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Study objectives: We aimed to build a tool which facilitates manual labeling of

sleep slowoscillations (SOs) and evaluate the performance of traditional sleep SO

detection algorithms on such a manually labeled data set. We sought to develop

improved methods for SO detection.

Method: SOs in polysomnographic recordings acquired during nap time from

ten older adults were manually labeled using a custom built graphical user

interface tool. Three automatic SO detection algorithms previously used in the

literature were evaluated on this data set. Additional machine learning and deep

learning algorithms were trained on the manually labeled data set.

Results: Our custom built tool significantly decreased the time needed for

manual labeling, allowing us tomanually inspect 96,277 potential SO events. The

three automatic SO detection algorithms showed relatively low accuracy (max.

61.08%), but results were qualitatively similar, with SO density and amplitude

increasing with sleep depth. The machine learning and deep learning algorithms

showed higher accuracy (best: 99.20%) while maintaining a low prediction time.

Conclusions: Accurate detection of SO events is important for investigating their

role in memory consolidation. In this context, our tool and proposed methods

can provide significant help in identifying these events.
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1 Introduction

During sleep, the brain displays a set of characteristic oscillatory rhythms, one

prominent rhythm being the slow wave sleep (SWS) regime, defined by the presence

of slow oscillations (SOs) (Rasch and Born, 2013). While the term “SO” has received

some criticism (Timofeev et al., 2020), it is generally used in the literature to refer to

neocortical large-amplitude events with a low frequency observed most prominently over

fronto-central regions, nevertheless, important differences exist in this definition across

studies. In particular, criteria for SO amplitude can vary. Massimini et al. (2004) uses an

absolute amplitude threshold of 140 µV, Muehlroth and Werkle-Bergner (2020) uses 70

µV, whereas others determine this value dynamically for each individual participant (Mölle

et al., 2009; Ladenbauer et al., 2017). Additionally, some studies distinguish between delta

(∼1 to 4 Hz) and SO (0.1 to ∼1 Hz) (Ladenbauer et al., 2017) frequency, whereas others

combine the two (Massimini et al., 2004). However, the dichotomy between the two is
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supported by differences in the respective cellular correlates

of these oscillations (Amzica and Steriade, 1998), differences

in origin (Amzica and Steriade, 1998; Timofeev et al., 2000),

and in physiological and functional correlates (e.g., differential

homeostatic regulation: Achermann and Borbély, 1997; Bersagliere

and Achermann, 2010; and memory function and in the context of

cognitive pathology in aging: Mander et al., 2015). Despite these

variations in definitions, from a functional perspective, SOs are

important for memory consolidation. According to the “active

system consolidation hypothesis,” SOs play a crucial role in this

process, as they help mediating the transfer of hippocampal-

dependent memory representations to the neocortical long-term

storage (Rasch and Born, 2013).

Studies investigating the effect of auditory stimulation during

sleep have shown that the number of SOs increases after

stimulation and that this correlates with improved declarative

memory performance (Ngo et al., 2013). Additionally, both the

SO amplitude and the duration of the SO up-state increase after

a learning task and this increase correlates with task performance

after sleep (Heib et al., 2013). Finally, the synchronization between

SOs and thalamocortical sleep spindles [10–15 Hz waxing and

waning activity (Rasch and Born, 2013)] appears to be crucial

for memory consolidation and transcranial current stimulation

(tCS) protocols which boost this coupling lead to better memory

performance in a variety of tasks (Ladenbauer et al., 2017; Mikutta

et al., 2019; Muehlroth et al., 2019).

A fundamental methodological assumption in these studies,

however, is the fact that SOs are reliably and comparably identified

across studies. SO detection often relies on automatic detection

methods applied to the electroencephalography (EEG) signal.

Typically, such algorithms are applied to EEG signals bandpass-

filtered within a variable low-frequency range and SOs are selected

based on a series of amplitude and peak detection criteria

(Massimini et al., 2004; Mölle et al., 2009; Ladenbauer et al., 2017;

Muehlroth et al., 2019). These criteria can be applied in the form of

either fixed or individually-adjusted, i.e., relative, thresholds. Given

that both the bandpass filter frequency ranges and the threshold

values can vary across studies, it is unclear to what extent results

from different studies can be compared to each other.

Comparison of results across studies is further complicated

when taking into account age differences. Numerous studies show

that older adults display reduced SO numbers, amplitudes, and

frequencies (Dijk et al., 2000; Edwards et al., 2010). According

to Muehlroth and Werkle-Bergner (2020), both fixed and relative

threshold algorithms lead to similar results for young adults, but

they show marked differences for older adults. In particular, as SO

amplitudes are reduced in older adults, fixed threshold algorithms

tend to miss more SO events compared to the relative threshold

ones (Muehlroth and Werkle-Bergner, 2020).

Consequently, while automatic SO detection algorithms offer

an immense advantage in terms of data labeling speed, they carry

several disadvantages, including difficulties in comparing results

across studies, as well as an apparent lack of reliable detection across

age groups. Thus, comparison of results from manually expert-

labeled events with results from different automatic SO detection

algorithmsmight help address these challenges. Nevertheless, to the

authors’ best knowledge, such amanually labeled validation data set

is currently not publicly available.

In this work, we address the issue of validation data by first

implementing a tool which facilitates the manual labeling of SO

events. Subsequently, we use this tool in order to produce a

manually labeled validation data set based on the EEG recordings of

ten older adults and compare the performance of three automatic

SO detection algorithms against the validation data. Additionally,

we compare common SO features, such as density and amplitude,

and observe that the three automatic SO detection algorithms

lead to diverging results. Finally, we use this benchmark data

set to test three approaches using machine learning and deep

learning methods, which can achieve better results for SO detection

compared to the traditional ones. Based on our results, we propose

a recommended workflow for optimal SO labeling and detection for

future sleep EEG studies.

2 Method

2.1 Data

2.1.1 Participants
Ten older adults (five females, age range = 50–77 years,

mean age = 60.9 years) gave their written informed consent

for participating in the current sleep study conducted at the

Universitätsmedizin Greifswald. Daytime sleep EEG recordings

were acquired. The study was approved by the local ethics

committee at the Universitätsmedizin Greifswald and was in

accordance with the Declaration of Helsinki. All participants were

reimbursed for their participation.

2.1.2 Acquisition
EEG data were recorded during 90-min afternoon naps as part

of a larger study in which the effect of slow oscillatory transcranial

direct current stimulation (so-tDCS) (Ladenbauer et al., 2021) was

investigated. For the purposes of the current study, we selected

baseline recordings from seven participants, together with so-tDCS

recordings from two participants and one sham recording from one

participant. The data were acquired from scalp sites using Ag/AgCl

active ring electrodes incorporated into an EEG cap according to

the extended 10–20 international EEG system, using the Brain

Vision Recorder software at a sampling rate of 500 Hz and were

referenced to an electrode attached to the nose. 28 scalp electrodes

(FP1, FP2, AFz, F3, F4, F7, Fz, F8, FC5, FC1, FC2, FC6, C3, Cz,

C4, T7, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, O2) were

used in the baseline recordings and 26 in the so-tDCS and sham

recordings (F3 and F4 were replaced by stimulation electrodes in

this case). Simultaneously, following the standard sleep monitoring

protocol, chin electromyography (EMG) and electrooculography

(EOG) data were recorded.

2.1.3 Sleep stage classification
One medical expert used the Schlafaus software (Steffen

Gais, Lübeck, Germany) to manually perform the sleep stage

classification on the raw data downsampled to 250 Hz, based on

the standard criteria outlined in Rechtschaffen (1968). For this

purpose, the expert used 30 s epochs, classifying each as belonging
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to one of seven stages: wakefulness (Wa), non-REM sleep stage 1

(N1), 2 (N2), 3 (N3), or 4 (N4), REM sleep or movement artifact.

All ten participants reached sleep stages N1 and N2, while seven

also reached sleep stage N3. No participant displayed N4 activity

during the afternoon nap. Eight participants also had periods of

awake time.

2.1.4 Preprocessing
We preprocessed the EEG data using custom scripts

implemented in the FieldTrip toolbox (Oostenveld et al., 2011).

The preprocessing pipeline was the same as described in Cakan

et al. (2022). In brief, the first step involved identifying artifactual

independent components (ICs) in the data to be removed in

the second preprocessing step. For that, a 1–100 Hz bandpass

finite impulse response filter and a 50 Hz bandstop filter with

a bandwidth of 4 Hz were applied to the data. Afterwards, we

manually removed gross noise portions affecting all EEG channels,

excluded the EMG channels, and conducted an independent

component analysis (ICA) with 30 ICs using the runica algorithm

(Makeig et al., 1997). These ICs were used to identify and remove

artifacts from the data. In particular, we used scalp topographies

(Jung et al., 1997, 2000) and power spectra (Criswell, 2010) to

identify and remove ICs corresponding to muscle artifacts, heart

beat, and eye movements.

Starting again from the raw data for our main analyses, we

applied a finite impulse response bandpass filter between 0.1 and

100 Hz, coupled with a 50 Hz bandstop filter with a bandwidth

of 4 Hz to the data, then removed all artifactual ICs identified in

the previous step, as well as the EOG channels, and segmented the

data into 10 s epochs. In order to detect any remaining artifact-

contaminated channels, as well as artifact-contaminated epochs, we

used a two-step procedure. The first step involved the detection of

outliers exceeding four times the standard deviation of the kurtosis

of the power distribution in the low- (0.1–2Hz) and high-frequency

(30–100 Hz) bands. The second step made use of the FASTER

algorithm (Nolan et al., 2010). Channels containing artifacts were

interpolated using spherical splines (Perrin et al., 1989), and epochs

were removed. Finally, all remaining 10 s epochs were visually

inspected and those still containing artifacts were removed.

2.2 Semi-automatic SO labeling tool

We implemented a custom tool for manually labeling SO events

in EEG data available in Donle et al. (2022). As SO events are

relatively sparse in EEG recordings, the tool speeds up the manual

labeling process by filtering out most data and only displaying

potential SO events. Potential SO events are defined by two

consecutive positive-to-negative zero-crossings with a user-defined

duration. A description of the interface used can be found in

Section 3.1.

Additionally, we developed a semi-automatic pre-filtering

procedure for further reducing the number of events to bemanually

inspected, thus decreasing the time needed for this task. The pre-

filtering and manual labeling procedures are described in Sections

2.2.1 and 2.2.2.

FIGURE 1

Criteria used for the pre-filtering procedure exemplified on

schematic SO event: (1) total SO duration, (2) duration from the first

positive-to-negative zero-crossing to the negative peak, (3)

duration from the negative to the positive SO peaks, (4) duration

from the positive peak to the second positive-to-negative

zero-crossing, (5) number of positive wave peaks, (6) scaling factor

for negative-to-positive peak-to-peak amplitude, (7) scaling factor

for negative peak voltage.

2.2.1 Pre-filtering
While the SO labeling tool filters out portions of the data where

no event with SO characteristics exists, the number of events to

be manually inspected remains relatively large, with up to ∼60,000

events per EEG recording. Most of these events are false positives.

To further reduce the time needed for manually labeling our EEG

recordings, we developed a pre-filtering procedure to discard as

many false positive events as possible, while still retaining a large

number of true positive events.

Firstly, for each participant, one channel was randomly

selected, and all events with a duration of 0.8–3.5 s between two

consecutive positive-to-negative zero-crossings were identified.

The random channel selection was motivated by wanting to ensure

that the results of the procedure were independent of channel

selection. One rater then manually labeled the events as SO or

non-SO. Secondly, for all selected channels, we calculated the

mean and standard deviation of the following five parameters (see

Figure 1): (1) total SO duration, (2) duration from the first positive-

to-negative zero-crossing to the negative peak, (3) duration from

the negative to the positive SO peaks, (4) duration from the

positive peak to the second positive-to-negative zero-crossing, and

(5) number of positive wave peaks. Additionally, the minimum

and average negative-to-positive peak-to-peak amplitude and the

minimum and average negative peak voltage were calculated. These

values were used to define the scaling factors for the negative-

to-positive peak-to-peak amplitude and the negative peak voltage,

respectively (see below).
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As the optimal values for SO selection for these parameters were

not known a priori, we examined a range of potential values based

on the data features calculated above and used the true and false

positive rates as evaluationmetrics. For each of the first five features

listed above, we examined nine equally spaced values in the interval

defined by the mean± two standard deviations. For every value, we

used the manually labeled events to calculate the true positive rate

(TPR) for that respective channel as follows:

TPR =
TP

TP + FN
, (1)

and the false positive rate (FPR) as:

FPR =
FP

FP + TN
, (2)

where TP = number of true positives, FN = number of false

negatives, FP = number of false positives, and TN = number of

true negatives in that channel. Finally, starting from the maximum

criterion value (i.e., mean + 2 SDs; for the number of positive

peaks, the values are first rounded to the nearest integer) for each

parameter, we calculated the difference in both TPR (Equation 1)

and FPR (Equation 2) obtained for the current criterion value and

the next smaller one. The choice of the maximum value as the

starting point as opposed to theminimumwasmotivated by the fact

that we were interested in preserving as many true positive events

as possible. Accordingly, if the difference between the two TPRs was

larger than the difference between the two FPRs (indicating a larger

loss of TPs compared to FPs), we stopped the procedure and set

that parameter’s value to the current criterion value. Otherwise we

repeated the procedure for the next criterion value. This stopping

criterion was motivated by the fact that a loss of true positive events

is acceptable as long as it is balanced out by a larger reduction

of false positives. An example for this procedure is shown in the

Supplementary Figure S1, and the chosen values for all criteria

for each participant are shown in Supplementary Table S1. As the

number of false positives in the data is too large for manual labeling

to be feasible, losing some true positives for the benefit of removing

a large number of false positives is necessary. To test whether the

loss of true positives significantly affects the generalization of the

machine learning and deep learning algorithms to out-of-sample

events, we also report algorithm performance on the fully labeled

single-channel data, where no pre-filtering procedure was applied

(see Section 2.7), and from which we excluded the training events.

For the last two parameters, i.e., scaling factor for the negative-

to-positive peak-to-peak amplitude and scaling factor for the

negative peak voltage, the threshold was defined as the minimum

parameter value divided by the average value of that channel. The

minimum SO duration was kept fixed at 0.8 s, and all events with a

lower duration value were excluded.

The percentage of remaining TPs and FPs for each participant’s

manually labeled channel after the pre-filtering procedure was

applied are outlined in the Supplementary Table S2.While for some

participants up to 20% of the true positive events are lost, up to 97%

of the false positives are also eliminated. This considerably reduces

the workload, as the number of events to be manually inspected

decreases from∼60,000 to∼10,000 per recording.

2.2.2 Labeling
Prior to manual labeling, preprocessed data were filtered

between 0.1 and 1.25 Hz using a 2nd order Butterworth filter, and

positive-to-negative zero-crossings were identified. The parameter

values derived in Section 2.2.1 were applied for pre-filtering the

data. The data were then labeled by two trained experts (one

doctoral candidate and one student assistant, both trained by

a postdoctoral researcher in the Department of Neurology at

Universitätsmedizin Greifswald) using our labeling tool Sleepy,

which displays potential SO events and allows labeling them in a

sequential manner. We chose to display the events individually in

order to eliminate any potential bias toward labeling only global

events present in multiple channels and increase the chances of

capturing local SO events as well. Large-amplitude events, with

a total duration between ∼0.8–2 s and overall shape similar to

that depicted in Figure 1, were marked as SOs by the experts. The

tool is available under https://github.com/caglorithm/sleepy, and a

description of the used interface can be found in Section 3.1.

2.2.3 Performance of the semi-automatic SO
labeling tool

To determine the degree of consensus between the medical

experts and thus to assess whether SOs can be reliably identified

by independent observers, we calculated the inter-rater agreement

across all participants included in the dataset as follows:

IRagr =
SOboth + nonSOboth

eventstotal
, (3)

where SOboth represents the number of events marked as an SO by

both raters, nonSOboth the number of events marked as a non-SO

by both raters, and eventstotal the total numbers of events in the

data set.

The average inter-rater agreement (Equation 3) across the 10

labeled EEG recordings was 93.01% (SD = 2.83%, min. = 87.65%,

max. = 96.41%; absolute numbers can be found below). This

indicates a high degree of agreement between raters and confirms

that they can reliably distinguish between SOs and non-SO events.

A brief manual examination of cases where the two raters

disagreed revealed two main reasons of disagreement. In most

cases, one of the raters wrongly classified an event as being either

an SO or a non-SO, presumably due to accidentally misclicking.

In other cases, the event was ambiguous and the two raters had

different internal thresholds for classification.

Nevertheless, as the average inter-rater agreement was very

high, giving us a large sample of labels agreed upon by both raters,

we only included these events in all subsequent analyses. In total,

there were 96,277 events included (57,936 SOs, 38,341 non-SO).

2.3 Automatic SO detection algorithms

Three algorithms that have been previously used in the

literature for automatically detecting SOs in human sleep data

were included in this work and applied for detecting SO events

in all EEG channels. A general overview of the criteria used by

these algorithms can be found in Table 1. For simplicity, we have
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TABLE 1 Summary of parameters and criteria used by the three automatic detection algorithms analyzed.

Algorithm Filter type Freq. (Hz) Dur.crit. (s) Peak-to-peak
amplitude (µV)

Neg. peak (µV)

Absolute (Massimini et al., 2004) 2nd order Butterworth bandpass 0.1–4 0.3–1 >70 <−40

Relative (Mölle et al., 2009) 2nd order Butterworth bandpass 0.1–2 0.9–2 >2/3 of avg. amplitude <1/3 of avg. amplitude

Percentile (Ladenbauer et al., 2017) 2nd order Butterworth bandpass 0.16–1.25 0.8–2 Largest 25% –

restricted the choice of the filter to a 2nd order Butterworth filter. All

algorithms were applied to the preprocessed EEG data in the same

manner in which they have been previously applied in the literature

(Massimini et al., 2004; Mölle et al., 2009; Ladenbauer et al., 2017).

The first algorithm under consideration (termed “absolute”)

was introduced inMassimini et al. (2004). In brief, the preprocessed

data are filtered between 0.1 and 4Hz using a 2nd order Butterworth

bandpass filter and zero-crossings are identified. In the original

algorithm, an event is considered an SO if a positive-to-negative

zero-crossing and the following negative-to-positive zero-crossing

are separated by 0.3–1 s, the negative peak between these two

zero-crossings is smaller than−80 µV and the negative-to-positive

peak-to-peak amplitude is larger than 140 µV. As EEG amplitude

is known to significantly decrease with age (Leissner et al., 1970;

Dijk et al., 2000; Segalowitz and Davies, 2004; Esser et al., 2007;

Vyazovskiy et al., 2009; Dubé et al., 2015; Muehlroth and Werkle-

Bergner, 2020), we adjusted these thresholds according to values

previously used in the literature (Muehlroth and Werkle-Bergner,

2020), as follows: the negative peak threshold was decreased to

−40µV, while the threshold for the peak-to-peak amplitude was

decreased to 70µV.

For the second algorithm (termed “relative”), presented in

Mölle et al. (2009), data were filtered again using a 2nd order

Butterworth bandpass filter with a frequency range of 0.1–2 Hz.

Following zero-crossing identification, the average negative-to-

positive peak-to-peak amplitude, and the average voltage value of

the negative peak were calculated across all events defined by a

separation of two consecutive positive-to-negative zero-crossings

between 0.9 and 2 s. All events with an amplitude larger than two-

thirds of the average amplitude and a negative peak value smaller

than one-third of the average negative peak value were marked

as SOs.

The third algorithm (Ladenbauer et al., 2017) (termed

“percentile”) requires data to be bandpass-filtered between 0.16 and

1.25 Hz. All events defined by a separation of two consecutive

positive-to-negative zero-crossings between 0.8 and 2 s are then

selected and ordered according to the negative-to-positive peak-

to-peak amplitude. The events with the 25% largest negative-to-

positive peak-to-peak amplitude are marked as SOs.

All algorithms were implemented in Sleepy and are available in

Donle et al. (2022).

2.4 Machine learning based detection
algorithms

To test whether approaches that do not require parameters

explicitly set by medical experts could perform better than

previously described algorithms in detecting SO events, three

different classes of machine learning based detection algorithms

were investigated. First, the combination of a dynamic time

warping (DTW) algorithm with a one-nearest-neighbor (1NN)

classifier (Tan et al., 2017) (abbreviated by DTW-1NN in the

following) was investigated, as this algorithm has been successfully

used in speech recognition and other time series recognition tasks

(Sakoe, 1971; Sakoe and Chiba, 1978; Keogh and Ratanamahatana,

2005; Bagnall and Lines, 2014; Bagnall et al., 2015; Silva

and Batista, 2016). Second, combinations of feature generation,

feature selection methods, and five classification machine learning

models (logistic regression, decision tree, random forest, support

vector machine, and multilayer perceptron with two layers) were

investigated, all of which require the least computational and

implementational effort. These methods together with DTW-1NN

will be called machine learning methods in the following. Third,

deep learning methods were investigated, since these algorithms

typically show superior classification performances. For each

method the same performance evaluation was conducted and the

custom Python implementation of the best algorithm of each class

was made available in our software tool Sleepy.

2.4.1 Dynamic time warping with one-nearest
neighbor classifier

First, we used a DTW-1NN algorithm. This approach has

been successfully used in the field of speech recognition and other

time series recognition tasks and is extensively described elsewhere

(Sakoe, 1971; Sakoe and Chiba, 1978; Keogh and Ratanamahatana,

2005; Bagnall and Lines, 2014; Bagnall et al., 2015; Silva and Batista,

2016). In brief, DTW is a dynamic programming method used to

find the optimal alignment between two time series (Keogh and

Ratanamahatana, 2005). To that end, one of the series is warped

in time and the optimal alignment between the two sequences is

determined by minimizing the Euclidean distance between them.

A full formal description of the method can be found in Keogh

and Ratanamahatana (2005). The output, i.e., the DTW distance

between time series, can subsequently be used as input for a 1NN

classifier, a simple non-parametric learning algorithm which has

been shown to be highly effective for classification (Bagnall and

Lines, 2014; Bagnall et al., 2015; Silva and Batista, 2016). In this

case, a query time series is classified by assigning to it the label of

the training example nearest to it in terms of distance.

To avoid computing the DTW distance between a query time

series and all time series in the training data set and thus reducing

the computational complexity, we adopted a Time Series Indexing

(Tan et al., 2017) (TSI) approach. To do so, a tree-like data structure

is built from a small number of examples. The query examples are
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then classified using 1NN by comparing them to a set number of

examples from the previously built tree structure.

During the classifier building step, TSI constructs a tree-

like structure by recursively partitioning the data using k-means

clustering. This is done by leveraging DTW Barycenter Averaging

(Petitjean et al., 2011), a global averaging method for DTW, and

subsequently associating time series to their closest centroids based

on DTW. At every level of the tree, the data is split into a predefined

number of clusters (10 in the current work) and the procedure

continues recursively for the resulting clusters until the number of

time series in each cluster is smaller than or equal to a predefined

threshold (30 in the current work).

The second step involves classifying the query time series using

the tree structure built in the first step and the 1NN search. The

major advantage of TSI is that not all time series in the training

data must be explored. The user can specify in advance how many

time series should be seen in order to make a prediction for a query.

As such, during nearest-neighbor search, the tree is explored from

root to leaf, while maintaining three priority queues: one for the

DTW distance and one for the lower bound Keogh (LB-Keogh;

a computationally cheaper lower bounding measure which allows

discarding of potential matches without the need for computing

the full DTW), which store potential branches to explore once the

current branch has been fully traversed, and a third one for the

nearest neighbors. At every level of the tree, the distance between

the query time series and the centroids at that level are calculated,

and the algorithm continues exploring the branch closest to the

query, while enqueueing the other ones in the two priority queues.

Once a leaf has been reached, a similar logic is applied to all time

series in that leaf: the DTW distance is computed between the

query and all time series which could not be excluded based on the

LB-Keogh. If the number of time series to be seen is reached, the

algorithm terminates. Otherwise, it proceeds with the next branch

in the queue. As it was unclear how the classification accuracy

would depend on the number of time series seen in our case, we

explored 13 values for this parameter, from 100 to 1,300 examples

seen in steps of 100, all with a sampling rate of 500 Hz. A full

description of the performance evaluation of this method can be

found in Section 2.5.2.

Additionally, as it is common practice (Keogh and

Ratanamahatana, 2005), we use a warping window (i.e., a

locality constraint, which restricts the mapping of a time point in

one time series to the specified window in the other time series)

for constraining the DTW warping path, to prevent abnormal

mappings, such as mappingmost of one time series to a single point

in the other time series, and to further increase computational

efficiency. The length of the warping window was chosen to be 10%

of the longest time series in our data set, as this has been proven to

yield optimal results (Tan et al., 2018).

Further algorithmic details regarding the TSI implementation

can be found in Tan et al. (2017). Our custom Python

implementation in Sleepy (Donle et al., 2022).

2.4.2 Machine learning
For each possible SO sequence, a set of 17 characteristic

features (see Supplementary Table S3) was generated as input

parameters, and combinations of four feature selection and five

classification machine learning methods were trained using the

corresponding labels as output parameters. Univariate selection,

feature importance, recursive feature elimination (RFE), and

principal component analysis (PCA) were investigated as feature

selection methods, each in combination with a classification

model consisting of logistic regression (LogReg), decision tree

(DTree), random forest (RF), support vector machine (SVM),

and multi-layer perceptron (MLP) with two layers (input and

output layers). For each combination of feature selection and

classification method, each reduction possibility between 16 and

one feature(s) was investigated and each classification model was

optimized separately for each feature selection method using a

grid search. Thus, each combination of feature selection method,

selected number of features (1–16), and hyperparameter-optimized

classification model was examined individually. In addition, an

approach without feature selection was also examined. This

resulted in 325 evaluated approaches from which the best approach

was selected. Additionally, as suggested in the literature (Kate,

2015), a DTW feature construction method was investigated in

combination with each hyperparameter-optimized classification

model. This method uses the DTW distance to a few selected

sequences as features for the classification. In the current study,

hierarchical clustering was used to identify ∼500 characteristic

sequences from the data set, which were then used to calculate

the distance to a new unidentified sequence. These DTW distances

were then used as features for the following classification, which

was performed in the same manner as in the previous section. All

Machine Learning approaches were implemented in Python using

Scikit-learn.

2.4.3 Deep learning
End-to-end deep learning models (DeepL) allow to skip the

feature generation step and use the EEG sequence directly as input.

The investigated general architectures include:

• Convolutional Neural Networks (CNN),

• Long Short-Term Memory Networks (LSTM),

• Convolutional Layers as input to an LSTM Network (CNN +

LSTM),

• Bidirectional Long Short-TermMemory Networks (BiLSTM),

• A network consisting of a layer that combines convolutional

aspects with LSTM networks (ConvLSTM) (Shi et al., 2015).

For some hyperparameters (see Supplementary Table S4) of

the Deep Learning networks, generally recommended values

were taken from the literature (Kingma and Ba, 2015; Smith,

2015; Janocha and Czarnecki, 2017; Smith et al., 2017; Kandel

and Castelli, 2020). For the remaining hyperparameters (see

Supplementary Figure S3), a random search was performed with

100 instances to find a good initialization. Then, structural

hyperparameters of the networks were optimized from front to

back, i.e., the architecture was optimized layer by layer starting

with the first layer. Finally, general hyperparameters, such as

the choice of optimizer, were explored. For each hyperparameter

set, a customized five-fold cross-validation was performed, where
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FIGURE 2

Model structure of the best performing architecture (BiLSTM) with optimized hyperparameters.

only three of the five combinations were randomly selected

to reduce computational effort while compensating for random

events in the training phase. After the hyperparameter search,

which was performed separately for each of the five general

architectures, all five approaches were compared and the best

architecture (BiLSTM) was selected. The model structure of this

network is shown in Figure 2. The other optimized architectures

and the exact hyperparameter values are shown in the Section

1.4 in Supplementary material. All Deep Learning models were

implemented in Python using Keras and GPU utilization with

NVIDIA CUDA (NVIDIA et al., 2020).

2.5 Performance evaluation

2.5.1 Performance of the automatic SO detection
algorithms

In order to compare the performance of the automatic SO

detection algorithms described in Section 2.3 against the manually

labeled data, we calculated the balanced accuracy (Equation 4)

of each of the three automatic SO detection algorithms on the

manually labeled data set. Balanced accuracy (BAcc) was defined as:

BAcc = 0.5 · (TPR+ FPR) = 0.5 · (
TP

TP + FN
+

TN

TN + FP
), (4)

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the number

of false negatives.

Due to different bandpass filter values (see Table 1 and Section

2.2.2) used across the three automatic detection algorithms and

in the manually labeled data set, the event start and end points

were not identical across the algorithms. Therefore, to determine

the performance of each automatic detection algorithm on the

manually labeled data set, for all events detected by an automatic

detection algorithm, we considered an event to be a true positive if

there was at least 50% overlap with a manually identified SO event

and a false positive otherwise. Accordingly, a non-SO event from

the manually labeled data set was considered a true negative if there

was no corresponding event detected by the automatic detection

algorithms with at least 50% overlap. An SO event not detected by

the automatic detection algorithms was counted as a false negative.

TABLE 2 Overview of the three validation data sets.

Data set Prefiltering Manual
inspection

# examples

V1 Yes Yes 54,515

V2 No No 200,350

V3 No Yes 13,903

The prefiltering step described in detail in Section 2.2.1 was only applied prior to the manual

inspection of data set V1. Data set V2 includes all events with durations between 0.8 and 3.5

s for the five validation participants. We use the same event labels obtained through manual

inspection for V1, marking as non-SOs the events not seen by medical experts in data set V1.

2.5.2 Performance of machine learning based
detection algorithms

The data, consisting of the prefiltered sequences and themanual

labels of those sequences for which both raters agreed on the same

label, were divided into training, testing, and validation data for

all three classes of methods. To prevent overfitting, data from

five participants were split into training and testing data, and the

data from the remaining five participants (54,515 examples) were

kept for a first validation data set (V1; Table 2; an overview of all

steps conducted for obtaining data set V1 and the other two data

sets referenced below can be found in Supplementary Figure S2).

The training data used for building and training the classification

methods had a size of 5% (2,088 examples) for the DTW-1NN

method and 70% (29,233 examples) for all machine learning and

deep learning methods. Respectively, the test data had a size of 95%

(39,674 examples) and 30% (12,529 examples). For comparison of

the methods the training and testing procedure was conducted ten

times, one for each of the shuffled training sets as part of the 10-fold

cross-validation and the performances on the test set were averaged.

In addition, two further validation data sets were used to

evaluate the performance of the methods independent of pre-

filtering. Of the five validation participants, all events with

durations between 0.8 and 3.5s (200,350 examples) were selected

as the second validation data set (V2) and sequences from a

single channel of all ten participants that were labeled by medical

experts before the pre-filtering procedure (13,903 examples) while

excluding the training sequence of these channels were selected as

the third validation data set (V3). Note, however, that V2 contains

some true positive events that were considered as “non-SO” by the

pre-filtering procedure and were thus not seen by medical experts

(see Section 2.2.1 and Supplementary Table S2).
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FIGURE 3

Sleepy graphical user interface. The event to be inspected is highlighted in orange in the EEG time series. On the x-axis, the rater can see the time

stamp of the event relative to the beginning of the EEG recording, while on the y-axis, the voltage [µV] is shown. The “Not Tagged” button indicates

that the event has not been tagged as a false positive. If the user presses this button, the label becomes “Tagged” and the button appear colored in

red to indicate the user’s choice. Inspecting the next event or inspecting the previous event is possible by pressing “Next” or “Previous” buttons,

respectively.

3 Results

3.1 Semi-automatic SO labeling tool

We developed a platform-independent Python semi-automatic

SO labeling tool and a pre-filtering procedure in order to be able

to label SO events in EEG data in a standardized and time-efficient

manner. As SO events are relatively sparse, both the tool and the

pre-filtering procedure use this property to select and show the user

only those events which aremore likely to be SOs. This considerably

speeds up the labeling time without pre-filtering. Our raters needed

∼8 h to inspect a channel from an ∼90-min time series, which

would translate into ∼224 h for one recording with 28 channels.

When Sleepy presented only the pre-filtered data, raters needed

only ∼30 min for a single channel recording of 90 minu. This

translates into a 16-fold speed increase for manually labeling SOs in

sleep EEG. This speed improvement comes with the trade-off that

some SO events (up to 20% for some participants) are lost due to

the pre-filtering. Nevertheless, in our case, up to 97% of the non-SO

events are also successfully removed (see Supplementary Table S2).

As input data, the tool accepts *.mat EEG files preprocessed

with the software package FieldTrip in its standard FieldTrip

data structure. Output data is written in the same file format.

Pre-filtering parameters can be set in a graphical user interface

[available in Sleepy (Donle et al., 2022)].

An example of the user interface of Sleepy is shown in Figure 3.

The event being inspected (in this case, an SO event obtained after

applying the pre-filtering procedure outlined in Section 2.2.1) is

highlighted in orange and several seconds of the EEG time series

TABLE 3 Number of SO events identified by each of the three automatic

detection algorithms across all participants and sleep stages and

balanced accuracy of the three algorithms (relative, percentile and

absolute) evaluated on the manually labeled data set obtained according

to the procedure described in Sections 2.2.1 and 2.2.2.

Algorithm # SOs Balanced accuracy

Relative 157,571 56.87%

Percentile 89,521 61.03%

Absolute 41,608 58.48%

are displayed both before and after the event to give the raters more

context for the selected event. A second panel shows all detected

events of a particular channel marked as gray lines on the time axis.

By default, all events are considered true positives. For every

event, the user has the option of marking it as a false positive by

pressing the “Not Tagged” button, inspecting the next event, or

inspecting the previous event.

3.2 Automatic detection algorithms

The total number of SO events detected by each of the

three automatic SO detection algorithms is shown in Table 3.

The absolute algorithm detects the lowest number of events,

while the relative one has the highest count. This is in line

with previous reports (Muehlroth and Werkle-Bergner, 2020),

which indicate that algorithms using absolute amplitude thresholds
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tend to underestimate SO numbers in older adults compared to

algorithms with individually adjusted thresholds. The difference

between the relative and percentile algorithms can also be explained

by the fact that the latter selects only the 25% largest amplitude

SOs, while the former includes all events passing the individually

adjusted threshold.

We evaluated the performance of the three automatic SO

detection algorithms against the manually labeled data obtained

according to the procedures described in Sections 2.2.1 and 2.2.2.

For that, we calculated the balanced accuracy. It is important to

reiterate here that we only considered those events for which there

was a label in our manually created data set. A more detailed

description of the performance evaluation can be found in Section

2.7.2. The results are shown in Table 3. All three algorithms have

a relatively low performance on the manually labeled data set

(maximum balanced accuracy: 61.08%). Although the differences

between them are small, the percentile algorithm achieves the best

performance. The relative algorithm gives the poorest results due

to the high number of false positives.

To account for a possible bias induced by the fact that

the automatic detection algorithms were developed based on

different SO definitions, we conducted a comprehensive grid search

over the free parameters of these algorithms, which revealed

that balanced accuracy only slightly improves under certain

parameter combinations. More specifically, the best accuracy for

the percentile algorithm was 58.99% (down from 61.03%), for

the relative algorithm it was 57.10% (up from 56.87%), and for

the absolute algorithm it was 64.42% (up from 58.48%). For the

first two algorithms, we optimized over the lower and upper filter

boundaries (0.1–0.9 Hz in steps of 0.2 Hz, 1–4 in steps of 0.5 Hz)

and over the lower and upper SO duration boundaries (0.2–0.8 s in

steps of 0.2 s, 1–2 s in steps of 0.2 s). For the absolute algorithm, we

optimized over the same filter values, over the separation of zero-

crossings (0.2–1.4 s in steps of 0.2s), and over the peak-to-peak and

negative peak amplitude (20–80 µV in steps of 20 µV and 20–60

µV in steps of 20 µV).

Although the three algorithms show a quantitatively low

performance, we wanted to check whether the qualitative results

obtained through either the automatic detection algorithms or

the manual labeling procedure differ. The reason is that one

could still draw meaningful conclusions regarding, for example,

relative differences between sleep stages (e.g., higher SO amplitude

and density in deeper sleep stages compared to lighter ones), in

spite of the apparent quantitative differences. For that, we chose

two commonly used SO measures: density and amplitude. These

measures were applied to all events detected by the automatic

FIGURE 4

Average and standard deviation of the SO density (number of SOs per minute) across participants for each the three ML/DL methods developed in

this work (DTW-1NN, RF + RFE, BiLSTM). The algorithms were applied to the three data sets (V1, V2, V3) described in Section 2.5.2. and the manually

labeled data set obtained according to the procedure described in Sections 2.2.1. and 2.2.2. Results are shown for each of the three sleep stages

(N1–N3) and for the awake state (Wa).
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SO detection algorithms in the preprocessed EEG recordings, as

well as to the manually labeled data set. In terms of density,

all three automatic detection algorithms, as well as the manual

labeling, detected the highest number of events in sleep stage N3,

followed by stages N2, N1, and awake (Supplementary Figure S3).

This indicates a preservation of the common pattern of increasing

numbers of SOs with increasing sleep depth regardless of the

detection method. In terms of density over- and underestimation

within the same sleep stage, one needs to take into account the total

number of events detected by each of the three algorithms (shown

in Table 3) in comparison to the total number of manually labeled

SO events (57,936 events). The same pattern (relative, followed by

percentile, manual, and absolute) observed in the total number of

events is reflected in density as well.

The average amplitude and overall morphology of detected

SO events (Supplementary Figure S4) was similar for the manually

labeled data, as well as the relative and percentile algorithms in

all three sleep stages. In the awake period, the average amplitude

in the manually labeled data was approximately twice that of the

relative and percentile algorithms. The absolute algorithm showed

the largest amplitude in all sleep stages and the awake period. The

absolute algorithm imposes a conservative amplitude threshold,

thus selecting only the highest amplitude events, while both the

relative and percentile algorithms are adjusted to each individual,

which explains the current results.

3.3 Machine learning based detection
algorithms

3.3.1 DTW-1NN
To improve classification of SO and non-SO events in sleep

EEG data, we used a DTW-1NN classifer. To speed up classification

of the events, the user can specify the number of examples to

be used for classification. As this number was not known a

priori, we tested a range of possible values, from 100 to 1,300 in

steps of 100. Figure 6 shows the balanced accuracy of the 10-fold

cross-validation procedure (conducted by randomly splitting the

data into 5% for building the classifier and 95% for evaluating

its performance; see Section 2.5.2 for details) as a function of

the number of examples seen from the training data set (see

Section 2.5.2). Increasing the number of examples seen increases

the balanced accuracy and decreases the variance across folds.

Beyond 1,000 examples seen, the balanced accuracy increases and

the variance decreases only minimally (95.10% ± 0.460 for 1,000

examples seen vs. 95.26%± 0.360 for 1,100 examples), which is why

this value was selected for classifying the events from the validation

data set.

Table 4 summarizes the results in terms of balanced accuracy

of the DTW-1NN with 1,000 training examples seen for our three

validation data sets obtained from the manually labeled data and

described in detail in Section 2.5.2. On the first validation data set

V1 (i.e., pre-filtered data which was not included in the training

data set), the balanced accuracy remained comparable to the testing

values (95.98% for V1 vs. 95.10% for the testing data set). For the

second data set, V2, where the pre-filtering step was not applied (see

Section 2.5.2.), the balanced accuracy dropped to 87.69%. This was

expected, as this data set includes, on the one hand, true SOs which

TABLE 4 Balanced accuracy of the DTW-1NN, RF + RFE, and BiLSTM

algorithms across di�erent validation data sets.

Data set DTW-1NN RF + RFE BiLSTM

V1 95.98% 98.61% 99.20%

V2 87.69% 89.19% 89.81%

V3 82.15% 83.142% 87.89%

The classifiers were built on the data described in Section 2.5.2. A full description of the three

data sets (V1, V2, V3) can be found in Section 2.5.2.

were excluded in the pre-filtering step, and on the other hand, more

false positives. Finally, on the third data set, containing only those

channels fully labeled bymanual experts, the balanced accuracy was

82.15%.

We looked at descriptive SO statistics (density and amplitude)

across the SO events identified by the DTW-1NN algorithm for

all three data sets (V1, V2, and V3). As shown in Figure 4, there

is no difference in SO density between the DTW-1NN algorithm

and the manually labeled data in V1, whereas in V2 and V3, DTW-

1NN overestimates the number of SOs present in the data. The SO

amplitude is similar between DTW-1NN and the manually labeled

data across all sleep stages in all data sets (Figure 5).

3.3.2 Machine learning
In Table 5, the averaged results in balanced accuracy over the

test data sets of the 10-fold cross-validation are shown for different

combinations of feature selection and classification method. For

each combination, 16 results are available, one for each number

of selected features, but only the best result is shown, and the

corresponding number of selected features is given in brackets.

It is obvious from the results that the different feature selection

methods only lead to a small improvement in accuracy compared

to the approach without feature selection, indicating that most of

the features hold significance and selection is not advantageous.

This is also indicated by the fact that in many cases the selection

of 16 features gave the best prediction results. The random forest

classification method provides the highest prediction accuracy in

most cases and the decision tree works well also with a small

number of features. The DTW feature construction approach

performs worse than the classical feature engineering approach.

However, the combination of feature importance or recursive

feature elimination (RFE) as a feature selection method and

the random forest as a classification model provides the highest

prediction accuracy.

The prediction results in terms of balanced accuracy of the

random forest classification combined with RFE as the best

performing ML approach for the three validation data sets can

be seen in Table 4. For the first validation data set V1, the

prediction results of 98.61% are comparable to the test data

sets results of 98.83% and show that the results from the test

phase are transferable to unknown participants. Prediction results

decreased to 89.19% for the second validation data set V2 (i.e.,

all participants, no pre-filtering) and to 83.142% for the third

validation data set V3. The pattern of performance on all three

validation data sets is comparable to the performance of the

DTW-1NN approach, only with slightly higher accuracies and

lower variance.
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FIGURE 5

Average SO waveform for each the three ML/DL methods developed in this work (DTW-1NN, RF + RFE, BiLSTM) and for the manually labeled data set

obtained according to the procedure described in Sections 2.2.1. and 2.2.2. for each of the three sleep stages (N1–N3) and the awake state (Wa). The

solid lines mark the average negative-to-positive peak-to-peak amplitude for each of the three ML/DL methods (blue—DTW-1NN, red—BiLSTM,

yellow—RF + RFE) and the manually labeled data (gray), while the shaded area represents the standard deviation around the mean. In each of the four

cases (awake state and sleep stages N1–N3), all three algorithms closely track the manually labeled data. The amplitude of the detected events is

largest in sleep stage N3 compared to the other sleep stages for all three algorithms and for the manually labeled data.

The descriptive SO statistics (Figures 4, 5) are similar to those

described for the DTW-1NN case.

3.3.3 Deep learning
The performance of the different optimized Deep Learning

architectures were evaluated on the five test data sets of the five-fold

cross validation, with the results shown in Table 6. BiLSTM was the

architecture which produced the best results, closely followed by

the LSTM architecture. Therefore, the BiLSTM model was chosen

as the best DeepL approach.

Table 4 shows the balanced accuracy of the best performing

model on the three validation data sets. The relative trend of the

results of the BiLSTM model was once again very similar to the

DTW-1NN and ML approaches, but with overall higher values.

The results for the first validation data set V1 (see Section 2.5.2.)

gave a balanced accuracy of 99.20%, which is also very similar

to the results for the test data set of 99.32% and once again

indicates that the results of these methods are well transferable to

unknown participant of the same age group and with the same

experimental setup. This assumption can also be inferred from the

small standard deviations of the results across the different runs of

the 10-fold cross-validation. For the validation data sets V2 and V3,

the prediction results dropped to 89.81 and 87.89%, respectively.

Thus, the BiLSTM approach has the highest predictive performance

in all training and validation data sets.

The descriptive SO statistics (Figures 4, 5) are similar to

those described above for the DTW-1NN and RF + RFE cases.

Nevertheless, in particular regarding SO density, the BiLSTM

algorithm is closest to the manually labeled data set.

3.4 Computation time

Table 7 shows the computation time for training (if

any) and prediction for different methods on the same
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FIGURE 6

Average balanced accuracy and standard deviation for DTW-1NN as a function of the number of training examples seen. Starting from 1,000

examples, the variance across the 10 seeds significantly decreases, indicating that the algorithm is more stable, and the balanced accuracy increases

only minimally.

TABLE 5 Results on the averaged results on the test set for each combination of feature selection and classification method in balanced accuracy.

Method LogReg MLP DTree SVM RF

No feature selection 96.75% (17) 97.89% (17) 98.66% (17) 97.96% (17) 98.78% (17)

Univariate selection 96.75% (16) 98.23% (9) 98.66% (7) 98.11% (11) 98.83% (16)

Feature importance 96.75% (15) 98.29% (8) 98.66% (7) 98.10% (7) 98.83% (16)

RFE 96.75% (10) 98.43% (13) 98.66% (4) 97.54% (15) 98.83% (16)

PCA 96.88% (11) 98.46% (15) 93.82% (10) 97.60% (12) 98.29% (16)

DTW feature const. 95.14% 93.98% 94.20% 93.20% 94.72%

Values in bold indicate the highest accuracy reached overall. The corresponding number of selected features out of the 17 in total is indicated in parentheses. Additionally, the results of the

DTW feature construction (without feature selection) with each classification method in balanced accuracy is shown.

TABLE 6 Results on the five test data sets of the five-fold cross-validation

in balanced accuracy for di�erent deep learning architectures individually

optimized for hyperparameters.

Architecture Balanced accuracy ± SD

CNN 98.58%± 0.217%

LSTM 99.20%± 0.087%

CNN + LSTM 98.28%± 0.504%

BiLSTM 99.32%± 0.051%

ConvLSTM 98.64%± 0.707%

computing platform. Since platform specifications have a

major impact on computation time, these results should

only be considered in relation to each other or as rough

estimates. The training time is the time taken to train a

single model using the amount of training data specified in

Section 2.5 or the amount mentioned in the brackets, and the

prediction time is the time taken to predict the labels of 6,000

putative SO sequences, which is approximately the number

TABLE 7 Comparison of computation time for training (if any) and

prediction for di�erent methods, where training time is the time taken to

train a single model using the training data of ∼40,000 sequences, and

prediction time is the time taken to predict the labels of 6,000 sequences

on a Intel i7-11600 CPU and NVIDIA GeForce GTX 1660 GPU.

Method Training time Prediction time

Automatic SO detection None ∼1 min

DTW-1NN (100 seq. seen) 2 h 50 min 51 min 48 s

DTW-1NN (1,000 seq. seen) 2 h 50 min 2 h 5 min

ML (RF + RFE) 1 min 20s <1s

DeepL (BiLSTM) 26 min 9s <1s

of sequences recorded during 1 h of EEG measurement with

28 channels.

The automatic SO detection algorithms require no training

and the prediction time is short (∼1 min for 6,000 sequences).

The RF + RFE and the BiLSTM methods have the shortest

prediction time, with<1 s required for classifying the same amount
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FIGURE 7

Results on the test data sets in terms of balanced accuracy for di�erent methods and for di�erent quantities of training samples. Since the prediction

time of the DTW-1NN approach (red line) increases dramatically for a higher number of training samples, the number of training samples had to be

limited to 1,300. For the deep learning approach (orange line) the BiLSTM architecture was used and for the Machine Learning approach (green line)

the Random Forest Classifier with RFE was chosen.

of events. The training time is longer for the BiLSTM method

(26 min 9 s) compared to the RF + RFE method (1 min 20

s), but it remains relatively short. In constrast, the DTW-1NN

method requires both the longest training (2 h 50 min) and the

longest prediction time. As the classifier is built only once (see

Section 2.4.1), the training time shown in the table is identical

for both numbers of sequences seen. Building the DTW-1NN

classifier requires a long time, as computing the DTW distance

is time-intensive. During the prediction step, the time necessary

for classifying 6,000 events using DTW-1NN increases as the

number of training sequences to be seen is higher (51 min 48

s for 100 sequences seen, 2 h 5 min for 1,000 sequences seen).

These results, combined with the performance of the algorithms

(Table 4) suggest that the BiLSTM method is the best method of

choice, as it combines the lowest prediction time with the highest

accuracy, while keeping training time modest. Nevertheless, the

BiLSTM method also requires the usage of a GPU, which might

not be readily available on common setups. In this case, the

RF + RFE method becomes optimal, as it still maintains a high

accuracy (see Table 4), while requiring only a short training time

on a CPU.

3.5 E�ect of the number of training data
on classifier performance

In Figure 7, the balanced accuracy regarding the test data

sets of the three machine learning based approaches (DTW-1NN,

Machine Learning and Deep Learning) are shown for different

numbers of training samples. Themachine learning approach (RF +

RFE) provides the highest accuracy up to 3,000 training sequences,

but beyond 3,000 training sequences, the BiLSTM deep learning

model achieves the highest predictive power. Importantly, labeling

only 3,000 sequences would require roughly 1.5 h of manual work.

3.6 Recommended workflow

As it is apparent from the results presented in the previous

sections, all three machine learning based approaches proposed

in this work generalize to the other participants in our sample

(e.g., results on V1). Nevertheless, in the current work, we have

only examined data from older adults which was acquired under

the same experimental conditions. Additionally, the training data

sets (i.e., manually labeled data after the pre-filtering procedure)

are relatively balanced, with ∼60% SO and ∼40% non-SO events.

In contrast, prior to pre-filtering, the number of non-SO events

is significantly higher than that of SOs. This means that only

labeling a small number of events, without applying the pre-

filtering procedure, could result in only a very small number

of SOs in the training data. Therefore, for optimal performance

on a new group of participants, we recommend to first use our

SO labeling tool for pre-filtering and manually labeling a set of

examples, then train the BiLSTM algorithm (as this gives the

highest performance) on this new set of examples and then use the

trained model for labeling the entire data set. Importantly, should a

GPU not be available for training the BiLSTM algorithm, the RF

+ RFE approach could be easily used instead and still achieve a

significantly good performance (Figure 8).

Based on Figure 7, we recommend labeling of 5,000 examples

(estimated work time:∼2.5 h) in order to achieve a close to optimal

performance of the BiLSTM algorithm. The results for unknown

participants (results for V1) suggest that the hyperparameter-tuned

version of the BiLSTM, as shown in Figure 2 and explained in the

Section 1.4 in Supplementary material, will be able to reproduce

similar results for different age groups and experimental conditions

when trained on this new data.

However, as labeling many examples can be time-consuming

and accuracy remains relatively high even with fewer examples,

one can use the information provided in Table 7 and Figure 7 to

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2024.1338886
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Dimulescu et al. 10.3389/fninf.2024.1338886

FIGURE 8

Workflow overview for using sleepy on a new EEG data set. We

recommend first applying the pre-filtering procedure outlined in

Section 2.2.1 to obtain a corpus of 5,000 manually labeled

examples, aiming for a balanced number of SO and non-SO events.

This step is the only one that requires manual input from the user

and we estimate that it takes ∼2.5 h. Subsequently, we recommend

retraining the BiLSTM model (if a GPU is available) or the RF + RFE

model (if a GPU is not available) on this set of events. The model

thus trained can be then used to label all events in the data set.

determine what would be an acceptable speed-accuracy trade-off

and thus select a different algorithm with a lower required number

of labeled training examples, e.g., 250 examples and the RF + RFE

approach with a balanced accuracy of∼98%.

In summary, we recommend using the provided tool to

generate a number of manually labeled examples from the data

set of interest. In terms of optimal performance (both speed and

accuracy), we recommend a BiLSTM approach with a minimum

of 5,000 training examples. At the same time, we recognize that

individual research requirements might differ, so we encourage

using the information provided in Table 7 and Figure 7 for making

an individually-tailored decision.

4 Discussion

In this work, we developed a semi-automatic tool for labeling

SO events in sleep EEG data and used it to build the first validation

data set of manually labeled SO and non-SO events. Additionally,

we compared the performance of traditionally used automatic SO

detection algorithms on our ground truth data set. Finally, we

applied a DTW-1NN algorithm, as well as machine learning and

deep learning techniques to the manually labeled validation data to

improve SO detection.

Manual inspection of SO events in sleep EEG data is extremely

time-consuming and not feasible for large data sets, and to

the authors’ best knowledge, data sets for benchmarking new

SO detection algorithms are currently lacking. To considerably

speed up this process and be able to create such a data set, we

took advantage of the fact that SO events are relatively sparse

and developed a pre-filtering procedure which only selects good

SO candidates for manual inspection (see Sections 2.4, 3.1, and

Supplementary Table S2). While up to 20% of SO events are lost

during the pre-filtering procedure, up to 97% of false positives

are also removed. This significantly speeds up the manual labeling

procedure (up to 16 times in our case). To show that the loss of

true positives does not significantly impact the generalization of

machine learning and deep learning algorithms, the performance

of these algorithms is tested on the channels manually labeled

before the pre-filtering procedure, from which training examples

are excluded (see Section 2.7). The results are discussed below.

We have shown that automatic SO detection algorithms based

on both absolute and relative amplitude criteria give results

qualitatively similar to those obtained from manual labeling in

terms of SO density. SO amplitudes are similar between our

manually labeled data and the events detected by adjustable

threshold approaches, while absolute thresholds lead to higher

amplitudes. As our sample of participants consisted of older adults,

this confirms previous reports showing that absolute thresholds

are too strict for these participants (Muehlroth and Werkle-

Bergner, 2020). Most notably, however, quantitative results show

that automatic SO detection algorithms perform relatively poorly

on our ground truth data set, with the highest balanced accuracy

reaching only 61.03%. It is important to note that previous

automatic detection algorithms were developed based on different

SO definitions and other experimental setups compared to the

one used in the current work and that our novel methods

were specifically tailored to our definition. Therefore, the current

quantitative comparison has limited generalizability and the

automatic detection algorithms could still perform better on other

benchmarking data sets tailored to other SO definitions, such

as overnight recordings from younger adults. Nevertheless, the

optimization of the free parameters of these automatic algorithms

did not lead to any significant increase in accuracy on the current

data set. Hence our results underscore the need for improved SO

detection algorithms for non-normative populations, which we

have developed in this work.

The first approach, DTW-1NN, showed a very high accuracy

both on the training and on the V1 data set (see Figure 6 and

Table 4). The accuracy on the V2 and V3 data sets dropped,

but remained much higher compared to that of the automatic

SO detection algorithms. The accuracy on these two data sets

remained above 80%, indicating a good classification performance.

Nevertheless, the drop in accuracy is to be expected, on the

one hand because the classifier was not built on these two

data sets, and on the other hand because of the true positive

events discarded by the pre-filtering procedure. Although this

represents an improvement compared to traditional SO detection

methods, the drop in accuracy coupled with the relatively long
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time necessary for classification prompted us to explore additional

classification techniques.

The machine learning approaches had higher accuracy on test

and validation data sets than DTW-1NN, with a very similar

relative trend of prediction results, while drastically reducing

computation time. More specifically, the RF + RFE machine

learning approach achieved an accuracy of 98.83%, while requiring

only minimal CPU training time.

While deep learning models, especially the BiLSTM

architectures, provided the best prediction results, the

implementation effort, especially hyperparameter search, was

significantly higher. However, it is reasonable to assume that it is

possible to re-train the model with the same hyperparameters on

a different data set to save some implementation effort and get

similarly good results.

It has also been shown that with more data better results are

achieved, but that even with small amounts of data the obtained

results are comparatively good. For example, machine learning

models can still perform well using <3,000 training sequences,

achieving a balanced accuracy of more than 98%. In general, it is

apparent from the results that deep learning models show better

performance with increasing size of the training data set and that

multi-participant models perform better than single-participant

models (Section S1.6 in the Supplementary material).

In terms of SO density, all three approaches (DTW-1NN, RF

+ RFE, and BiLSTM) give results almost identical to the manually

labeled data on data set V1 (Figure 4). This can be explained by

the fact that the accuracy in this case is larger than 95% for all

three algorithms. As the accuracy decreases on data sets V2 and

V3, it becomes apparent that the three algorithms developed in

this work tend to overestimate the number of SOs detected. The

BiLSTM algorithm, which has the highest accuracy on these data

sets, performs closest to the manually labeled data. Regarding SO

amplitude, there is no significant difference between our developed

algorithms and the manually labeled data on any of the three

data sets, suggesting that the events detected by the algorithms are

similar in shape to the other SO events (Figure 5).

One limitation of the current study is the fact that the data

were referenced to an electrode attached to the nose instead of

using the standard mastoid reference. This choice was imposed

by the experimental setup, in which the mastoid electrodes were

used to deliver transcranial current stimulation and could thus

not be used for referencing purposes. As two of the automatic

detection algorithms (Massimini et al., 2004; Mölle et al., 2009)

examined in the current work were developed using EEG signals

referenced to the mastoids and as the choice of reference impacts

SO characteristics (Mensen et al., 2016), the possible impact of

EEG reference on SO detection cannot be clearly assessed here.

Another limitation is that we used only one data set, recorded

from older adults during an afternoon nap. As previous studies

suggest, SO events show differences between older and younger

adults (Muehlroth and Werkle-Bergner, 2020). Additionally, some

studies record EEG data during nighttime sleep instead of during

the afternoon. Therefore, while the procedure outlined in this work

can be used to manually label training examples in a new data

set and re-train the algorithms we have developed, it would be

interesting to see if the algorithms trained on the current data

set could generalize to others, as this would speed up the SO

detection procedure. Given that SOs recorded during nighttime

sleep of younger adults are more easily differentiable, showing

higher amplitude and a more stereotypical shape (Muehlroth and

Werkle-Bergner, 2020), we expect that to be the case. Finally,

while electrodes F3 and F4 are typically the strongest SO detection

electrode sites, in the current work, they were excluded for two out

of ten participants due to the fact that they were used to deliver

transcranial stimulation. Including these electrodes in the analysis

could potentially improve the detection accuracy.

While the current study lays the groundwork for

benchmarking SO detection algorithms, we plan to extend

our tool by including support not only for *.mat files, but

for all commonly used EEG data formats. Additionally,

we are planning on validating our current algorithms on

different data sets acquired under different conditions,

as mentioned above. The tool can also be augmented to

display the percentage of SOs in a given epoch, thus having

the potential of being used for facilitating sleep staging by

sleep technologists.

In conclusion, in this work we have developed a tool

for manually labeling SO events in sleep EEG data in a

standardized and time-effective manner. Using this tool, we have

generated the first manually labeled validation data set of SO

and non-SO events and used it to validate the performance

of traditionally used SO detection algorithms. Furthermore, we

have implemented a DTW-1NN together with machine and deep

learning approaches which show an improved performance in

terms of SO detection. While, prior to training, the outlined

procedure is semi-automatic, requiring labeling of some events,

the trained algorithms are fully automatic, allowing fast labeling

of any number of recordings. We believe the current tool and

developed algorithms are of significant importance for sleep

researchers for two reasons: on the one hand, the tool and pre-

filtering procedure allow for validation of existing and newly

developed SO detection algorithms and on the other hand, our

deep learning approach offers superior performance compared

to that of traditional SO detection algorithms. We recommend

using these algorithms in future work and, to that end, have made

them publicly available in our tool Sleepy (Donle et al., 2022).
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