pre- and post-synaptic spike

trains as used in Hopfield-type networks (Hopfield, 1982) or

SORNs (Lazar et al., 2009) (see Figure 4 “One Step”).

In the subsequent discussions, we work with both D×S and

S×D matrices. However, in contrast to the previous examples, this

alteration has minimal impact on the performance of the improved

version. This is primarily related to the fact that no operations over

entire columns or rows are required in this particular context.

We consider spike vectors labeled “src” and “dst” for

representing the (potentially time-shifted) pre- and post-synaptic

activities, respectively. The most straightforward approach to

compute the weight changes (disregarding learning rates, etc.) is

by utilizing a basic outer product of these vectors, implemented as

follows:

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2024.1331220
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Vieth et al. 10.3389/fninf.2024.1331220

"NumPy"
W1 += dst[:,None] * src[None,:] # 74ms (naive) *Baseline
W2 += src[:,None] * dst[None,:] # 116ms
"or"
W1[dst[:,None] * src[None,:]] += 1 # 39ms
W2[src[:,None] * dst[None,:]] += 1 # 81ms

"PyTorch"
W1 += dst[:,None] * src[None,:] # CPU: 220ms, GPU: 3.9ms
W2 += src[:,None] * dst[None,:] # CPU: 220ms, GPU: 3.9ms
"or"
W1[dst[:,None] * src[None,:]] += 1 # CPU: 149ms, GPU: 3.3ms
W2[src[:,None] * dst[None,:]] += 1 # CPU: 148ms, GPU: 3.3ms

"NumPy"
W1[np.ix_(dst, src)] += 1 # 0.0694ms (1078×)
W2[np.ix_(src, dst)] += 1 # 0.0669ms (1118×)

"PyTorch"
W1_index = (torch.where(dst)[0].view(-1,1), torch.where(src)[0].view(1,-1))
W1[W1_index] += 1 # CPU: 0.1530ms (489×), GPU: 0.1714ms (436×)
W2_index = (torch.where(src)[0].view(-1,1), torch.where
(dst)[0].view(1,-1))
W2[W2_index] += 1 # CPU: 0.1522ms (491×), GPU: 0.1715ms (436×)

This function generates a new D×S weight matrix that

is either added to the current weights or used for indexing.

However, both of these approaches are highly inefficient. For

instance, consider a weight matrix W1 containing 5,000 × 10,000

elements; This matrix amounts to 50 million multiplications,

where most of them involve at least one factor that is zero,

since typically only a small number of pre- and post-synaptic

neurons are expected to be active. Remarkably, by employing sparse

indexing, we can accelerate the computation by approximately

three orders of magnitude, achieving the following significant

improvement:

This version selectively modifies those elements in the

weight matrix that require updates while preserving the rest

of the elements. This is accomplished using the np.ix_(a,

b) function, which computes a sparse mesh containing

only the indices of the values that need modification. In

PyTorch, a similar outcome can be achieved using the “where”

function.

The sparse indexing technique can indeed be extended to

implement a more intricate STDP process. For instance, to

create an STDP process, like the one depicted in Figure 4 “9

Step,” one can repeat the previously mentioned computation

multiple times for different time steps. Furthermore, if a wider

STDP window is required, it may be practical to bundle the

spike vectors from multiple time steps together and execute

the STDP process only at specific intervals. This approach can

help to manage computational complexity while accommodating

broader temporal windows for plasticity modulation in neural

networks.

2.3.4 Weight clipping and normalization
It is frequently desirable to limit the growth of synaptic

weights to prevent potential instabilities. The simplest

method to achieve this is through utilizing a hard-bound

over weights known as weight clipping. Incorporating weight

clipping into the previous example yields the following

modification:

mask = np.ix_(dst, src)
W1[mask] += 1
W1[mask] = np.clip(W[mask], W_min, W_max)

To reduce unnecessary computations, we exclusively apply

clipping to the synaptic weights that have been modified (as

demonstrated in the previous example) to ensure that they

remain within the specified range [Wmin, Wmax]. Additionally,

we continue to leverage our sparse mesh for efficiency in this

context.

Another widely used mechanism is neuron-wise weight

normalization, as described in Elliott (2003). This normalization

ensures that the total amount of afferent synaptic weights

remains constant for each neuron. While this operation can be

computationally expensive when executed at every time step, it

is often sufficient to perform it at specific intervals, reducing the

overall computational load:

2.3.5 Smart choice of data types and sparsity
Lowering the precision of computations is another

straightforward method to enhance the speed of vector and

if iteration % 100 == 0: # normalize only every 100 iterations
W /= np.sum(W, axis=1)[:, None] # afferent (D×S)
W /= np.sum(W, axis=0) # efferent (D×S)
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class STDP(Behavior):

def initialize(self, neurons):
self.learning_rate = self.parameter(’learning_rate’)

def iteration(self, neurons): # def forward(...): in PymoNNtorch
for s in neurons.synapses(afferent):

mask = np.ix_(s.src.spikesOld, s.dst.spikes)
s.W[mask] += self.learning_rate
s.W[mask] = np.clip(s.W[mask], 0.0, 1.0)

matrix operations. This can be accomplished by adjusting the

“dtype” parameter:

# synapse operation with:
dtype = np.float64 # 0.55ms (default) *Baseline
dtype = np.float32 # 0.29ms (1.88×)
dtype = np.float16 # 3.65ms (0.15×) !

As a general rule, lower precision is often expected to yield

faster computation times. However, it is essential to be mindful of

exceptions, such as the last line of the previous example, where not

all CPUs support accelerated processing of smaller data types like

16-bit floating point precision.

Whether a lower precision is acceptable heavily depends on the

chosenmodel, its step size and the implementedmodules. However

there are many cases in which the more than 8 million mantissa (23

bit) and the 256 (8 bit) exponential states of float32 are more than

enough to represent properties of simplified neuron models.

It is worth noting that specialized “sparse matrix” data types,

such as those available in SciPy, can be used with PymoNNto(rch)

but they may not always lead to speed improvements. These

matrices employ list-like data structures that can be relatively

slow in many scenarios. Additionally, the optimization methods

presented in this article do not necessarily apply to various

representations of a sparse matrix.

Nevertheless, a simple example with sparse matrices is

provided in the Supplementary material. In this implementation,

the break-even point at which sparse matrices are faster than the

optimized dense approach is below one percent connectivity. Even

though we did not delve into sparse-specific matrix operation

optimization approaches, since any code can be packed into the

behavior modules, further optimization approaches for sparse

representations are possible.

The main advantage of a sparse matrix implementation lies in

its reduced memory usage. Nevertheless, the matrix W with 32-

bit floating point numbers from above and 50 million elements

only consumes 200 MB of memory. We also investigated whether

the processing time changes when we fill the matrix with zeros to

simulate sparse connectivity.We noted no noticeable differences on

the employed hardware, indicating that multiplications with zeros

or ones are not handled differently.

If the neuron population grows to a size where an all-to-all

connectivity may become impractical, PymoNNto(rch) provides

the option to either create multiple smaller neuron groups or to

divide a large neuron group with masks into smaller subgroups.

These smaller groups can then be connected through multiple

dense synapse groups, resulting in potential savings in both

memory and processing power. Without these subgroups, the

all-to-all connection scheme may demand excessive memory for

large neuron populations, highlighting a limitation in our current

approach.

2.4 Implementation example

Since behaviors in PymoNNto(rch) incorporate regular Python

codes, it is possible to seamlessly integrate the previously discussed

examples into the corresponding behavior modules. The codes

under the Numpy section are compatible with PymoNNto and the

PyTorch sections are compatible with PymoNNtorch. By changing

the variable names we can directly put the previous operations into

our modules. Here is an example of what the STDP module might

look like in PymoNNto(rch):

As it can be seen, the last three lines are just copied into the

scaffold and we added a “learning_rate” parameter. Once this STDP

module is defined, it can be attached to any NeuronGroup, and the

for-loop mechanism ensures that the module can also efficiently

process multiple connected SynapseGroups when necessary.

Note that the overhead introduced by PymoNNto(rch) to the

Python/NumPy/PyTorch code is practically negligible (refer to

Supplementary Figures S1, S2). At each time-step, PymoNNto(rch)

iterates over a list with all the attached modules, already sorted in

the correct order. For each module, it executes a simple function

call, which takes approximately one microsecond on the utilized

machine.

3 Results

In this section, we seek to compare various network

implementations across different simulators. We conducted three

sets of experiments. Firstly, we compare the optimized and

naive versions of PymoNNto(rch). Secondly, we implement an

equivalent network (Figure 5A) in Brian 2, NEST and ANNarchy

and measure their respective performances. Thirdly, we utilize a

popular network model that combines an Izhikevich neuron model

(Izhikevich, 2003) (Figure 5B) with standard STDP (as shown

in Figure 4 “Standard”) and present the results from different

simulators side by side. We selected these models because they

establish a common baseline for a wide range of existing learning

models found in current literature. To enhance clarity, weminimize

the number of parameters in the models and keep them as simple

as possible while providing synapse and plasticity operations.

The models do not contain additional homeostatic mechanisms,

therefore, they rely solely on strong external noise to drive the

network activity and to stabilize the spike rate. Because of the
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FIGURE 5

The model structure of experiments. It consists of a neuron group and a synapse group connecting the neurons within the group. (A) The dynamics

for the first and second experiments. The neurons follow the LIF dynamics and they receive a uniformly distributed external input. The synapse is fully

connected. It acts as a Dirac function and its weights are updated with the One-Step STDP function. (B) The dynamics for the third experiment. The

neurons feature the Izhikevich dynamics and receive a normally distributed external input. Also, synapse weights are updated with the standard STDP

function (Figure 4 “Standard”).

relatively weak synapses, the models exhibit similar firing rates

across different population sizes (Supplementary Figures S5, S6).

We also ensured that the models generate comparable population

activity (see Supplementary Figures S2, S4) and that there are no

significant rounding errors caused by the involved parameters, such

as step-size and data-types. In all models, the main computational

load is caused by the synapse operations and STDP, especially

by the standard STDP rule (see Supplementary Figures S1, S3).

All implementation details, individual measurements of the

employed modules and additional information can be found in the

Supplementary material.

3.1 Optimized vs. naive approach

In the Methods section, we have presented the details of

different approaches for implementing networks with greater

efficiency.

In this section, we combine several elements, including basic

leaky integrate-and-fire (LIF) neurons with random fluctuations,

fast synapse operations, One-Step STDP, transposed matrices,

weight clipping, and the use of float32 data types, into a single

“optimized” network model. We then proceed to compare this

optimized model to a “naive” implementation that lacks these

efficiency enhancements.

The results are illustrated in Figure 6, where the top represents

the optimized implementations and the bottom displays the naive

implementations. It’s worth noting that these straightforward

modifications have led to a substantial speed-up of over three

orders of magnitude. Furthermore, we observe that in both

implementations, the PymoNNtorch GPU version outperforms the

CPU version. Supplementary Table S8 details the effectiveness of

individual optimization methods on total simulation time.

Nonetheless, the speed remains relatively comparable between

the optimized CPU and GPU implementations, and there are

scenarios in which optimizing operations is not as straightforward.

For instance, consider a rate-based network that relies on

analog values instead of spikes, rendering indexing less effective.

Additionally, operations like weight normalization demand dense

computations. Therefore, the performance advantage of using a

FIGURE 6

Ratio of improvements in processing speed compared to the

slowest version. Naive implementation (Top) vs. optimized

implementation (Bottom) for the same network. Averaged over 10

independent runs for a duration of 300 time steps; The ratios

indicating how many times faster the individual simulation is

compared to the slowest one.

GPU is highly contingent on the specific network architecture in

use.

3.2 Simulator comparison

Next, we proceed to compare the performance of various

simulators with each other. To do this, we utilize the previously

discussed simple optimized network of LIF neurons with One-Step

STDP as well as a network of Izhikevich neurons with standard

STDP.

To perform the comparison, we have examined a total of nine

different simulators, including their variations. These incorporate

the three PymoNNto(rch) versions, which remain consistent with

the ones used in the previous experiment. Additionally, we

incorporate Brian 2, which can also be compiled into C++ code
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FIGURE 7

(A, B)Measurements for a network of LIF neurons from Figure 6. (A) Measured simulation time (log scale) for di�erent network sizes. (B) The ratio of

processing speed-ups for di�erent simulators compared to the slowest one (300 time steps averaged over 10 independent runs for a network of

10,000 neurons). (C, D) Measurements for a network of Izhikevich neurons with standard STDP shown in Figure 4 “Standard.” (C) Measured simulation

time (log scale) for di�erent network sizes. (D) The ratio of processing speed-ups for di�erent simulators compared to the slowest one (300 time

steps averaged over 10 independent runs for a network of 10,000 neurons). Error bars in (B, D) indicate standard deviations. The gray vertical lines in

(A, C) indicate the network sizes used in (B, D) respectively.

using the “cpp_standalone” package or take advantage of GPU

acceleration with the “cuda_standalone” parameter (Alevi et al.,

2022), both of which can enhance its efficiency. We also conducted

experiments on the ANNarchy simulator and tested the CPU as

well as the CUDA GPU version. As for the NEST simulator, we

have employed a native implementation for the network with LIF

neurons, and for the network with the Izhikevich neurons, we

have utilized the PyNN interface. Initially, we intended to use

PyNN for all our comparisons, however, it proved to be limiting

in terms of required custom implementations and the C++/Cuda

optimizations.

It is important to note that, when using the same parameters

and equations, the native NEST implementation consistently

generates slightly fewer spikes in comparison to the other

simulators. This leads to a slight reduction in its simulation time

since it needs to compute fewer events. The NEST simulator is

also the only one which only uses the double precision values

while all other simulators are set up to use single precision. The

reason for this is that there seems to be no setting to change

the default datatype of NEST. This, however, is not the reason

for its slightly lower spike count because the other simulators

do not show this behavior when they are set up to use float64

datatype.

The results have been visually represented in Figure 7. Notably,

PymoNNto(rch) consistently exhibits superior performance for

larger networks, particularly when employing One-Step STDP rule

(Figures 7A, B). In these cases, the PymoNNtorch GPU version

demonstrates a 39-fold (66.3/1.7) speed-up advantage over the

NEST simulation. It is also between 2.6 (66.3/24.9) to 66 times faster

compared to the various versions of Brian 2. The CPU version of

PymoNNtorch is 5.5 (36.9/6.7) times faster than the CPU version

of ANNarchy and on the GPU, PymoNNtorch is 39% faster than

ANNarchy.

Even in the case of the Izhikevich version (Figures 7C, D),

we observe substantial performance improvements, despite the

absence of optimizations for the employed standard STDP rule. In

this context, both of PymoNNto(rch)’s CPU versions outperform

the other CPU versions and the same is the case for PymoNNtorch’s

GPU version, which achieves a notable 61% increase in speed

compared to Brian 2’s GPU version, which came out second.

The logarithmic plots in Figures 7A, C illustrate that on small-

size networks, simulators that utilize compilers namely NEST, Brian

2 GPU, Brian 2 C++ and ANNarchy perform faster. Also on

small-size networks, the framework overhead of Pytorch causes

PymoNNtorch to perform slower than PymoNNto. However, as

the number of neurons increases, the speed improvements of
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PymoNNto(rch) become more pronounced. It becomes evident

that simulations can greatly benefit from PymoNNto(rch)’s

approach, both in processing and efficient memory usage. The

detailed simulation times of Figures 7A, C can be found in the

Supplementary Tables S10, S13, respectively.

4 Discussion

In this article, we have introduced PymoNNtorch and

showcased its optimizations for PyTorch in comparison to

PymoNNto, highlighting its native GPU support to accelerate

operations for spiking neural network simulations. Additionally,

we have outlined a set of techniques designed in both NumPy

and PyTorch to efficiently compute commonly used operations

in SNNs. Through the utilization of GPUs, transposed synapse

matrices, indexed summations instead of vector products, sparse

meshes instead of matrix multiplications, and the adoption of

smaller data types, we have successfully demonstrated substantial

speed enhancements of PymoNNto(rch) in our study.

The techniques that leverage the binary states of SNNs are

versatile and can be applied to various SNN models without the

need for additional libraries or hardware support. In addition,

we have demonstrated that the optimized NumPy and PyTorch

implementations can be seamlessly integrated into PymoNNto(rch)

modules, which helps structure the code, simplifies further

extensions and takes advantage of the PymoNNto(rch) ecosystem.

Comparing the optimized version to the naive implementation, we

have achieved an acceleration of over three orders of magnitude.

Furthermore, our results have shown that PymoNNto(rch)

can significantly outperform optimized simulators such as Brian 2

(default, C++, and GPU versions), ANNarchy and NEST in both

exemplar networks. PymoNNto(rch) offers substantial advantages,

particularly for researchers working with custom and experimental

network models that deviate from traditional implementations.

These benefits include significant speed improvements of up

to 66-fold, user-friendliness, and a wide range of options

for implementing models. This may be particularly useful in

neuromorphic engineering contexts, where the goal is not to

faithfully model a particular biological system, but to explore a

wider range of network architectures, learning mechanisms, and

hardware implementations to efficiently solve particular problems.

The choice between PymoNNto and PymoNNtorch depends

greatly on the specific model at hand and the researcher’s

preferences. In situations where it is feasible to optimize various

model operations, for example, through indexing techniques, the

raw processing power of a GPU may not be necessary, and

PymoNNto might be a suitable choice. On the other hand, for

models where optimization opportunities are limited, and certain

components of the model inherently benefit from GPU-accelerated

computations, PymoNNtorch may be the preferred option. It is

important to note that PymoNNtorch is still in its early stages of

development and does not have the same set of high-level features,

such as a GUI and evolution package, as PymoNNto has. We

plan to add this high-level features by merging PymoNNto and

PymoNNtorch into a common code base in the future whilemaking

sure that it does not affect the code of the described modules

and measurements in this article. We invite the community to

contribute to PymoNNto(rch)’s development.

We firmly believe that biologically plausible SNN models and a

broader class of biologically inspired SNNs will continue to play a

significant role in brain research and neuromorphic engineering,

respectively. It is evident that the emergence of specialized

hardware, such as neuromorphic chips, has the potential to

provide even greater speed enhancements in SNN simulations. One

example is Intel’s previously developed chip called Loihi (Davies

et al., 2018) and the corresponding Lava (Snyder et al., 2023)

framework for implementing networks. However, we maintain the

view that SNN simulations on standard hardware will remain

essential for two reasons. First, standard hardware is cheap and

widely available. Second, simulations on standard hardware can

serve as valuable tools for assessing which features are worth

integrating into the next generations of neuromorphic chips to

enhance their capabilities.
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