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Introduction: Mental disorders are a significant concern in contemporary 
society, with a pressing need to identify biological markers. Long-range temporal 
correlations (LRTC) of brain rhythms have been widespread in clinical cohort 
studies, especially in major depressive disorder (MDD). However, research on 
LRTC in obsessive-compulsive disorder (OCD) is severely limited. Given the 
high co-occurrence of OCD and MDD, we conducted a comparative LRTC 
investigation. We assumed that the LRTC patterns will allow us to compare 
measures of brain cortical balance of excitation and inhibition in OCD and MDD, 
which will be useful in the area of differential diagnosis.

Methods: In this study, we used the 64-channel resting state EEG of 29 MDD 
participants, 26 OCD participants, and a control group of 37 volunteers. 
Detrended fluctuation analyzes was used to assess LRTC.

Results: Our results indicate that all scaling exponents of the three subject 
groups exhibited persistent LRTC of EEG oscillations. There was a tendency 
for LRTC to be higher in disorders than in controls, but statistically significant 
differences were found between the OCD and control groups in the entire 
frontal and left parietal occipital areas, and between the MDD and OCD groups 
in the middle and right frontal areas.

Discussion: We believe that these results indicate abnormalities in the inhibitory 
and excitatory neurotransmitter systems, predominantly affecting areas related 
to executive functions.
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1 Introduction

Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) are 
common mental disorders that can significantly impact a person’s quality of life. These two 
conditions manifest differently: MDD is associated with anhedonia, persistent feelings of 
sadness, hopelessness, and loss of interest, while OCD is characterized by intrusive thoughts 
that cause distress (obsessions) and repetitive actions performed to reduce distress 
(compulsions) (American Psychiatric Association, 2013). However, studies have shown that 
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17–60% of people diagnosed with OCD have comorbid depression 
(Overbeek et  al., 2002). In addition, both conditions are often 
characterized by anxiety. It was discovered that 45.7% of respondents 
with lifetime MDD had one or more lifetime anxiety disorders 
(Kessler et al., 2015). Feelings of anxiety related to unwanted and 
uncomfortable thoughts and images are among the most common 
among people with OCD. Since OCD and MDD are often 
co-occurring disorders and their symptoms occur simultaneously, it 
is important to find an objective marker that could potentially be used 
in the differential diagnosis.

It is assumed that objective measures such as the resting-state 
electroencephalogram (EEG) may be a useful tool in this regard. Most 
often, studies are conducted on the frequency characteristics of the EEG 
signal, as well as the strength of connections at the level of sensors or 
cortical sources. Regarding the power frequency in MDD, the predictive 
role of multiple bands is mentioned: increased gamma power (Fitzgerald 
and Watson, 2018), reduced alpha-2 power over central regions of the 
left hemisphere (Lee et al., 2018), global decreased alpha power (Price 
et al., 2008), and conversely increased alpha power (Kemp et al., 2010; 
Jaworska et  al., 2012). Grin-Yatsenko et  al. (2010) found increased 
activity in theta, alpha, and beta bands at the occipital and parietal areas 
in depression. The authors assumed that an increase in slow EEG activity 
may reflect a decreased cortical activation in these brain regions (Grin-
Yatsenko et al., 2010). Regarding the strength of connections, recent 
meta-analyzes of 52 studies have reported no differences in EEG 
functional connectivity in the delta and gamma frequencies between 
depression and control groups. The most pronounced differences were 
observed in alpha, theta, and beta bands (Miljevic et al., 2023). However, 
difficulties in reproducible conclusions are highlighted due to significant 
inconsistencies between the study design and methodology (Miljevic 
et al., 2023).

Regarding the resting-state EEG characteristic in OCD, a recent 
meta-analysis has shown that the most prominent changes are the power 
increases at delta and theta frequencies and decreases at alpha, beta, and 
gamma frequencies (Newson and Thiagarajan, 2019). In addition, a 
change in EEG graph metrics was detected in OCD compared to controls, 
suggesting a disruption in information processing in the brain (Tan et al., 
2019, 2022). Decreased non-linear coherence was found in OCD for the 
beta frequency range for connectivity measures between frontal brain 
areas (the anterior cingulate cortex, the superior frontal gyrus, and the 
left medial frontal gyrus; Olbrich et al., 2013).

In recent years, the analysis of the nonlinear characteristics of the 
signal has been developing, which allows for considering the 
non-stationarity of the biological brain signal. The markers of mental 
disorders can be reflected in the temporal features of information 
processing in bioelectrical brain activity. The ability to integrate 
information over extended periods of time can be assessed with long-
range temporal correlations (LRTCs) of the EEG signal. It is assumed 
that LRTCs indicate the presence of a scale-free structure of neuronal 
activation on multiple time scales that is important for optimal 
neuronal processing in the human brain (Linkenkaer-Hansen et al., 
2001; Hardstone et al., 2012; Palva et al., 2013). The LRTCs reflect the 
self-affinity of the EEG signal, which is a non-stationary stochastic 
process. Most of the articles devoted to the study of LRTCs consider 
the alpha frequency range as it has pronounced oscillatory patterns in 
the spectra of ongoing EEG/MEG (Linkenkaer-Hansen et al., 2001; 
Nikulin and Brismar, 2004, 2005). The normalization of alpha LRTCs, 
which was associated with symptom relief, was found after 

neurofeedback training in posttraumatic stress disorder patients (Ros 
et al., 2016).

LRTC is considered a measure of excitation/inhibition balance in 
neural networks (Bruining et al., 2020; Ahmad et al., 2022). The studies 
suggest that both OCD and MDD are associated with altered cortical 
excitation and inhibition, which may contribute to the symptoms of these 
disorders (Richter et al., 2012; Kang et al., 2019; Rodrigues Da Silva et al., 
2022). Specifically, individuals diagnosed with OCD may have an 
inability to inhibit unwanted intrusive thoughts, while individuals with 
MDD may experience reduced inhibition that impairs stimulus 
processing. Nevertheless, we  found no comparative studies on EEG 
LRTC in OCD and MDD patients or controls. Although one study has 
shown measurements of inhibition and excitation in OCD, MDD, and 
schizophrenia using transcranial magnetic stimulation (TMS), it found 
inhibitory deficits in all three conditions and specific enhancement of 
intracortical facilitations in OCD (Radhu et al., 2013).

In this study, we investigated the intrinsic brain activity during 
rest with closed eyes in groups of individuals diagnosed with MDD, 
OCD, and healthy controls. The LRTCs were computed by means of 
detrended fluctuation analyzes (DFA; Peng et al., 1995). DFA produces 
estimates of the magnitude of detrended fluctuations at different scales 
(windows). Using DFA, the fractal scaling exponent (α) was calculated, 
which allows us to evaluate the self-similarity in the time series. 
We assume that the LRTC patterns will allow us to compare measures 
of brain cortical balance of excitation and inhibition in OCD and 
MDD, which will be useful in the area of differential diagnosis.

2 Materials and methods

2.1 Participants

We examined the EEG data of three samples: 29 (25 females, mean 
age 36.6, SD = 10) participants with MDD, 26 participants with OCD (17 
females, mean age 24.8, SD = 6.1), and a control group of 37 volunteers 
(31 females, mean age 28.2, SD = 11.1). The control group comprised 
participants who reported the absence of neurological or psychiatric 
disorders, major medical disorders, sustained head injuries, alcohol or 
drug abuse, or current treatment with vasoactive or psychotropic 
medication. All applicable subject protection guidelines and regulations 
were followed in the conduct of the research in accordance with the 
Declaration of Helsinki. The study protocol was approved by the ethical 
committee of the Institute of Higher Nervous Activity and 
Neurophysiology of the Russian Academy of Sciences (Ethics protocol: 
No. 2, 30 April 2021, Ethics protocol: No. 1, 25 February 2021). All 
participants signed a written informed consent.

2.2 Measurement of major depressive 
disorder

Volunteers with MDD were recruited for the study following 
clinical examinations at partner hospitals. All participants were 
assessed by a psychiatrist and had a documented history of recurrent 
depression, indicating multiple depressive episodes throughout their 
lives. A subset of subjects received maintenance doses of antidepressant 
medication during the study period, as detailed in Table 1. Before the 
EEG recording, each individual completed the Beck Depression 
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Inventory (BDI) (Beck et al., 1961), a widely recognized screening tool 
in clinical practice and research studies.

2.3 Measurement of obsessive-compulsive 
disorder

The participants with diagnosed OCD were recruited by the 
clinical psychologist (G.K.). A structured interview was conducted to 
confirm that patients met the criteria set by the International Statistical 
Classification of Diseases and Related Health Problems 10th Revision 
(Brämer, 1988). The Yale-Brown Obsessive Compulsive Scale 
(Y-BOCS) (Goodman et  al., 1989) was employed to measure the 
severity of their condition. The scale, commonly used by clinicians, 
provides five rating dimensions for obsessions and compulsions: time 
spent or occupied, interference with functioning or relationships, 
degree of distress, resistance, and control. The Y-BOCS consists of 10 
items, and the total score enables an assessment of overall severity. In 
the presented sample, the mean test score was 20.9 ± 8.27. Scores on 
the measure range from 0 to 40, with 0–7 indicating subclinical 
symptoms, 8–15 indicating mild symptoms, 16–23 indicating 
moderate symptoms, 24–31 indicating severe symptoms, and 32–40 
indicating extreme symptoms. Control participants’ scores on the 
Y-BOCS are likely to be closer to the lower end of the range. Patients 
with psychotic disorders and atypical or reactive depressive episodes 
were excluded from the study, as were those who had traumatic brain 
injuries, neurological disorders, structural abnormalities and 
uncorrected vision. Table  1 displays the medication taken by 
individuals in the MDD and OCD groups.

2.4 EEG data acquisition

EEG recording was performed in a soundproof, dimly illuminated 
room, participants were asked to minimize movements. The procedure 
consisted of four 30-s recordings, two with eyes closed and two with 
eyes open, alternating sequentially. It is hypothesized that a resting 
state paradigm with alternating periods of open and closed eyes is 
optimal for studying the electroencephalographic correlates of mental 
processes inherent in humans. It allows a moderate level of arousal to 
be  maintained (Gale, 1983). 63 EEG electrodes were distributed 
according to the international 10–10 electrode placement system. A 
BrainProduct amplifier with a 0.1–100-Hz analog bandpass filter was 

used for signal amplification. The sampling rate was 500 Hz. Electrode 
impedances were kept at or below 15 kilo-ohms. The frontal electrode 
was used as the ground and Cz as the reference. In this work, we have 
focused solely on studying the resting state with eyes closed, an 
approach that allows for the assessment of intrinsic brain activity 
while minimizing the influence of external interruptions. This 
approach has been used in numerous studies where, although the eyes 
were alternately closed and open to prevent drowsiness during the 
closed-eye periods (Maltez et al., 2004), only the closed-eye portions 
of the recording were used for analysis (Nikulin and Brismar, 2005; 
Nikulin et al., 2012). Therefore, only two eye-closed segments of the 
resting state EEG were further analyzed.

2.5 EEG preprocessing

The EEG signal was filtered with an FIR filter in the range 1–30 Hz. 
The data was visually inspected for “bad” channels and re-referenced 
to the average reference. The data was downsampled to 100 Hz. 
Artifacts related to eye movements, blinking, and cardiac activity were 
removed using Independent Component Analysis (ICA).

As we focused on the alpha frequency range, we filtered the signal 
between 8 and 13 Hz using a Hamming window with 0.0194 passband 
ripple and 53 dB stopband attenuation. We divided the EEG signal into 
four epochs of 15 s each and followed the procedures outlined in 
Linkenkaer-Hansen et al. (2005). The analytic signal was computed 
using the Hilbert transform. Subsequently, the envelope was obtained 
by taking absolute values (Figure 1). All preprocessing was performed 
in MNE-Python.

2.6 Detrended fluctuation analyzes

The DFA method was applied to the envelope. A time series was 
integrated to create a cumulative sum signal. The integrated signal was 
divided into ten windows, with 50% overlap, logarithmically 
distributed between 0.6 and 3.5 s. A polynomial approximation was 
used to eliminate the local trend, and the root-mean-square 
fluctuation was calculated for each segment. Finally, a scaling pattern 
was derived by analyzing the relationship between fluctuation and 
segment length. The fractal scaling exponent (α) was calculated by 
determining the slope of the trend in the function of fluctuation 
intensity means in comparison to window sizes on a logarithmic scale 
(Peng et al., 1995; Hardstone et al., 2012). A α value of 0.5 is considered 
typical for white noise. The range of 0.5–1 characterizes the persistent 
long-range temporal correlations, where larger exponents indicate a 
slower decaying autocorrelation. The Python Nolds package was 
utilized for calculations (Schölzel, 2020). Furthermore, we estimated 
the goodness of fit for each α to understand how well it described the 
data. The goodness of fit was calculated as the squared correlation 
coefficient (R2). The mean R2 for each region was >0.95, which means 
it described the data well.

2.7 Statistical analysis

The α obtained from 63 electrodes were averaged over four 15-s 
epochs and over the regions of interest (ROI): left frontal (Fp1, AF3, 

TABLE 1 Medications taken by members of the MDD and OCD group.

Medication Number of 
participants

MDD group

Selective serotonin reuptake inhibitors (antidepressants) 4

Serotonin 5-HT2C Receptor Antagonists (antidepressants) 1

OCD group

Selective serotonin reuptake inhibitors (antidepressants) 15

Selective serotonin reuptake inhibitors 

(antidepressants) + anticonvulsants

4

Antipsychotics + anticonvulsants 2

https://doi.org/10.3389/fninf.2024.1339590
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Proshina et al. 10.3389/fninf.2024.1339590

Frontiers in Neuroinformatics 04 frontiersin.org

FIGURE 1

EEG recording, filtered in the range of 8–13  Hz, and the envelope (bold line) obtained with the Hilbert transform. Averages for control (top), MDD 
(middle) and OCD (bottom) groups, Electrode Pz.

FIGURE 2

Upper line: spatial distribution of DFA exponents, averaged by group. Bottom line: group differences in DFA exponents. Electrodes are indicated by 
black dots. Electrodes included in the ROI that differ significantly between groups are indicated by the color red. The OCD DFA exponents were 
significantly higher than in the control group in the left frontal, middle frontal, right frontal, and left parietal occipital regions. Compared to the MDD 
group, DFA exponents in OCD were higher, in the middle frontal and right frontal regions.

https://doi.org/10.3389/fninf.2024.1339590
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Proshina et al. 10.3389/fninf.2024.1339590

Frontiers in Neuroinformatics 05 frontiersin.org

AF7, F1, F5, F3, F7, FT7, FC5, FC3, FC1), right frontal (FP2, AF4, 
AF8, F2, F4, F6, F8, F8, FC2, FC4, FC6, FT8), middle frontal (AFz, Fz), 
left temporal (T7, TP7, CP5, C5), right temporal (T8, TP8, C6, CP6), 
left central parietal (C1, C3, CP3, CP1), right central parietal (C2, C4, 
CP2, CP4), middle central parietal (CPz, Pz), left parietal occipital 
(P1, P3, P5, P7, PO3, PO7, O1), right parietal occipital (P2, P4, P6, P8, 
PO4, PO8, O2), middle parietal occipital (POz, Oz). Our ROIs are 
based on the electrode position. EEG measures the electrical activity 
of large, synchronously firing populations of neurons in the brain with 
electrodes placed on the scalp. However, caution should be exercised 
when interpreting EEG activity in specific electrodes as representative 
of the activity of a given brain region due to its poor spatial resolution.

A mixed repeated measures ANOVA with one within-subjects 
(“ROI”) factor (11 levels) and one between-subjects (“group”) factor 
was used. Calculations were executed within the R software 
environment using the “rstatix” package. The Bonferroni test was used 
for a multiple-comparison correction. We also examined if there were 
differences in the severity of depression symptoms between the MDD 
and OCD groups, and if the α showed a correlation with the severity 
of MDD and OCD symptoms measured using the BDI and Y-BOCS, 
respectively.

3 Results

The MDD and OCD groups showed no significant differences on 
the BDI test scores (t = 0.955, df = 53, p-value = 0.343). The scores of 
the control group were significantly lower than in both the MDD 
(t = 8.045, df = 74, p-value <0.001) and OCD (t = −6.412, df = 66, 
p-value <0.001) groups. The mean and the standard deviation of BDI 
test scores by groups are: MDD—23 ± 10.1, OCD—20.2 ± 11.4, 
control—7.3 ± 5.1. No significant correlations were found between α 
and symptoms of OCD and MDD.

The mean age of participants in the MDD group (mean age = 36.6) 
was significantly higher than that of participants in the OCD group 
(mean age = 24.8), as demonstrated by statistical analysis (T 
(53) = 5.235, p < 0.001). No significant differences in age were found 
between the OCD and controls (mean age—28.2) (p = 0.15). The age 
of participants diagnosed with MDD was significantly higher than 
that of the control group, T (64) = 3.204, p = 0.002.

All scaling exponents of the three group subjects were in the 
interval of 0.6–1.1, indicating persistent LRTC of EEG oscillations in 
the alpha band. Averaged fractal scaling exponents, categorized by 
areas of interest and groups, are presented in Table 2. Mauchly’s test 
indicated that the assumption of sphericity had been violated 
(p < 0.001), therefore we  applied the Greenhouse–Geisser (GG) 
correction (ε = 0.571) to produce a more valid critical F-value. The 
results of a mixed repeated measures ANOVA with GG correction 
(summarized in Table 3) indicate that the main effect of the “group” 
was significant (F (2, 89) = 3.14, p = 0.048), suggesting that a difference 
exists in the fractal scaling exponent between the groups of OCD, 
MDD, and healthy controls.

The main effect of ROI with GG correction was not significant (F 
(5.71, 508.28) = 26.757, p = 0.079). The interaction effect between 
group and ROI was significant (F (11.42, 508.28) = 3.129, p = 0.02), 
indicating that there were statistically significant differences between 
the groups in certain areas of the brain. Post-hoc Bonferroni tests 
(results are summarized in Table 4) have revealed that the OCD group 

had a higher α score compared to the MDD and control groups. 
Specifically for OCD, the α score was higher than in the control group 
in the frontal regions: left frontal (t (979) = −3.164, p.adj = 0.004), 
middle frontal (t (979) = −3.972, p.adj < 0.001), right frontal (t 
(979) = −4.034, p.adj < 0.001), and in the left parietal occipital region 
(t (979) = −2.961, p.adj < 0.009). For MDD, the OCD α scores were 
higher in the middle frontal (t (979) = −2.607, p.adj = 0.027) and right 
frontal (t (979) = −2.632, p.adj = 0.025) regions (Figure 2).

This study included participants who did not exhibit acute effects. 
Participants with OCD were taking medications on a long-term basis. 
The medication dosages for the MDD group were the lowest 
maintenance dosages. However, we cannot completely rule out the 
possibility of psychotropic drugs affecting the EEG. To address this 
concern, we conducted an additional group comparison using only 
patients who are currently not taking medication, although this 
resulted in a very small sample size (5 for OCD). After excluding those 
taking medication, the MDD group consisted of 23 participants.

The results of a mixed repeated measures ANOVA with GG 
correction indicate that the main effect of the “group” was significant 
(F (2, 62) = 1.22, p = 0.026), suggesting that a difference exists in the 
fractal scaling exponent between the groups of OCD, MDD, and 
healthy controls. The main effect of ROI with GG correction was not 
significant (F (5.05, 312.99) = 10.684, p = 0.054). The interaction effect 
between group and ROI was significant (F (10.10, 312.99) = 2.198, 
p = 0.023), indicating that there were statistically significant differences 
between the groups in certain areas of the brain. This difference 
persisted even when participants taking medication were excluded. 
Post-hoc Bonferroni tests have revealed that the OCD group had a 
higher α score compared to the control group at the middle frontal 
area (t (682) = −2.461, p.adj = 0.042) and right frontal area (t 
(682) = −2.642, p.adj = 0.025).

TABLE 2 Fractal scaling exponent (α) averaged by groups and areas.

ROIs Control MDD OCD

Left central parietal 0.83 0.83 0.86

Right central parietal 0.84 0.82 0.85

Middle central parietal 0.87 0.86 0.90

Left parietal occipital 0.84 0.88 0.92

Right parietal occipital 0.87 0.89 0.92

Middle parietal occipital 0.87 0.88 0.94

Left temporal 0.79 0.82 0.83

Right temporal 0.81 0.84 0.84

Left frontal 0.79 0.81 0.87

Right frontal 0.78 0.81 0.88

Middle frontal 0.77 0.81 0.88

TABLE 3 ANOVA table for differences in fractal scaling exponent (α) 
between groups.

Effect DFn DFd F p p <  0.05 GES

Group 2.00 89.00 3.140 0.048 * 0.048

ROI 5.71 508.28 26.757 < 0.001 * 0.079

Group:ROI 11.42 508.28 3.129 < 0.001 * 0.020

*GES, Greenhouse–Geisser correction.
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4 Discussion

We examined LRTCs in the amplitude fluctuations of ongoing 
neuronal oscillations in 29 participants with MDD, 26 participants 
with OCD, and 37 control subjects. We  used DFA to assess the 
correlation properties of the time series, with a focus on identifying 
differences in the alpha frequency range during resting-state 
closed-eye conditions. EEG recordings from all three groups showed 
LRTC with power-law behavior. The presence of power-law scaling 
behavior in the LRTC of the EEG suggests that there are persistent 
temporal correlations in brain bioelectrical activity. This implies that 
there is a probability that minor variations in the EEG signal will 
be  succeeded by minor variations and that major variations will 
be  succeeded by major variations. The averaged scaling exponent 
across all brain regions considered was 0.82 for the control group, 0.84 
for MDD, and 0.88 for OCD. The scaling exponent values are 
comparable to the results of previous EEG/MEG studies (Linkenkaer-
Hansen et  al., 2001, 2005; Nikulin and Brismar, 2004, 2005; Lee 
et al., 2007).

Previous studies by Lee et al. showed that depressed individuals had 
significantly higher scaling exponent values in F3, C3, T3, T4, and O1 
channels in the broad EEG frequency range from 0.6 to 46 Hz compared 
to healthy controls (2007). Bachmann and colleagues obtained similar 
results, showing statistically significant differences in the LRTC of P3-Pz 
channels between healthy and depressive subjects (Bachmann et al., 
2014). In our study, the disorder groups also showed a tendency to have 
higher fractal scaling exponents as compared to the control group, 
although there were no statistically significant differences between the 
MDD and control groups. This is consistent with previous studies by 
Linkenkaer-Hansen et al. (2005) who found no differences between 
depressed patients and healthy controls in the alpha band. Leistedt et al. 
(2007) found no difference in the broad frequency range of 0.5–25 Hz 
in men in sleep EEG. Hosseinifard et al. (2013) found no significant 
difference between depressed patients and controls in narrow frequency 
bands. Bornas et al. (2013) reported that no differences were found for 
scaling exponents at any brain location in any band between groups of 
subclinically depressed and non-depressed individuals. The potential 
reasons for the variation in results between studies that report 
differences in the control and depressed groups and those that do not 

include the examination of different frequency bands, the use of 
windows of different lengths, differences in the gender composition of 
the samples, and medication use.

We found significant differences between the control and OCD 
groups in the left frontal, middle frontal, right frontal, and left parietal 
occipital regions, with OCD scores being higher. In addition, OCD 
scaling exponent scores were higher than MDD scores in the middle 
frontal and right frontal regions. We cannot compare these findings to 
previous studies as, to our knowledge, no research has explored LRTC 
in individuals with OCD. Studies of nonlinear EEG characteristics in 
OCD are markedly restricted. For instance, it was discovered that EEG 
complexity (measured with approximate entropy) may be  a useful 
biomarker for predicting treatment outcomes in OCD patients (Altuğlu 
et al., 2020). Furthermore, a group of scientists led by Yazdi-Ravandi, 
examined the complexity of information processing by fractal 
dimensions (FDs) and discovered that individuals with OCD exhibited 
higher FDs in the frontal regions across all frequency bands in 
comparison to healthy controls (Yazdi-Ravandi et  al., 2021). These 
findings align well with our study. It is worth noting, however, that the 
study yielded significant results in the beta and lower gamma bands, 
whereas our research was focused on the alpha rhythm.

The question of how LRTCs relate to the cognitive and emotional 
domains has not been fully explored. In the emotional domain, there 
is evidence that large-scale exponents of broadband and theta-band 
oscillations are positively correlated with negative emotion regulation 
strategies and depression scores in subdepressed individuals, 
presumably leading in some cases to the development of depressive 
disorder (Bornas et al., 2013). In the present study, there were no 
significant correlations found between scaling exponent scores and 
symptoms of OCD or MDD. The level of depressive symptoms in both 
the OCD and MDD groups was comparable, indicating that despite 
the overlap in clinical symptoms, unique features of brain function can 
be detected in both MDD and OCD and in controls by means of DFA.

In the cognitive domain, psychiatric disorders are associated with 
cognitive decline, with depression found to impair attention, executive 
function, memory, and speed of information processing (Millan et al., 
2012; McIntyre et al., 2015; Perini et al., 2019). Identifying specific 
areas associated with cognitive impairment in depression is 
challenging. Numerous studies have been conducted on this topic, 
highlighting the significance of extensive brain networks that include 
many structures, such as the hippocampus, amygdala, cingulate, 
fornix, insula, medial, and dorsolateral prefrontal cortex (e.g., 
Culpepper et  al., 2017; Touron et  al., 2022). A selective review of 
neurocognitive impairment in OCD by Suhas and Rao (2019) 
highlights the severity of executive dysfunction and nonverbal 
memory deficits, and the role of frontostriatal circuits in the 
neurobiology of OCD. Since cognitive abilities are known to 
be influenced by the dynamics of neural oscillations at many spatial 
scales and frequencies (Varela et  al., 2001; Buzsáki and Draguhn, 
2004), it is reasonable to assume that the observed differences between 
OCD and controls and OCD and MDD, which are almost exclusively 
concentrated in frontal regions, reflect to some extent alterations in 
cognitive functions. Much of the fMRI studies have indicated a role of 
the frontal cortex and its connections with other regions in OCD 
(Stern et  al., 2012; Göttlich et  al., 2014; Van Velzen et  al., 2015). 
However, examining cognitive and emotional processes was not the 
purpose of the current study, and these assumptions are speculative 
in nature.

TABLE 4 Differences between groups by ROIs, Bonferroni corrected.

ROI Group 1 Group 2 df Statistic p p.
adj

left frontal Control OCD 979 –3.164 0.001 0.004

middle 

frontal

Control OCD 979 –3.972 < 

0.001

< 

0.001

right 

frontal

Control OCD 979 –4.034 < 

0.001

< 

0.001

left 

parietal 

occipital

Control OCD 979 –2.961 0.003 0.009

middle 

frontal

MDD OCD 979 −2.607 0.009 0.027

right 

frontal

MDD OCD 979 –2.632 0.008 0.025
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A more objective interpretation of the results obtained could 
be related to the fact that LRTCs are considered a measure of the 
excitation/inhibition balance in neural networks. Rebalancing of these 
processes may contribute to the symptoms of MDD and OCD 
disorders (Richter et al., 2012; Godfrey et al., 2018; Kang et al., 2019; 
Rodrigues Da Silva et al., 2022). Both OCD and MDD have been 
found to have abnormalities in the inhibitory and excitatory 
neurotransmitter systems (e.g., Pittenger et al., 2011; Godfrey et al., 
2018), which we believe can be  reflected in the change in LRTCs 
compared to the control group. It should be noted that recent studies 
on LRTC have already revealed its informative value in relation not 
only to affective disorders but also found increased DFA in 
neurodevelopmental disorders such as autism spectrum disorder 
(Bruining et al., 2020), STXBP1 syndrome (Houtman et al., 2021), and 
Rett syndrome (Sysoeva et al., 2023).

Most previous studies have focused on finding differences between 
the MDD/OCD and control groups separately, so further studies of 
differences in LRTC between these pathologies are needed to gain more 
insight. In order to explain the differences found in the frontal and 
parietal occipital regions, it would be useful to investigate not only the 
RS EEG but also the EEG during different cognitive tasks. In addition, 
it would be  useful to study the characteristics of neurotransmitter 
systems functioning to confirm the hypothesis of impaired inhibition 
and excitation and to confirm the use of the LRTC metric as an indicator 
of imbalance in these processes. This information may be useful in 
differential diagnosis, given the frequent comorbidity of OCD and 
MDD and their often-overlapping clinical manifestations.

The limitations of the study include the inability to predict the 
influence of drug therapy on EEG of the subjects as well as the 
prevalence of female gender among the study participants. Further 
complicating the interpretation of the results, the level of depressive 
symptoms in OCD was comparable to that in MDD in our subsamples. 
Among other limitations, it is noteworthy that participants with MDD 
were significantly older than those with OCD and the control group. 
The study revealed that older adults (aged 55–72) showed a decrease 
in long-range correlations in their EEG signals during motor tasks 
when compared to younger adults (Pavlov et al., 2020). However, it is 
important to note that our sample included only 4 participants over 
the age of 55: 2 with MDD and 2 from the control group, and we also 
examined the resting state EEG without assigning any tasks. It is 
important to note that further studies should also control for general 
anxiety levels, as OCD and MDD may share features of high anxiety.
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