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Introduction: Mathematical models play a crucial role in investigating complex
biological systems, enabling a comprehensive understanding of interactions
among various components and facilitating in silico testing of intervention
strategies. Alzheimer’s disease (AD) is characterized by multifactorial causes
and intricate interactions among biological entities, necessitating a personalized
approach due to the lack of e�ective treatments. Therefore, mathematical
models o�er promise as indispensable tools in combating AD. However, existing
models in this emerging field often su�er from limitations such as inadequate
validation or a narrow focus on single proteins or pathways.

Methods: In this paper, we present a multiscale mathematical model that
describes the progression of AD through a system of 19 ordinary di�erential
equations. The equations describe the evolution of proteins (nanoscale), cell
populations (microscale), and organ-level structures (macroscale) over a 50-
year lifespan, as they relate to amyloid and tau accumulation, inflammation, and
neuronal death.

Results: Distinguishing our model is a robust foundation in biological principles,
ensuring improved justification for the included equations, and rigorous
parameter justification derived from published experimental literature.

Conclusion: This model represents an essential initial step toward constructing
a predictive framework, which holds significant potential for identifying e�ective
therapeutic targets in the fight against AD.

KEYWORDS
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approach, APOE, amyloid beta, tau proteins, ordinary di�erential equations

1 Introduction

The dominant etiological theory for Alzheimer’s disease (AD) is the amyloid-β (Aβ)
protein cascade hypothesis, formulated in 1984 (Hardy andHiggins, 1992). It has remained
at the center of the conceptualization of the disease ever since, including in diagnostic
guidelines (McKhann et al., 2011), research frameworks (Jack et al., 2013), and now
clinical care. It has regained new impetus as three Aβ antibody therapies are gaining
regulatory approval worldwide based on their demonstrating removal of Aβ oligomers
with an accompanying delay in the cognitive decline of approximately six months (Sims
et al., 2023; van Dyck et al., 2023). However, all three “now referred to in the field as
disease-modifying therapies” present with amyloid-related imaging abnormalities related
to a breakdown in the cerebrovasculature in a high number (35%) of individuals, as well
as a large heterogeneity response, with women and non-White populations, in particular,
showing less to no benefit (Farrer et al., 1997). Thus, identifying individuals who can safely
receive and benefit from these treatments is now a glaring priority.
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Further, while these disease-modifying therapies constitute
an undeniable advance, their limited efficacy does not eliminate
the need to understand the dementia process surrounding Aβ

accumulation, and attempt to explain discrepant evidence such
as its poor relation to cognitive deficits (Mormino et al., 2009;
Villain et al., 2012; Haller et al., 2019), its presence at theoretically
pathological levels in a large proportion of otherwise cognitively
healthy seniors (Katzman et al., 1988; Bennett et al., 2006), and its
poor spatial match to the accumulation of tau, neurodegeneration,
or brain energy hypometabolism (Jack et al., 2013).

A larger, more integrated perspective is therefore required to
understand the relationship between the various abnormalities
that are present in AD, such as the aberrant production and
accumulation of amyloid and tau proteins, reduced energy
metabolism and neurovascular coupling, inflammation surge,
synaptic dysfunction and neuronal death, and inevitably, cognitive
and behavioral impairment; all the while taking into account
genotype differences (e.g., sex and APOE gene) and lifestyle
risk factors.

Experimentally, assessing such a global theory is logistically
impossible to achieve as the number of variables is substantial.
This leads to ethical, logistical, and financial difficulties when
studying human patients, namely the lack of causal studies, the
long duration of neurodegeneration, and the always incomplete
selection of biomarkers in clinical studies due to resource and time
constraints. Traditional research further relies on statistical models,
a reductionist approach geared toward proving the null hypothesis,
and that frequently are used only to test associations between data
without providing an understanding of the processes at play.

Alternatively, computational models integrate diverse sources
of data into a theoretical framework, able to test the plausibility
of working hypotheses and elicit novel ones. Mechanistic
computational models are therefore able to capture interactions
between abstracted entities at various levels, sidestepping the
limitations inherent in human studies, and thus provide a deeper
understanding of the interactions between those involved in
aging and neurodegeneration. They could be used to uncover
potential mechanisms, provide an in silico testable environment
for treatment response, and hence suggest either novel or more
appropriately personalized therapeutic regimens.

Few large-scale theoretical integrative efforts of this kind have
been attempted, e.g. Hao and Friedman (2016), Bertsch et al.
(2017), Petrella et al. (2019), and Ji et al. (2021). In our recent review
of integrative mathematical models of AD, we found near-universal
limitations in terms of internal and external validity, reduced scope,
or unrealistic disease conceptualizations (Moravveji et al., 2022).

In this work, we propose a multi-entity, multi-scale (protein,
cells, and organ-level) mathematical model describing the aging
process, to capture the onset and progression of AD, based on
and improving upon the one proposed by Hao and Friedman
(2016). Our model is described in the following section and covers
processes such as extracellular Aβ aggregation and clearance, the
formation of neurofibrillary tangles (NFTs) from tau proteins,
and the activation of microglia. The contributions of our
work compared to previous reports include (a) an improved
justification, via biological principles, of the qualitative and
quantitative relationships between the model’s entities; (b) the
inclusion of novel entities, especially glycogen synthase kinase

3 (GSK-3) and insulin, to enable the link between brain health
and diabetes, a well-identified risk factor for AD (Zhang et al.,
2018); (c) a more complex description of the amyloid accumulation
process by including different stages for amyloid-β extracellular
aggregation (monomers, oligomers, and plaques), enabling the
testing of hypotheses related to disease-modifying treatments;
(d) the concept of a “reservoir” of non-activated cells, such
as non-activated microglia, as well as terms describing the
conversion of macrophages and microglia from anti-inflammatory
to proinflammatory states; and (e) the inclusion of sex and APOE
gene effects on some parameters. We also solved the model over
a longer evolution timeframe, describing the effects of aging over
50 years; these results are provided without and with manipulation
of some external entities, e.g. insulin concentrations. Finally,
we completed a thorough validation of parameter values using
published literature; these are listed in Supplementary material A.
In fine, our model can generate predictions that can be more
easily validated with human experimental data, as presented in the
Section 4 of our report.

It is important to realize that this represents but a step toward
an ever more complex disease model, as with each new evidence the
nature of the equations and parameter values are set to change.

2 Method

Our model is composed of 23 ordinary differential or other
equations and describes the evolution of brain health entities over
50 years. A schematic illustrating how each entity interact is given
in Figure 1. Each entity has been abstracted as a dynamical variable,
expressed in either concentration or density (g/ml or g/cm3).
Table 1 lists all variables of the model.

2.1 Impact of sex

Around 60% of Americans suffering from AD are
women (Rajan et al., 2021). This has been proposed to be
related to the action of hormones, estrogens in particular. Some
authors claim a link between menopause and dementia (Mielke,
2018). Generally speaking, women experience a more rapid
cognitive decline than men. It is possible that this is due to
the fact that women receive an AD diagnosis later in life than
men (Ferretti et al., 2018). According to many studies, there are no
differences with respect to the Aβ charge between men and women
(Ferretti et al., 2018). This is however controversial as other studies
demonstrate sex-related differences, such as Carroll et al. (2010)
and Yang J.-T. et al. (2018). Regarding neurofibrillary tangles and
hyperphosphorylated tau proteins, the majority of post-mortem
studies of AD patients did not reveal an impact of sex (Ferretti
et al., 2018). However, some studies suggested that there is a greater
accumulation of tau proteins and NFT in women than in men
(Barnes et al., 2005; Yang J.-T. et al., 2018). Studies using large-scale
datasets such as Alzheimer’s Disease Neuroimaging Initiative

(ADNI) and Minimal Interval Resonance Imaging in Alzheimer’s

Disease (MIRIAD) determined that atrophy rates are 1%–1.5%
faster in women suffering from mild cognitive decline or AD than
in men with similar conditions (Ferretti et al., 2018), which would
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FIGURE 1

Model schematic. Our hypothesis can be summarized in the model schematic. We propose that the relationships between entities, evolving
dynamically through time, is su�cient to explain the decline in neurons, rise of inflammation, and increases in both amyloid plaques and tau tangles
that is seen in aging, up to and including Alzheimer’s disease, without requiring an external “catalytic” event such as reactive oxygen species
production. This is a multi-factorial, multi-parametric viewpoint, quite di�erent from other hypotheses in the literature. Blue arrows and asterisk
identify an APOE4-dependent relation. Red arrows identify degradation relations, and red lines ending with a dot is for inhibition.

be an indicator of a greater neural loss and more important tau
pathology. We elected to take sex into account in our model by
including its effect in various equations via the variable S (S = 0
for women and S = 1 for men); capturing sex-related differences
in the densities of neurons, astrocytes, and microglia (Pakkenberg
and Gundersen, 1997; Pelvig et al., 2008); as well as using different
functions and values for cerebral insulin based on the findings
of Bryhni et al. (2010). The normal GSK-3 concentration is also
sex-dependent according to Knight et al. (2021).

2.2 Impact of APOE4

One of the most important genetic risks for AD is the presence
of one or two copies of the ε4 allele of the APOE gene (APOE4).
About 15%–25% of individuals bear a copy of APOE4 and 2%–
3% have two copies of the gene: the ε3 allele is the most common
and is not associated with an increased risk of AD. The ε2 allele is
relatively rare and could offer protection against AD (Hsiung and
Dessa Sadovnick, 2007; Bryant, 2021). People with APOE4 have a
greater accumulation of Aβ (Roher et al., 2009; Kanekiyo et al.,

2014). In our model, we supposed that APOE4 leads to greater
intracellular Aβ production. We also assumed that APOE4 leads
to a greater rate of extracellular Aβ production (Roher et al., 2009).
It has been observed by Hashimoto et al. (2012) that the level of
Aβ oligomers in persons suffering from AD and having APOE4
is 2.7 times greater than in people with APOE3. In our model, we
considered that the aggregation rate of Aβ into oligomers is higher
in people with APOE4.We discriminated between APOE4 status by
defining a variable, AP, for the presence of APOE4 (AP = 1 when
the allele ε4 is expressed and AP = 0 otherwise). We considered
that APOE4 has no impact on the aggregation rate of Aβ oligomers
into plaques (Garai et al., 2014; Jäkel et al., 2020). In our model, we
rather chose as a mechanism of action that clearance of Aβ plaques
was less efficient in persons with APOE4 (Kanekiyo et al., 2014;
Hansen et al., 2018).

2.3 Neuronal populations

From Pelvig et al. (2008), we extracted the values for the
number and proportion of cells of each type (see Table 2).
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Knowing that the brain density, ρbr, is 1.03 g/cm
3 (National

Institute of Standards and Technology, 2017), we can compute
the density of neurons and astrocytes in the female (F) and male
(M) brain (see Equations 1–4).

NF
0 = ηNF × ρbr =

43.4

100
× 1.03 = 0.45 g/cm3, (1)

NM
0 = ηNM × ρbr =

41.3

100
× 1.03 = 0.42 g/cm3, (2)

AF
0 = ηAF × ρbr =

9.7

100
× 1.03 = 0.10 g/cm3, (3)

AM
0 = ηAM × ρbr =

12.0

100
× 1.03 = 0.12 g/cm3, (4)

where ηX is the percentage of brain cells corresponding to the
population X, with X equal to N for neurons or A for astrocytes.

TABLE 1 Model variables.

Aβ i Intracellular Aβ

Aβo
m Extracellular Aβ monomers

Aβo
o Extracellular Aβ oligomers

Aβo
m Extracellular Aβ plaques

G GSK-3

τ Phosphorylated tau proteins

Fi Intracellular NFT

Fo Extracellular NFT

N Neuron density

A Density of activated astrocytes

MNA Non activated microglia

Mpro Proinflammatory microglia

Manti Anti-inflammatory microglia

M̂pro Proinflammatory macrophages

Tβ TGF-β

Tα TNF-α

I10 IL-10

P MCP-1

2.4 Equations for amyloid beta

AD is characterized by Aβ plaque deposits. These plaques
are produced by the amyloid precursor protein after it has been
sequentially cleaved by β- and γ -secretase enzymes. This process
leads to the creation of two types of Aβ : Aβ40 and Aβ42. While
Aβ42 only accounts for 10% of the total quantity of Aβ , it is
the most toxic form due to its hydrophobicity, aggregation, and a
larger potential for fibrillation (Hohsfield and Humpel, 2015). The
agglomeration process of Aβ is still little understood. Some studies
suggest that oligomers are only a transitory form in fibril formation
while other studies propose that these different species emerge
from independent pathways (Cohen et al., 2013). It is not clear if
oligomer aggregation occurs through successive monomer addition
or the concatenation of smaller oligomers. For tetramers, it appears
that the one-at-a-time aggregation of monomer is more frequent
than the concatenation of two dimers (Man et al., 2019). However,
the opposite result has also been proposed (Barz et al., 2018). Either
way, small oligomers aggregate to form protofibrils, which can
become fibrils, which can in turn form plaques. According to this
evidence, we will only consider Aβ42 and divide aggregation into
four phases: intracellular monomers, and extracellular monomers,
oligomers, and plaques. We assume that monomers cleaved by
γ -secretase aggregate into oligomers.

2.4.1 Equation for intracellular amyloid beta
monomers

The equation for monomeric Aβ is:

dAβ i

dt
= λAβ i (1+ AP · δAPi)

N

N0
− dAβ iAβ i −

Aβ i

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
. (5)

The first term in Equation (5) represents the creation of
intracellular Aβ from an amyloid precursor protein, where λAβ i is
the reaction rate influenced by the presence of APOE4.

The second term, −dAβ iAβ i, describes the degradation of
intracellular Aβ , with dAβ i representing the rate of degradation.

The last term in Equation (5) accounts for the externalization
of intracellular monomers when neurons undergo cell death. This
term captures the transition of intracellular Aβ to extracellular Aβ

and is proportional to the rate of neuronal loss, denoted by dN
dt
.

TABLE 2 Populations (in billions) and proportions (in %) of brain cells, based on Pelvig et al. (2008).

Women Men

Cell type Number of cells (×109) Percentage (%) Number of cells (×109) Percentage (%)

Neurons 21.4 43.4 26.3 41.3

Oligodendrocytes 21.0 42.6 28.8 44.2

Astrocytes 4.8 9.7 7.8 12.0

Microglaes 1.8 3.7 2.0 3.1

Other glial cells 0.3 0.6 0.3 0.5

Total 49.3 100 65.2 100
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2.4.2 Equation for extracellular amyloid beta
monomers

For extracellular Aβ , we considered two separate aggregation
processes: the transition from monomers to oligomers and
subsequently the transition from oligomers to plaques.

The equation describing the evolution of extracellular Aβ

monomers is given by

dAβo
m

dt
=

Aβ i

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
+ λAβo

m
(1+ AP · δAPm)

N

N0
+ λAAβo

m

A

A0

− κAβo
mAβo

o
(1+ AP · δAPmo) (Aβo

m)
2 − dAβo

m
Aβo

m.
(6)

The first term of Equation 6 represents the transition from
intracellular to extracellular amyloid, while the second term
represents the creation of extracellular Aβ monomers from the
amyloid precursor protein. The rate of production is assumed
to be proportional to neuron density. The third term accounts
for the production of extracellular Aβ monomers by activated
astrocytes, which produce less Aβ compared to neurons. The rate
of production is denoted by λAAβo

m
, it is influenced by the presence

of APOE4 and is proportional to astrocyte activity.
The aggregation of monomers into oligomers is described by

the fourth term, which is influenced by the presence of APOE4.
The rate of aggregation is represented by κAβo

mAβo
o
, and it reflects

the propensity of Aβ monomers to form oligomers. Garai and
Frieden (2013) identified the formation of dimers as a critical
step in the transition from monomers to oligomers. Although our
equation focuses on dimer formation (hence the squared term),
for simplicity and due to data limitations, we consider the rate
as a representative step denoted by κAβo

mAβo
o
. Lastly, the equation

accounts for the degradation of extracellular Aβ monomers
through various processes, including degradation by microglia and
self-degradation. The rate of degradation, represented by dAβo

m
,

reflects the overall degradation rate of extracellular Aβ monomers.

2.4.3 Equation for extracellular amyloid beta
oligomers

dAβo
o

dt
= κAβo

mAβo
o
(1+ AP · δAPmo) (Aβo

m)
2 − κAβo

oAβo
p
(Aβo

o)
2

−dAβo
o
Aβo

o. (7)

The Equation 7 consists of three terms. The first one accounts
for the aggregation of monomers into oligomers; the second
describes the aggregation of oligomers into Aβ plaques, with
κAβo

oAβo
p
representing the aggregation rate. Finally, the last term

captures the degradation of oligomers through various processes,
including microglia-mediated degradation and self-degradation.

2.4.4 Equation for extracellular amyloid beta
plaques

dAβo
p

dt
= κAβo

oAβo
p
(Aβo

o)
2

−

(

dMantiAβo
p
Manti + dM̂antiAβo

p
M̂anti

)

(

1+ AP · δAPdp
) Aβo

p

Aβo
p + KAβo

p

. (8)

The first term of Equation 8 represents an oligomer-to-plaque
conversion while the second one describes plaque degradation by
anti-inflammatory microglia and macrophages.

Activated macrophages and microglia can eliminate Aβ

plaques (Lee and Landreth, 2010). Macrophages are more efficient
at this task than microglia (Lai andMcLaurin, 2012; Thériault et al.,
2015). Also anti-inflammatory microglia and macrophages cleave
Aβ more efficiently than their proinflammatory counterparts (Tang
and Le, 2016; Wang et al., 2021). For this reason, we will neglect
plaque degradation by proinflammatory cells.

The constants dMantiAβo
p
and dM̂antiAβo

p
denote the maximum

degradation rates of Aβ plaques by microglia and macrophages,
respectively. Lastly, the constant KAβo

p
represents the half-

saturation constant for plaque degradation by microglia
and macrophages.

2.5 Equation for glycogen synthase
kinase 3

There are two isoenzymes of GSK-3, GSK-3α and GSK-3β ,
both able to hyperphosphorylate tau proteins and are putatively
involved in AD. However, GSK-3β is more dysregulated in
AD (Hooper et al., 2008). For this reason, our model will only
consider that isoenzyme. In turn, the action of GSK-3 is modulated
by insulin concentration. When the insulin concentration is
normal, GSK-3 is inhibited, but when it is smaller, the activity of
GSK-3 is increased (Cross et al., 1995; Ghasemi et al., 2013; Yang L.
et al., 2018).

dG

dt
= λInsG

Ins0
Ins(t)

N

N0
− dGG−

G

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
. (9)

In this context, in Equation 9, λInsG represents the insulin-
influenced rate of GSK-3 creation, Ins(t) denotes the insulin
concentration as a function of age, while Ins0 represents the
normal concentration of brain insulin. The second term describes
GSK-3 degradation; the constant dG refers to the rate of this
decrease/degradation.

2.6 Equation for
phosphorylated/hyperphosphorylated tau
proteins

Another important factor in AD onset and progression is
the presence of hyperphosphorylated tau proteins (τ ) in the
central nervous system, mainly in neurons. Tau proteins are
phosphorylated and hyperphosphorylated by many processes
including glycogen synthase kinase 3 (GSK-3) (Domínguez et al.,
2012). Tau proteins in AD patients are three to four times more
phosphorylated than in age-matched individuals without cognitive
difficulties (Gong and Iqbal, 2008). The equation for τ is as follows:

dτ

dt
= λτ

N

N0
+ λGτ

G

G0
− κτFi (τ )

2 N

N0
−

τ

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
− dτ τ . (10)

The first term accounts for non-GSK-3-mediated
hyperphosphorylation of tau proteins. The constant λτ represents
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the initial rate of this hyperphosphorylation. The second
term corresponds to GSK-3-mediated hyperphosphorylation.
Deviations in GSK-3 concentration from the normal level G0 result
in either increased or decreased tau protein hyperphosphorylation
compared to the normal rate (λGτ ). The third term corresponds
to the transformation of tau proteins into neurofibrillary tangles.
The exponent 2 translates the fact that at least two tau proteins
are necessary to form a neurofibrillary tangle. When neurons
die, tau proteins are released from the intracellular space into the
extracellular environment and are subsequently eliminated. This

process is captured by the term − τ
N

∣
∣
∣
dN
dt

∣
∣
∣ in Equation (10). The

last term accounts for the degradation and dephosphorylation of
phosphorylated/hyperphosphorylated tau proteins at a rate of dτ .

2.7 Equations for NFTs

Hyperphosphorylated tau proteins aggregate to form
neurofibrillary tangles (NFTs), causing the destruction of
microtubules, which in turn blocks the neuron transport system
and affects synaptic transmission (Hao and Friedman, 2016;
National Institute on Aging, 2017). The presence of intracellular
NFTs leads to neural death. The equation for intracellular NFTs is
as follows:

dFi

dt
= κτFi (τ )

2 N

N0
− dFiFi −

Fi

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
. (11)

The first term captures the aggregation process of
hyperphosphorylated tau proteins, resulting in the formation of
intracellular NFTs. The second term accounts for the degradation
and elimination of these intracellular NFTs at a rate of dFi . Finally,
the last term represents the release of intracellular NFTs into the
extracellular space upon neuronal death.

The evolution of extracellular NFTs is described by the
following equation

dFo

dt
=

Fi

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
− κMFo

Manti

Manti + KManti

Fo − dFoFo. (12)

The first term in this equation, which is the same as the
last term in Equation (11), represents the release of extracellular
neurofibrillary tangles upon neuronal death. When neurons die,
intracellular NFTs transform into “ghost tangles” that undergo
minimal degradation, unless microglia or astrocytes act (Kril et al.,
2002; Zilka et al., 2012; Moloney et al., 2021). The degradation
of extracellular NFTs by microglia, specifically anti-inflammatory
microglia, is described by the second term in Equation (12). The last
term accounts for the degradation of extracellular NFTs resulting
from other factors such as astrocytes and self-degradation.

2.8 Equation for the density of neurons

The evolution of neuronal density is described by the following
equation:

dN

dt
= −dFiN

1

1+ exp(−n ·
Fi−KFi
KFi

)
N

−dTαN
Tα

Tα + KTα

1

1+ I10/KI10

N, (13)

where n is the sigmoid coefficient determining its slope. The
first term in Equation (13) represents neural death caused by
intracellular NFTs (Fi), where dFiN denotes the rate of neural death
attributed to Fi, and KFi represents the concentration of Fi at which
this rate is half-maximal.

Neural death is also related to the presence of proinflammatory
cytokines, such as tumor necrosis factor-alpha (TNF-α). However,
the pathway leading to this apoptosis is unclear even though
many theories have been proposed (Takeuchi et al., 2006; Park and
Bowers, 2010; Neniskyte et al., 2014; Wang et al., 2015). For the
sake of simplicity, we will assume that TNF-α directly causes neural
death. It is known that neural death caused by TNF-α is inhibited
by the anti-inflammatory cytokines, in particular the interleukin
(IL)-10 (Porro et al., 2020). This relationship is captured by the
second term in Equation (13), wherein dTαN denotes the maximum
rate of neural death caused by proinflammatory cytokines, KTα

represents the concentration of TNF-α at which the rate of neural
death is half-maximal, andKI10 corresponds to the concentration of
IL-10 at which this rate is reduced by half. This term corresponds
to the Michaelis–Menten equation for reaction velocity with a
non-competitive inhibitor.

2.9 Equation for the density of activated
astrocytes

Astrocytes are activated by TNF-α and Aβ plaques (Nagele
et al., 2004; Morales et al., 2014; Liddelow et al., 2017). Activated
astrocytes produce Aβ monomers but in smaller quantity than
neurons (Blasko et al., 2000; Zhao et al., 2011). Our equation for
activated astrocytes is as follows:

dA

dt
= κTαATα(Amax − A)+ κAβo

pA
Aβo

p(Amax − A)− dAA. (14)

The first term describes the activation of astrocytes by TNF-
α and the second one describes activation by Aβ plaques. We
multiply the production terms by the factor (Amax − A), where
Amax represents the maximum density of activated astrocytes. We
assume that all astrocytes can become activated. The parameters
κTαA and κAβo

pA
correspond to the rates of astrocyte activation by

TNF-α and Aβ plaques, respectively.
The last term in Equation (14) represents the deactivation and

death of activated astrocytes. According to Sofroniew (2020, figure
2), astrocytes return to their initial state if the issue is resolved and
can transition to a chronic state if the problem persists. To capture
this complexity accurately, the model for astrocytes would need
to be more sophisticated. However, for the sake of simplicity, we
assume a constant death rate dA.

2.10 Equations for microglia

2.10.1 Resting microglia
Microglia are resident macrophages of the central nervous

system. They eliminate pathogens, dying cells, and detritus. They
are also involved in tissue repair (Orihuela et al., 2016). In our
model, we consider microglia as either resting (non-activated) or
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activated and, if activated, in one of the two states: pro or anti-
inflammatory.Microglia are activated by Aβ oligomers (Michelucci
et al., 2009; Tang and Le, 2016) and extracellular NFTs (Maccioni
et al., 2010; Ohm et al., 2021). We assume that the sum of activated
and non-activated microglia is approximately constant (from
figure 3 of Pelvig et al., 2008). Therefore, when proinflammatory
or anti-inflammatory microglia die or are deactivated, they are
replaced by resting microglia. This occurs at rates dMpro and dManti ,
respectively. The rate of activation of microglia is a function of
extracellular NFT concentration (Fo) and of the concentration of
extracellular Aβ oligomers (Aβo

o). The evolution of non-activated
microglia is described by the Equation (15).

dMNA

dt
= dMproMpro + dMantiManti −Mactiv, (15)

where Mactiv represents the variation of microglia becoming active
and is given by Equation (16).

Mactiv = κFoM
Fo

Fo + KFo

MNA + κAβo
oM

Aβo
o

Aβo
o + KAβo

o

MNA. (16)

2.10.2 Activated microglia
We use a discreet model with microglia being either

proinflammatory or anti-inflammatory, even though polarization
is a continuum between these two extremes. The proinflammatory
polarization is triggered by the signaling of proinflammatory
cytokines mainly gamma interferon (IFN-γ ) and TNF-α as well as
lipopolysaccharides (LPS) (Martinez and Gordon, 2014; Orihuela
et al., 2016; Wang et al., 2021). We consider TNF-α and assume
that its concentration is proportional to the concentration of the
other cytokines. Analogously, the anti-inflammatory polarizing is
triggered by the signaling of anti-inflammatory cytokines such as
IL-4, IL-10, IL-13, and transforming growth factor beta (TGF-
β) (Martinez and Gordon, 2014; Orihuela et al., 2016; Wang et al.,
2021). We will use IL-10 and assume that its concentration is
proportional to the concentration of the other cytokines.

Furthermore, under the signaling of TGF-β , proinflammatory
microglia can change their polarization and become anti-
inflammatory (Song et al., 2022). We let κTβMpro stand for the
maximal rate of conversion and KTβM stand for the TGF-β
concentration at which this conversion rate is half maximal.

Moreover, under the signaling of TNF-α, anti-inflammatory
microglia can be converted to proinflammatory (Tang and Le,
2016). We let κTαManti stand for the maximal rate of this conversion
and KTαM stand for the concentration of TNF-α for which this
conversion rate is half maximal.

We obtain the following equations for proinflammatory,
Mpro, and anti-inflammatory, Manti, activated microglia (see
Equations 17 and 18).

dMpro

dt
=

βεTα

βεTα
+ εI10

Mactiv − κTβMpro

Tβ

Tβ + KTβM
Mpro

+ κTαManti

Tα

Tα + KTαM
Manti − dMproMpro,

(17)

dManti

dt
=

εI10

βεTα
+ εI10

Mactiv + κTβMpro

Tβ

Tβ + KTβM
Mpro

− κTαManti

Tα

Tα + KTαM
Manti − dMantiManti,

(18)
where β is the environmental ratio of proinflammatory over anti-
inflammatory as determined by the relative strength of TNF-α and
IL-10, besides εTα

and εI10 are defined in Equation (19).

εTα
=

Tα

Tα + KTαAct
, and εI10 =

I10

I10 + KI10Act
, (19)

where KTαAct is the half saturation constant of TNF-α for
proinflammatory polarization and KI10Act is the half saturation
constant of IL-10 for anti-inflammatory polarization.

2.11 Equations for activated macrophages

Macrophages enter the brain via blood vessels under
the signaling of the monocyte chemotactic protein (MCP)-
1 (Deshmane et al., 2009; Thériault et al., 2015; Lee et al., 2018).
The brain macrophages, which are not microglia, originate from
blood vessels. The speed with which they are imported into
the brain depends on the concentration of MCP-1 (Deshmane
et al., 2009). We assume that macrophages can reach a maximal
concentration of M̂max. We let κPM̂ stand for the maximal rate
of macrophages import in the brain under MCP-1 signaling and
KP stand for the concentration of MCP-1 for which this rate is
half maximal.

Macrophages can be activated, and when activated, they are
polarized.We use two discreet polarization states, proinflammatory
and anti-inflammatory. The role of proinflammatory macrophages
(type M1) is to destroy pathogens and to provide antigens to
the immune system. On the other hand, anti-inflammatory
macrophages (type M2) eliminate inflammation and repair
damaged tissues (Redka et al., 2018). The proinflammatory
polarizing of macrophages is due to the signaling of
proinflammatory cytokines such as gamma interferon (IFN-γ )
and TNF-α as well as lipopolysaccharides (Martinez and Gordon,
2014; Orihuela et al., 2016; Wang et al., 2021). Anti-inflammatory
polarizing is triggered by anti-inflammatory cytokines, e.g., IL-4,
IL-10, IL-13, and TGF-β (Martinez and Gordon, 2014; Orihuela
et al., 2016; Wang et al., 2021). For simplicity, in our model,
polarization will be a function of only one cytokine of each
polarization: IL-10 and TNF-α.

Proinflammatory macrophages, as microglia, can become anti-
inflammatory under signaling of TGF-β (Orihuela et al., 2016; Song
et al., 2022). We let κTβM̂pro

stand for the maximal rate of this

conversion and KTβM̂
stand for the TGF-β concentration for which

this rate of conversion is half maximal.
The inverse conversion is also possible and is caused by TNF-

α (Tang and Le, 2016). We let κTαM̂anti
stand for the maximal rate

of this conversion and KTαM̂
stand for the TNF-α concentration for

which this rate of conversion is half maximal.
Finally, macrophages can die or be deactivated at

rates dM̂pro
and dM̂anti

for pro and anti-inflammatory

macrophages, respectively.
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We obtain the following Equations (20, 21) to describe the
concentration of proinflammatory and anti-inflammatory activated
macrophages:

dM̂pro

dt
= κPM̂

P

P + KP

(

M̂max − (M̂pro + M̂anti)
) βεTα

βεTα
+ εI10

− κTβM̂pro

Tβ

Tβ + KTβM̂

M̂pro + κTαM̂anti

Tα

Tα + KTαM̂

M̂anti

− dM̂pro
M̂pro,

(20)

dM̂anti

dt
= κPM̂

P

P + KP

(

M̂max − (M̂pro + M̂anti)
) εI10

βεTα
+ εI10

+ κTβM̂pro

Tβ

Tβ + KTβM̂

M̂pro − κTαM̂anti

Tα

Tα + KTαM̂

M̂anti

− dM̂anti
M̂anti.

(21)
We recognize here the form of the equations for microglia. The

constant β still stands for the polarization ratio and εTα
as well

as εI10 are defined as in the section for the equations for activated
microglia (Equation 19).

2.12 Equations for cytokines and
chemokines

Our model also describes the evolution of relevant cytokines
and chemokines including TGF-β , IL-10, TNF-α, and MCP-1.

2.12.1 Transforming growth factor beta
Anti-inflammatory microglia and macrophages produce anti-

inflammatory cytokines IL-10, IL-13, IL-4, and TGF-β which allows
tissue remodeling and reparation as well as angiogenesis (Wang
et al., 2015; Orihuela et al., 2016; Tang and Le, 2016). TGF-β
is produced by anti-inflammatory microglia and macrophages at
respective rates of κMantiTβ

and κM̂antiTβ
. It is degraded at a rate of

dTβ
. We thus have the Equation (22):

dTβ

dt
= κMantiTβ

Manti + κM̂antiTβ
M̂anti − dTβ

Tβ . (22)

2.12.2 Interleukin 10
Interleukin 10 (IL-10) is a protective factor mitigating neural

death due to TNF-α (Porro et al., 2020). IL-10 is produced by
anti-inflammatory macrophages and microglia (Wang et al., 2015;
Orihuela et al., 2016; Tang and Le, 2016) at respective rates of
κMantiI10 and κM̂antiI10

. It is degraded at a rate dI10 . The equation
describing the evolution of IL-10 is thus given by the Equation (23):

dI10

dt
= κMantiI10Manti + κM̂antiI10

M̂anti − dI10 I10. (23)

2.12.3 Tumor necrosis factor-alpha
Proinflammatory microglia and macrophages are neurotoxic

as they produce proinflammatory cytokines such as TNF-α, IL-
6, IL-12, and IL-1β (Morales et al., 2014; Wang et al., 2015;

Liddelow et al., 2017). TNF-α is produced by proinflammatory
microglia and macrophages at respective rates of κMproTα

and
κM̂proTα

. The equation describing the evolution of Tα is thus given

by the Equation (24):

dTα

dt
= κMproTα

Mpro + κM̂proTα
M̂pro − dTα

Tα , (24)

where dTα
is the degradation rate of TNF-α.

2.12.4 Monocyte chemoattractant protein-1
Monocytes/macrophages are the main sources of monocyte

chemoattractant protein-1 (MCP-1) (Lee et al., 2018). In our
model, we consider that MCP-1 is produced by proinflammatory
macrophages and microglia (Orihuela et al., 2016; Bardi et al.,
2018), as well as by activated astrocytes (Lee et al., 2018). We thus
have the Equation (25):

dP

dt
= κMproPMpro + κM̂proP

M̂pro + κAPA− dPP, (25)

where κMproP and κM̂proP
are the maximal production rate of MCP-1

by proinflammatory microglia and macrophages respectively. The
constant κAP denotes the production rate by activated astrocyte and
dP is the rate of degradation by MCP-1.

2.13 Numerical implementation

Our model consists of a system of ordinary differential
equations (ODEs) which can be written in the normal form Ey ′(t) =
Ef (Ey(t), t), with initial conditions Ey(0) = Ey0.

The ODE system is non-autonomous due to explicit time
dependence in the function Ef . For example, we assumed
that insulin concentration varies with age. The model was
implemented in Python and the equations were solved using the
integrate.solve_ivp function of SciPy package (Virtanen
et al., 2020), with method “BDF” (based on a backward
differentiation formula). The different timescales present in the
model are the telltale signs of a stiff system of ODEs. We thus
used a resolution method adapted for stiff equations. To get a
good precision, we defined the parameter “atol” and “rtol” of the
function. We took rtol = 1 × 10−5 and atol = 1 × 10−22, for a
precision of five digits after the decimal point.

3 Results

We first present results obtained with our model as detailed in
the preceding section, without modifying the input parameters. We
will then explore the impact of modifying the insulin concentration
function and then of reduced values for the activation rates of
pro and anti-inflammatory microglia, both as proofs of concept
of the usefulness of such approaches at testing risk factors and
treatment hypotheses.
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FIGURE 2

Concentration of each variable, in g/ml or g/cm3, as a function of age for every combinations of sex and APOE4 status for our standard model.

3.1 Standard model

The evolution of every variable of our ODEmodel over 50 years
is shown in Figure 2.

For the different forms of Aβ , the curves for APOE4-negative
men and women mostly overlap. This is also observed for APOE4-
positive individuals. However, it is important to note that despite
the overlap, there are noticeable variations in the curves between
different groups. Sex appears to have a more significant impact
than GSK-3. We also observe a transition to a proinflammatory
state occurring around 50 years of age. Women who are APOE4-
positive experience this transition earlier, followed by APOE4+
men, APOE4− women, and finally APOE4− men. This transition
thus seems mainly influenced by age, then by APOE status, and to
a lesser extent by sex.

We observe from Figure 2 that neural loss occurs earlier in
individuals with an APOE4 allele regardless of sex. A similar trend
is also observed with respect to neural loss between 30 and 80
years old. We obtain losses of 10.84 and 11.70%, for APOE4−
and APOE+ women respectively, and of 10.91% and 12.06% for
APOE4− and APOE4+ men respectively.

Dividing the concentrations of intracellular Aβ (Aβ i), GSK-
3 (G), phosphorylated/hyperphosphorylated tau proteins (τ ), and
intracellular NFTs (Fi) by the density of neurons, we obtain the
concentrations per unit density of neurons (Figure 3). We observe
that there is almost no variation in the proportion of Aβ i per unit
density of neurons. We also observe that GSK-3 and τ increase
almost linearly, which was not the case when we did not divide by
the density of neurons.

We considered two pathways for neural death, death due
to intracellular NFTs and due to proinflammatory cytokines

(TNF-α). The second pathway is mitigated by the presence of anti-
inflammatory cytokines (IL-10). In Figure 4, we show the rate of
neuronal death due to each of these pathways as well as the total rate
for different models. The different curves correspond to different
portion of the equation for the neural loss, and is as follows:

dN

dt
= −dFiN

1

1+ exp(−n ·
Fi−KFi
KFi

)
︸ ︷︷ ︸

pale blue

N

︸ ︷︷ ︸

dark blue

−dTαN
Tα

Tα + KTα

1

1+ I10/KI10
︸ ︷︷ ︸

pale green

N

︸ ︷︷ ︸

dark green

︸ ︷︷ ︸

red

.

We can observe that neuronal death caused by intracellular
NFTs is mainly a function of the density of neural cells. Indeed the
pale blue curve of the second subgraph has a variation of the order
of 10−14/day, it is thus almost constant. We also observe that the
total neuronal death (red curves) varies in response to the increase
of TNF-α in the model.

We monitored microglia activation and its dependence upon
different factors. In Figure 5, we display the activation rate of
microglia through different pathways. Activation rates are greater
and activation occurs earlier in women than inmen. Activation also
occurs earlier in the presence of APOE4.

3.2 Modified models

3.2.1 Models with a constant insulin
concentration

In a model where insulin concentration is constant over time,
that is Ins(t) = Ins0 for all t, the equation describing the evolution
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FIGURE 3

Concentrations of intracellular Aβ (Aβ i), GSK-3 (G), phosphorylated/hyperphosphorylated tau proteins (τ ), and intracellular NFTs (Fi) per unit of
neuron density for our standard model.

of GSK-3 becomes Equation (26):

dG

dt
= λInsG

N

N0
− dGG−

G

N

∣
∣
∣
∣

dN

dt

∣
∣
∣
∣
. (26)

The results obtained with this modified version differ
significantly from the standard version. For different combinations
of sex and APOE4 status, we obtained the results shown in
Figure 6. As expected, we no longer observe an increase in GSK-3,
tau proteins, and NFTs. The transition to proinflammatory is
delayed in the modified model. We also observed a smaller
neuronal loss in this modified version. In Figure 7, we
compare the predictions of the standard model and of this
modified version.

As we did for the standard model, we present
the concentration of intracellular Aβ (Aβ i), GSK-3,
phosphorylated/hyperphosphorylated tau proteins (τ ),
and intracellular NFTs (Fi) normalized by the density of
neurons (Figure 8). As was observed in the standard model,
there is very little variation for Aβ i/N. For this model,
this is also the case for GSK3/N since its creation is due
to insulin.

3.2.2 A model with reduced microglia activation
rate

We also made a model where the rate of activation of microglia
was reduced by a theoretical intervention with a given efficiency,
that is multiplied by ξ where 0 < ξ < 1. With ξ = 0.5 we obtained
the results shown in Figures 9, 10.

We compared variable concentrations in women with APOE4
between the standard model and the model with reduced microglia
activation rate (with ξ = 0.8, 0.5, 0.3) as shown in Figure 11.
Results for other combinations of sex and APOE4 status exhibit
similar trends. Observe that the smaller the value of ξ , the later
the proinflammatory transition occurs (before 50 years old in the
standard model and after 60 years old for ξ = 0.3).

We also present the activation rate of microglia through
different pathways for the two sex and the two APOE4 statuses
for the model with reduced microglia activation rates of κFoM ×

0.5 and κAβo
oM

× 0.5 in Figure 12. This figure is the analogous
of Figure 5 which was for the standard model. We observed
that the time at which microglia become activated is delayed
when compared to the standard model and that the maxima
are smaller.
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FIGURE 4

Rate of neuronal death in 1/day or g/cm3/day (= g/ml/day), as a function of age, for di�erent combinations of sex and APOE4 status with the
standard model. (A) Women, APOE4−; (B) Women, APOE4+; (C) Men, APOE4−; (D) Men, APOE4+.

3.3 Implementation

We found that numerical results and running time did
not depend significantly on the optional parameters given as

an input of the “solve-ivp, BDF” function. While performance
was not a criteria for model construction, the model runs
within 1 minute on a standard, 3.7 GHz Intel Xeon E5 4-core
CPU workstation.
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FIGURE 5

Activation rates of microglia, in g/cm3/day, as a function of age for di�erent combinations of sex and APOE4 status. (A) Women, APOE4−; (B)
Women, APOE4+; (C) Men, APOE4−; (D) Men, APOE4+. Observe that the Mactiv curve is very close to the one “Mactiv by Fo”.

We also determined that our model was robust—i.e.,
well behaved—to modifying initial conditions in a range
of +/- 10% around the central values. Because model
sensitivity (i.e., changes in parameters) can identify

important elements that are directly related to therapeutical
strategies, it is being performed and reported in a
second report to respect the page/figure limits of the
current submission.
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FIGURE 6

Concentration of each variable, in g/ml or g/cm3, as a function of age for every combinations of sex and APOE4 status for the model with constant
insulin concentration.

FIGURE 7

Concentration of each variable, in g/ml or g/cm3, as a function of age, for APOE+ women, for the standard model (black), and the model with
constant insulin concentration (orange).
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FIGURE 8

Concentration of intracellular Aβ (Aβ i), GSK-3, phosphorylated/hyperphosphorylated tau proteins (τ ), and intracellular NFTs (Fi) normalized by the
density of neurons, for the model with constant insulin concentration.

4 Discussion

We proposed a mathematical model describing the evolution of
multiple markers of brain health through aging, such as amyloid-
β , tau proteins, and inflammation. This model behaves differently
according to sex and APOE4 status. The general trends of our
results (see Figure 2) are consistent with the expected behavior for
the different entities of the model, when compared to the literature.
First, we observe an anti-inflammatory state that transitions to a
proinflammatory state as in Zhang et al. (2021). This transition
occurs around 50 years old in our model, and earlier in patients
with APOE4. Individuals with APOE4 also accumulated more
amyloid plaques, which is consistent with other reports (Liu et al.,
2013; Hansen et al., 2018). We also observe that this transition
occurs earlier in women, consistent with AD being more prevalent
in the latter group (Rajan et al., 2021).

The parameters and initial conditions provided to our standard
model were representative of population means for individuals
without cognitive impairment. Qualitative validation (see below)
shows that when our model evolves through time, most indicators
adopt a trajectory leading to inflammation and neural loss, which
implies that our population would develop on average a state
similar to AD. This is consistent with the interpretation that
AD, as primarily an amyloid over-production/under-clearance

problem, is a disease process strongly linked to aging, and is
present in a large proportion of older individuals. It is important
however to underline the gap between pathological expression and
cognitive decline; while the two are related, the second is modulated
by many other factors such as lifestyle risks, resiliency, and
cognitive reserve.

4.1 Validation of standard model
predictions

4.1.1 Amyloid beta, tau, and NFT
The qualitative evolution of variables appears consistent with

biological expectations for an aging model (see Figure 2). Contrary
to the model of Hao and Friedman (2016), we did not include
a specific insult to initiate the AD process. Rather, in the
“natural” evolution over 50 years, we observe an increase in the
concentrations of different forms of extracellular Aβ , tau proteins,
and NFTs, demonstrating trends similar to those observed in aging
populations. Additionally, these concentrations exhibit patterns
that are often associated with AD pathology (Kril et al., 2002;
Roher et al., 2009). Our findings suggest that individuals aged 80
years old will, on average, exhibit AD-like pathology, which has
been reported extensively; but further research and validation are
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FIGURE 9

Concentration of each variable, in g/ml or g/cm3, as a function of age, for every combinations of sex and APOE4 status, for the model with reduced
microglia activation rates (κFoM × 0.5 et κAβo

oM
× 0.5).

needed to precisely quantify the levels and their correspondence to
real-life cases.

However, when we compare quantitatively the
model’s predicted concentrations of amyloid plaques and
phosphorylated/hyperphosphorylated tau proteins with empirical
values, we find significant discrepancies. The model predicts
much lower concentrations (around 10−13 g/ml) for APOE4
negative subjects compared to values reported elsewhere in
the literature, of the order of KAβo

p
= 3.11× 10−6 g/mL (see

definition in Supplementary material A, section 1.3). Similarly, the
predicted concentration of phosphorylated/hyperphosphorylated
tau proteins (10−7 g/ml) is notably higher than the observed values
in the literature (Schönknecht et al., 2003; Thomann et al., 2009;
Duits et al., 2014; Rosén et al., 2014; Magdalinou et al., 2015;
Johansson et al., 2017; Gangishetti et al., 2018; Geijselaers et al.,
2018; Janelidze et al., 2018; Jeppsson et al., 2019; Nordengen et al.,
2019), which are of the order of 10−11 g/ml.

The main source of these quantitative discrepancies—and
therefore the most likely solution to improve the model’s
performance—lies in our incorporation of multiple parameters
found in animal studies. This became necessary as there were in
many instances a dearth of human-specific data. If one were to
use the latter, the model’s parameters and initial conditions could
be better calibrated to match real-life observations, enhancing
its ability to accurately simulate AD-like pathology in human
populations. This approach would provide a more robust and
relevant basis for the model’s predictions and enable us to
better understand the mechanisms underlying AD progression
in humans. Additionally, the use of human data would enable

us to consider individual variations, genetic factors, and lifestyle
influences that are unique to human populations. By accounting
for these factors, we could further refine the model and gain deeper
insights into the heterogeneity of AD pathology across different
individuals and subpopulations.

4.1.2 Neuronal loss
With our standard model, the percentage of neuronal loss at 80

years old compared to 30 is 10.84 and 11.70%, for women APOE4−
andAPOE4+, respectively, and 10.91 and 12.06% formenAPOE4−
and APOE4+, respectively. According to Potvin et al. (2022), the
neural loss estimated by volume MRI is 10.70% in women and
12.18% in men. If we assume that this volume loss is mainly due
to neural loss, our model yields realistic results (see Table 3).

A shortcoming of the current model iteration, however, is
related to neuronal death caused by intracellular NFTs. Indeed,
we observed in Figure 4 (pale blue curve), the rate of neural
death due to intracellular NFT is almost constant with a variation
around 10−14/day. Thus, with our current parameters, a change
in the concentration of Fi has little impact on neural death. As
mentioned previously, these parameters would need to be revisited
to improve realism.

4.1.3 Activated astrocytes
With respect to the model evolution through time, we observed

an increase in the density of activated astrocytes (Morales et al.,
2014; Frost and Li, 2017). Furthermore, our model predicted
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FIGURE 10

Concentration of intracellular Aβ (Aβ i), GSK-3, phosphorylated/hyperphosphorylated tau proteins (τ ), and intracellular NFTs (Fi) normalized by the
density of neurons for the model with reduced microglia activation rate (κFoM × 0.5 and κAβo

oM
× 0.5). The curves for GSK3/N and τ/N for the same sex

overlap.

the activation of anti-inflammatory microglia together with anti-
inflammatory cytokines (TGF-β and IL-10). This was followed
by an increase in the activation of proinflammatory microglia
and proinflammatory cytokines (TNF-α and MCP-1), with the
deactivation of anti-inflammatory variables. This transition was
also observed experimentally in vivo (Zhang et al., 2021). We can
expect that neurodegeneration is accompanied by an activation of
microglia as was seen by many researchers who monitored the level
of MHC2, mainly expressed by activated microglia (summarized in
Hopperton et al., 2018).

Most of the papers we consulted in the context of this work
observed an increase in TGF-β in AD patients when compared to
controls. This could however not be investigated here since our
models describe brain aging in the absence of a specific insult
leading to AD, rather the existence of a state that has many of
its hallmarks.

4.1.4 MCP-1, macrophages, and microglia
In section 1.10 of Supplementary material A, the literature we

cited stated that MCP-1 concentration in patients with dementia
was higher than in controls. It is thus reasonable to observe
an increase in of the concentration of this variable in our
model with an upward trajectory to a pathological level. We also

observe an increase in imported macrophages, both pro- and
anti-inflammatory, with a transition toward the proinflammatory
state. This occurs with an increase in MCP-1 concentration which
recruits macrophages, in agreement with other reports (Deshmane
et al., 2009; Das et al., 2015).

Toward the end of the simulation, there are more macrophages
and microglia with proinflammatory than anti-inflammatory
polarization, and TNF-α is more present than TNF-β and IL-10.
This is consistent with the proinflammatory state that we can
observe in AD patients (Akiyama et al., 2000).

Quantitatively, the authors in Felsky et al. (2019, figure 2b)
estimate that the proportion of activated microglia is between 0.05
and 0.1% in control and AD patients, respe ctively. With our
standardmodel, we obtain that by the end of the simulation, around
80% of the microglia are activated, clearly erroneous.

4.2 Validation of constant insulin
concentration model predictions

Contrasting the results of the model with constant insulin to
the standard model allows us to better understand the impact
of insulin.
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FIGURE 11

Concentration of each variable, in g/ml or g/cm3, as a function of age for APOE+ women, for the standard model (ξ = 1) and for the model with
reduced microglia activation rate (ξ = 0.8, 0.5 and 0.3) (κFoM × ξ and κAβo

oM
× ξ ).

It is known that insulin concentration varies with age even
in cognitively healthy individuals with diabetes (Bryhni et al.,
2010). The impact of insulin decrease on GSK-3 is also activity-
dependent. Indeed, a decrease in insulin activity implies a decrease
in GSK-3 deactivation through the PI3K/Akt/GSK-3β pathway.
The activation of GSK-3 then implies an increase of tau proteins
hyperphosphorylation (Yang L. et al., 2018; El Sayed et al., 2021).

Also related to insulin, type 2 diabetes (T2D) is a well-known
risk factor of AD (Blázquez et al., 2014; Krishnankutty et al., 2017;
Yang L. et al., 2018; Zhang et al., 2018). T2D does not cause
a decrease in insulin concentration but rather a decrease of its
efficiency following insulin resistance (El Sayed et al., 2021). This
is accompanied by greater insulin production by beta-pancreatic
cells (Abdul-Ghani and DeFronzo, 2021). The two elements form
a feedback loop: at some point, insulin production is no longer
sufficient to compensate for the resistance (Patel et al., 2004), which
results in hyperglycemia, according to which a diagnosis of T2D can
be made (Czech, 2017; Abdul-Ghani and DeFronzo, 2021).

The diminution in the efficiency of insulin can be modeled
as a diminution of the concentration of efficient insulin. Thus,
in our model, the function describing insulin concentration
Ins(t) corresponds to efficient insulin in non-T2D individuals.
Thus, removing the decrease of effective insulin from the model
effectively generates a T2D-free model. We would expect that
this would lead to a decrease in inflammation and a delay in
the onset of the disease since age and T2D are important risk
factors for AD. This corresponds indeed to what we observe when
comparing the results of our standard model and modified model

(Figure 7). We observe that without insulin variation, we obtain
less GSK-3, which implies smaller hyperphosphorylation of tau
proteins which in turn leads to less intracellular NFT. This can
explain why neural death is delayed and why we have a lesser
concentration of inflammation-related variables such as microglia,
macrophages, and cytokines. We also observe that there is no
variation in the graph of Aβ i/N (Figure 8) as it was the case with
the standard model. This is not surprising as removing changes
in insulin concentration has little impact on the variation of Aβ i

and N (Figure 7). Thus, results from this insulin experiment are
consistent with the fact that increased insulin resistance throughout
aging is a risk factor for developing pathology associated
with AD.

4.3 Validation of reduced microglia
activation model predictions

We wished to investigate the efficiency of an eventual
therapeutic strategy that would reduce microglia activation rate.
We posed ξ ∈ (0, 1] and used κFoM×ξ and κAβo

oM
×ξ . We observed

that when ξ is closer to 0, the transition to the proinflammatory
state and the beginning of neural loss were delayed (see Figure 11).
We also observed a smaller activation of anti- and proinflammatory
microglia as expected.

Surprisingly, many other variables became less activated in
this version of the model including astrocytes (A), anti- and
proinflammatory macrophages (Manti and Mpro), as well as

Frontiers inNeuroinformatics 17 frontiersin.org

https://doi.org/10.3389/fninf.2024.1348113
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Chamberland et al. 10.3389/fninf.2024.1348113

FIGURE 12

Microglia activation rates in g/cm3/day, as a function of age for di�erent combinations of sex and APOE4 status for the model with reduced microglia
activation rate: κFoM × 0.5 and κAβo

oM
× 0.5 (ξ = 0.5). (A) Women APOE4−; (B) Women, APOE4+; (C) Men, APOE4−; (D) Men, APOE4+. The total

activation rate Mactiv is very similar to the activation rate “Mactiv by Fo,” so the curves overlap.

cytokines and chemokines: TGF-β (Tβ ), IL-10 (I10), TNF-α (Tα),
and MCP-1 (P). This is not totally unexpected since, in our model,
inflammation is triggered by the activation of microglia, mainly

proinflammatory, which activate the production of TNF-α. This, in
turn, is the starting point of a cascade of proinflammatory reactions
leading to neuronal death.
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TABLE 3 Experimental percentages of brain volume loss according to Potvin et al. (2022), and percentages of neurons loss for di�erent versions of our

model.

Sex,
APOE4 status

Experimental loss of
brain volume

Standard model Model with Ins(t) = Ins(0) Model with ξ = 0.5

F, APOE4−
10.70%

10.84% 9.08% 9.34%

F, APOE4+ 11.70% 11.24% 10.29%

M, APOE4−
12.18%

10.91% 7.75% 8.45%

M, APOE4+ 12.06% 10.99% 9.64%

In this model version, the concentration of intracellular
Aβ remained elevated longer, and the concentrations of
extracellular Aβ monomers, oligomers, and plaques, of GSK-3, of
phosphorylated/hyperphosphorylated tau proteins, and of intra
and extracellular NFTs reached higher maximum values when ξ

was smaller (see Figure 11).
Regarding intracellular variables (Aβ i, GSK-3, τ , and Fi), we

can better understand the time course of these variables by looking
at the density of neurons. Indeed, as microglia are less activated, the
transition to the proinflammatory state is delayed, which, in turn,
delays neural death. In our model, since neural death is the main
cause of the decrease in Aβ i, GSK-3, τ , and Fi, the time at which
these variables started to decrease was delayed. These variables
in turn reached greater maxima (Figure 11). When looking at
the concentrations normalized by neuron density, we obtained
results similar to what we obtained in the standard model with the
exception of Fi/N which has a similar curve but at higher values
(Figures 3 vs. 10).

Lastly, we mentioned that the smaller the value of ξ , the more
the values of Aβo

p and Fo increase with neuron loss, and the larger is
the maximum reached by these variables. The production of these
variables is proportional to oligomer concentration which is greater
as ξ is smaller. This however does not explain the large variations
as a function of ξ . These differences are due to a secondary cause,
which is a lesser decrease. Indeed, plaques are degraded by anti-
inflammatory microglia and macrophages. As the density of these
two cells is smaller for smaller values of ξ , it is expected that this
will lead to greater plaque concentration. For extracellular NFTs, we
previously mentioned a greater concentration of intracellular NFTs
when ξ decreases (compare Figures 3 and 10). Thus, when neurons
die, this causes an increase in the concentration of extracellular
NFTs. It is not however the only reason explaining the increase in
concentration; degradation is also at play here. Indeed, extracellular
NFTs are degraded by anti-inflammatory macrophages. As their
density reaches a lesser maximum when ξ is smaller there are fewer
extracellular NFTs degradation which allows the concentration to
reach a greater maximum.

4.4 Model limitations

As discussed, the general trend of the curves for our model
is consistent with biological expectations. However, quantitative
model predictions were not always in line with experimental data.
The main issue is related to parameter choice, for which we either
could not find good estimations in the scientific literature, or for

which values in the literature were not consistent with the rest of
the model.

First, parameters related to the activation of microglia
κFoM and κAβo

oM
were estimated without references (see

Supplementary material A, section 1.9). Indeed, we assumed
an activation rate of 20% per day based on the hypothesis of Hao
and Friedman (2016), according to which the activation is due
to a greater extent to extracellular NFT than on Aβ oligomers.
We assumed that 2/3 of the activation was due to NFTs and 1/3
to Aβ oligomers. However, there is no guarantee that this is
accurate as our simulations yield predictions that differ greatly
from measurements reported in Felsky et al. (2019).

Activation of microglia by Aβ oligomers was also very weak
compared to its activation by extracellular NFTs. This is due to the
fact that the oligomer concentration is of the order of 10−9 g/ml
and KAβo

o
is of the order of 10−5 g/ml. Consequently, either the

values predicted by the model for the oligomer concentrations are
too small, or the value of KAβo

o
is too large. In either case, this is

not consistent with the observation that oligomers play a role in the
activation of microglia (Michelucci et al., 2009; Tang and Le, 2016).

As mentioned in Section 4.1, the value for KAβo
p
is too different

from the amyloid plaques concentration observed in our model
and, as a consequence, the plaques do not cause astrocyte activation.
Even if we observe a delay in the onset of inflammation when
considering insulin concentration as constant (see Section 4.2), it is
clear that the relation between diabetes and insulin concentration
could be improved.

The relation between neural death and intracellular NFTs could
also be revisited. While in the present model, we consider NFT
concentration as equal within each neuron, it would be more
realistic to consider that some neurons have a significant quantity
of NFTs while others have not (see work by Morsch et al., 1999;
Sjögren et al., 2001; Braak and Del Tredici, 2010; Moloney et al.,
2021).

The aggregation relationships of amyloid-β could also be
revisited. Right now, we consider that it takes at least two
monomers to form an oligomer, and at least two oligomers to
form a plaque. This is an approximation, because, according to
this hypothesis, a plaque (or a fibril, which we have included
in the group of plaques) would be composed of at least four
monomers (tetramers), but this is much too small, since a tetramer
is considered an oligomer. We should therefore find a way to better
model the aggregation of Aβ , without necessarily modeling each
reaction. Among others, see on this subject Garai and Frieden
(2013), Garai et al. (2014), Barz et al. (2018), Man et al. (2019),
and Lindstrom et al. (2021). A similar observation can be made
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with respect to the aggregation of tau proteins. In our model, we
consider that tau proteins go directly from monomers to NFT
without taking intermediary states into account; this may be an
oversimplifying assumption. Discussions on this topic can be found
in Rankin et al. (2007), Townsend et al. (2020), and Moloney et al.
(2021).

In the section discussing neural density in the
Supplementary material A (section 1.7), we defined and
discussed the parameter KI10 , while referring to many papers
measuring the IL-10 concentration in the CSF (see Table 4 of
Supplementary material A). The data point to a greater IL-10
concentration in AD patients than in controls. However, the
sources cited in Supplementary Table 4 almost all mention
observing no significant differences between concentrations in
AD patients and in controls (Tarkowski et al., 2001; Llano et al.,
2012; Hu et al., 2019; Rauchmann et al., 2020). Only Stoeck et al.
(2005) mentioned a relative increase in AD patients even if other
sources observe its increase (e.g., Guillot-Sestier et al., 2015). Thus
as from TGF-β , we might have to modify the model to obtain a
more realistic description of IL-10 evolution.

Many of our reactions are based on the Michaelis–Menten
relation for the rate of an irreversible reaction catalyzed by an
enzyme. This has the KX parameter, corresponding to the substrate
concentration for which the reaction rate is half maximum, that
is difficult to estimate. In some instances, we used values for
parametersKX that were not based on biological considerations (for
example, KFi , KAβo

o
, and KP). Moreover, the use of the Michaelis–

Menten equation is purely empirical and may not be the best for
some of our reactions.

5 Conclusion

In summary, our study presents a mathematical model that
captures the dynamic interplay of multiple variables associated
with Alzheimer’s disease in control patients aged 30–80 years.
This model, based on a system of ordinary differential equations,
describes the evolution of multiple variables playing a relevant role
in brain aging. It quantitatively represents the evolution of brain
health by accounting for complex interactions among multiple
biological factors, including amyloid beta, tau proteins, neurons,
activated astrocytes, microglia, macrophages, and cytokines. By
incorporating relevant literature-derived parameters, we aimed to
establish values that reflect a healthy population while considering
variations in sex and APOE4 status.

Overall, most variables in our model exhibit trajectories
consistent with biological expectations, lending support
to its validity. Furthermore, we introduced two modified
versions of the model to address specific considerations:
one disregarding the impact of type 2 diabetes by
assuming a constant insulin concentration, and another
reducing the activation rate of microglia. Encouragingly,
both modified models yielded results in line with
biological plausibility.

However, it is crucial to note that our model’s predictions have
yet to be validated against experimental data, which represents an
essential future step. Additionally, there is room for refinement,
particularly in revisiting certain relationships within the model.

Once these aspects are addressed, our model holds promise
for advancing our comprehension of brain aging in general
and AD in particular, facilitating the development of novel
therapeutic approaches, and improving the prognostication of
disease progression in individual patients.
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