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is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
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Introduction:Magnetic resonance imaging (MRI) is invaluable for understanding
brain disorders, but data complexity poses a challenge in experimental research.
In this study, we introduce suMRak, a MATLAB application designed for e�cient
preclinical brain MRI analysis. SuMRak integrates brain segmentation, volumetry,
image registration, and parameter map generation into a unified interface,
thereby reducing the number of separate tools that researchers may require for
straightforward data handling.

Methods and implementation: All functionalities of suMRak are implemented
using the MATLAB App Designer and the MATLAB-integrated Python engine.
A total of six helper applications were developed alongside the main suMRak
interface to allow for a cohesive and streamlined workflow. The brain
segmentation strategy was validated by comparing suMRak against manual
segmentation and ITK-SNAP, a popular open-source application for biomedical
image segmentation.

Results: When compared with the manual segmentation of coronal mouse
brain slices, suMRak achieved a high Sørensen–Dice similarity coe�cient (0.98±

0.01), approaching manual accuracy. Additionally, suMRak exhibited significant
improvement (p = 0.03) when compared to ITK-SNAP, particularly for caudally
located brain slices. Furthermore, suMRak was capable of e�ectively analyzing
preclinical MRI data obtained in our own studies. Most notably, the results of brain
perfusion map registration to T2-weighted images were shown, improving the
topographic connection to anatomical areas and enabling further data analysis
to better account for the inherent spatial distortions of echoplanar imaging.

Discussion: SuMRak o�ers e�cient MRI data processing of preclinical
brain images, enabling researchers’ consistency and precision. Notably, the
accelerated brain segmentation, achieved through K-means clustering and
morphological operations, significantly reduces processing time and allows for
easier handling of larger datasets.
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Introduction

Magnetic resonance imaging (MRI) is a powerful tool for non-invasive imaging
of the brain, and in recent years, it has significantly enhanced our understanding of
brain anatomy, function, and pathology. In the field of preclinical research, MRI plays
a pivotal role in studying animal models of various neurological disorders, investigating
treatment efficacy, and understanding the underlying mechanisms of brain diseases (Denic
et al., 2011; Kurniawan, 2018; Ramos-Cabrer and Padro, 2018). However, the large
amount of data generated by these scans can make it challenging to analyze and extract
meaningful information.
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Researchers are often required to navigate through separate,
unconnected applications, leading to inefficiencies, potential data
inconsistencies, and increased analysis time. Moreover, the absence
of unified tools limits the ability to perform complex analyses,
hindering the depth of insights that can be gained from preclinical
MRI data. Although there are many bioinformatics tools for MRI
neuroimaging available, most of them are specialized for a narrow
dataset type (e.g., human brain scans) or a specific use case (e.g.,
diffusion data analysis) (Man et al., 2015).

In this study, we present the design and implementation of
a novel MATLAB application, suMRak—a simple utility MRI
analysis kit dedicated to brain imaging, encompassing essential
modules: segmentation, volumetry statistic calculation, image data
registration, and the generation of parameter maps (Figure 1).
Additionally, suMRak offers a three-dimensional data viewer,
thus enabling researchers to visualize brain structures in a user-
friendly and intuitive manner. Finally, its functionality and
effectiveness are demonstrated on real-world preclinical MRI
datasets, showcasing its versatility and potential for advancing
preclinical neuroimaging research.

Methods and implementation

SuMRak was developed and compiled using the Graphical
User Interface (GUI) building functionalities of MATLAB’s App
Designer under MATLAB releases R2021b and R2023a. As such,
the application is available in the form of an App Designer
binary .mlapp file and a fully exported MATLAB code .m file,
both of which can be executed directly from the MATLAB
Command Window, and as a single .exe installer file, which allows
users to install suMRak (and the required MATLAB Runtime)
as a standalone desktop application. Prerequisites for suMRak
installation are Microsoft Visual C++ Redistributable 2015–2022
and aMATLABR2023a-supported version of Python. Additionally,
image registration requires a valid installation of the SimpleElastix
Python library (Marstal et al., 2016), which can be compiled
and installed by following the openly available SimpleElastix
documentation. The application has been tested on 64-bitWindows
10 and Windows 11 but is compatible with 64-bit Windows 7 or
later. SuMRak communicates and functions alongside a total of
six helper applications, all of which are available as binary .mlapp

and exported MATLAB code .m files. The helper apps and their
functionalities are described within their relevant methodology
sections below.

Data importing and exporting

SuMRak accepts data in the form of singular Neuroimaging
Informatics Technology Initiative (NIfTI) .nii files, Bruker
ParaVision study folders, or .PvDatasets files, and custom-made
suMRak folders.

Data from NIfTI files is loaded using the MATLAB Image
Processing Toolbox functions niftiread() and niftiinfo() for image
data and metadata, respectively.

Data from Bruker ParaVision study folders and .PvDatasets

files is loaded using the proprietary Bruker pvmatlab package by

initializing objects of the ImageDataObject class and scraping the
image data and metadata. The pvmatlab package is available under
its respective license from Bruker BioSpin MRI GmbH.

Custom suMRak folders containing exported work
environment data as MATLAB .mat files are loaded using
the MATLAB function load(), allowing users to continue a
previously exported data analysis session where it was left off.

The following information is collected and stored from all
loaded data types:

1. Experiment identification—the name of the experiment
preceded by the experiment and processing number;

2. Experiment image data—loaded as a two-dimensional to five-
dimensional double-precision floating-point matrix;

3. Experiment echo (TE) and repetition times (TR);
4. Voxel dimensions, slice thickness, and slice gap (distance

between two adjacent slices), alongside respective units
of measurement;

5. Experiment data rotation matrix used for proper exporting to
NIfTI header metadata.

All data analyzed and generated using suMRak can be exported
directly into NIfTI files.

Segmentation

SuMRak provides straightforward brain, hemisphere, and
region of interest (ROI) segmentation using a combination of K-
means clustering, active contours, morphological operations, and
manual polygonal or freehand ROI corrections.

Brain segmentation
K-means clustering is a popular unsupervisedmachine learning

algorithm that aims to sort n data points into k different clusters
by minimizing the distance between the data points within the
same cluster. This minimization is done by iteratively recalculating
an initially chosen central point (centroid) of each cluster to
be the mean of all data points assigned to that cluster, that
is until the centroids move less than a set threshold value
or a pre-specified number of iterations is reached (Steinley,
2006; Arthur and Vassilvitskii, 2007). SuMRak implements two-
dimensional and three-dimensional K-means clustering for brain
segmentation using the MATLAB Image Processing Toolbox
functions imsegkmeans() and imsegkmeans3(). After a rough
initialization of the brain area, image data are partitioned into
two clusters, one being the brain cluster itself and the other
containing background image data. The correct cluster for further
segmentation is selected based on a comparison between the
Sørensen–Dice similarity coefficients of the respective cluster and
the initial brain outline area, which is calculated using the following
formula (Dice, 1945):

SDSC =
2× |Mcl ∩Mba|

|Mcl| + |Mba |
,

where Mcl and Mba represent binary masks of the analyzed cluster
and the initial brain outline area, and |Mcl| and |Mba| represent
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FIGURE 1

An overview of suMRak’s graphical interfaces. (A) The main tab used for dataset importing and previewing imaging parameters, scan metadata, and
reconstructed images. (B) The segmentation tab used for imported image data segmentation. (C) The registration tab used for registering a selected
moving image to a fixed user-provided image or a reference atlas. (D) The parameter map tab used for the calculation of various parameter maps
using imported image data.

the number of elements in said binary masks. The coefficient value
quantifies the similarity between binary masks by measuring the
ratio of twice the number of their common elements to the total
number of elements, providing a value between 0 (no similarity)
and 1 (complete similarity). The brain cluster is selected as the one
with the highest obtained coefficient.

Further refinement in the brain segmentation pipeline is
available via morphological brain mask opening (morphological
erosion followed by dilation) and closing (morphological
dilation followed by erosion) using a variable-radius disk as a
structuring element—implemented using the MATLAB Image
Processing Toolbox functions imopen() and imclose(). Finally, any
inconsistencies in the segmentation results can be corrected using
manual freehand or polygonal ROI corrections.

Hemisphere segmentation
Hemisphere segmentation is available as a traditional freehand

or polygonal selection of each hemisphere area, with the underlying
prerequisite that a valid brain mask be used as the intersection
reference—each pixel that is an element of a hemisphere maskmust
also be an element of the underlying brain mask. Furthermore, the
brain mask is also used for optional hemisphere auto-completion.
If the auto-completion option is selected, suMRak automatically
adjusts the contralateral hemisphere mask to contain all the pixels
that are elements of the brain mask but not of the currently
segmented hemisphere.

Region of interest segmentation
Similarly, ROI segmentation is also based on a freehand

or polygonal selection of the desired ROI area, with additional
options of region growth using active contours (iterative curve
adjustment for object edge outlining —useful for automatic
blood vessel segmentation) (Kass et al., 1988) and automatic
partitioning of the entire image volume into a predefined number
of “superpixels”. These additional options are implemented as
part of the ROIVolumeSegmenter helper application using the
MATLAB Image Processing Toolbox functions activecontour()
and superpixels3().

Volumetric data calculation

Following image segmentation, summary statistics can be
calculated for all resulting volume masks: the segmented brain,
hemispheres, and all regions of interest. The following data
are calculated automatically: mask total volume, mean voxel
intensity, standard deviation, median, interquartile range, and
minimum/maximum voxel intensity values. The total mask volume
is calculated as a product of the number of voxels contained inside a
givenmask and a single slice voxel volume (Vvox), which is obtained
from the imported data as follows:

Vvox = Xvox × Yvox × Slice thickness,
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where Xvox and Yvox represent the respective voxel dimensions.
To account for the volume within slice gaps that are missed using
this approach, a slice gap correction volume (CVgap) is added to
the total mask volume, which is calculated as the sum of all single
gap volumes for slice gaps adjacent to non-zero mask slices on
both sides:

CVgap

n
∑

i=1

Agapi × Slice gap,

where Agap represents the area of a given slice gap, estimated as the
average of the two adjacent mask slice areas (Aback, Afront), which
can be easily derived from their respective number of voxels (Nback,
Nfront) and voxel dimensions (Xvox, Yvox):

Agap =
Aback + Afront

2
=

Nback + Nfront

2
× Xvox × Yvox

Edema correction of the region of interest

For imaging experiments studying disease models in which
post-trauma brain swelling may occur (stroke, traumatic brain
injury, etc.), all ROI mask volumes can be adjusted for brain edema
using one of three available correction methods, assuming valid
hemisphere segmentation. The first method of correction uses a
hemisphere scaling factor described by Reglodi et al. (2002), where
the corrected ROI area for each slice is obtained as a product of
the original ROI area and a ratio of the contralateral and ipsilateral
hemisphere areas:

Acorrected = Aoriginal ×
Acontralateral

Aipsilateral

The second method uses a correction factor described by
Belayev et al. (2003), which is calculated as the complement
of a ratio of hemisphere area difference and contralateral
hemisphere area:

Acorrected = Aoriginal ×

(

1−
Aipsilateral − A

contralateral

Acontralateral

)

The final method, a version of the one described by Gerriets
et al. (2004), modified for areas instead of volumes, calculates the
corrected ROI area for each slice from hemisphere areas as follows:

Acorrected = Acontralateral + Aipsilateral

−
(

Acontralateral + Aipsilateral − Aoriginal

)

×
Acontralateral + Aipsilateral

2× Acontralateral

All obtained corrected ROI areas—using any of the
aforementioned correction methods—are then multiplied by
the slice thickness to obtain the final corrected ROI volume.
Finally, the slice gap correction volume CVgap calculation is
then modified to use edema-corrected slice areas for slice gap
area estimation.

Registration

SuMRak utilizes the MATLAB-integrated Python engine to
enable imported image data registration by passing instructions
to the SimpleElastix Python library (Marstal et al., 2016) using
the MATLAB function pyrun(). Three main forms of registration
are implemented: standard non-rigid moving/fixed registration,
reference atlas registration, and time-series data alignment.

In standardmoving/fixed registration, the default SimpleElastix
non-rigid parameter map vector (using the affine and B-
spline transformation models) is used to align images
by incorporating localized deformations—accommodating
anatomical, physiological, and pathological variations that cannot
be achieved by rigid registration alone. When registering an MRI
parameter map, more precise registration can be achieved by
using a third experiment (“parameter image”), which is registered
to the fixed image data first, and the optimized transformation
parameter map is retrieved for the subsequent registration
of the original moving image to the fixed image data (e.g., a
parameter map—moving image, and its raw, pre-processed
data—parameter image).

Reference atlas registration is enabled with the same workflow
capabilities as standard moving/fixed registration, with the target
fixed image data being a reference MRI or histological atlas,
instead of an imported imaging experiment. All reference atlas data
are downloaded, imported, and optionally saved for future usage
through the ReferenceAtlasImporter helper application. Currently,
supported anatomical reference atlases include the Allen Brain
Atlas adult mouse Nissl grayscale atlas (Allen Instutiute for Brain
Science, 2004), T1 and T2 weighted Waxholm Space Atlases of the
C57Bl/6j mouse (NITRC, 2023), and the Mouse Imaging Centre
Neuroanatomy Atlas of the C57Bl/6j mouse (Dorr et al., 2008).

Prior to either standard moving/fixed or reference
atlas registration, the suMRak helper applications
RegistrationViewer_Basic and RegistrationViewer_Parameter
enable easier instruction generation by providing side-by-side
moving, fixed, and parameter image data viewing options.

Time-series data alignment is enabled for four-dimensional
and five-dimensional data, which is intended for spatiotemporal
realignment of functional MRI (fMRI) sequences. The registration
process uses a default SimpleElastix rigid transformation model
under the assumption that the motion-related artifacts that occur
during image acquisition in these sequences are related to a
chosen reference data point only by rotation and translation. After
a reference fourth (and in the case of five-dimensional data, a
fifth) dimension data point is selected by the user; all other data
points are registered to the reference point using the parallel
processing capabilities of the parfor loop in the MATLAB Parallel
Computing Toolbox.

Parameter map calculation

A variety of different parameter maps can be calculated in
suMRak from original or pre-processed data: T1, T2, pulsed
arterial spin labeling (pASL), and dynamic susceptibility contrast
(DSC) maps.
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T1 and T2 maps
T1 and T2 mapping in MRI are quantitative techniques that

provide numerical values, reflecting the inherent properties of
imaged tissues. T1 mapping involves acquiring images with varying
repetition or inversion times to measure the longitudinal or spin-
lattice relaxation time (T1), while T2mapping employs images with
different echo times to assess the transverse or spin-spin relaxation
time (T2).

T1 and T2 map calculation in suMRak uses an iterative
least-squares curve fitting approach by applying the Levenberg–
Marquardt optimization algorithm to fit an exponential decay
model to normalized MRI data (Levenberg, 1944; Marquardt,
1963), effectively calculating T1 and T2 relaxation times for
each individual voxel. This calculation is implemented using the
MATLAB Optimization Toolbox function lsqcurvefit().

Pulsed arterial spin labeling maps
Pulsed arterial spin-labeled map calculation involves acquiring

pairs of MRI images with and without magnetically labeled
arterial blood, subtracting them to obtain the perfusion-weighted
signal, and then converting this signal into a cerebral blood flow
(CBF) map.

SuMRak calculates relative perfusionmaps from raw pASL data
using a similar approach to T1 map calculation, fitting a two-
parametermodel to normalized T1 values for both labeled and non-
labeled conditions using the Levenberg–Marquardt optimization
algorithm (Levenberg, 1944; Marquardt, 1963). The resulting
relative perfusion values are then computed based on the T1 value
of blood.

Dynamic susceptibility contrast maps
Dynamic susceptibility contrast (DSC) imaging begins with

an intravenous injection of a gadolinium bolus, followed by a
rapid acquisition of T2-weighted images to track the passage of
the contrast agent through the brain’s vasculature. By analyzing
the signal intensity-time curve derived from dynamic images,
DSC imaging provides valuable information about cerebral blood
flow (CBF), cerebral blood volume (CBV), and mean transit time
(MTT), aiding in the assessment of brain perfusion.

Given valid DSC imaging data, suMRak calculates CBF, CBV,
and MTT maps using the DSC MRI Toolbox for MATLAB
authored by Peruzzo D. and Castellaro M., making use of the
available arterial input function extraction tool (Peruzzo et al.,
2011) and deconvolution algorithms (Zanderigo et al., 2009;
Peruzzo et al., 2017).

3D Viewer

The functionalities of the three-dimensional data viewer are
implemented using the MATLAB Image Processing Toolbox
function volshow() and the parent Viewer3D object. This
enables suMRak to offer a multitude of different data rendering
styles, including volume rendering, minimum/maximum intensity
projections, slice planes, isosurface rendering, and gradient
opacity. Furthermore, nine MATLAB colormaps and three preset

alphamaps are available to choose from, with optional interactive
alphamap adjustment. Finally, the OverlayPicker helper application
allows users to easily overlay imported or already processed data
onto the one currently viewed.

Test data

Alongside the main application files, suMRak includes two
Bruker Paravision study folders and two .PvDatasets files used
for application testing. These contain 38 different in vivo datasets
obtained on adult C57BL/6J mice and eight ex vivo imaging
experiments using a banana as the object under investigation. All
figures shown contain data from these test files and were processed
using suMRak.

Segmentation validation

To validate our segmentation strategy, suMRak was compared
against ITK-SNAP version 4.0.2 (Yushkevich et al., 2006) and fully
manual segmentation in Fiji (Schindelin et al., 2012), which was set
as the ground truth. ITK-SNAP is a popular open-source software
application specialized for biomedical image segmentation, offering
a semi-automatic segmentation pipeline using active contours. A
total of 10 coronal mouse brain slices from two different T2-
weighted imaging experiments were selected using a random
number generator and were then segmented manually by two
trained independent researchers. The resulting brain masks were
subsequently compared with those obtained using only semi-
automatic segmentation methods—namely K-means clustering
followed by mask opening and closing for suMRak and active
contours with thresholding pre-segmentation for ITK-SNAP. This
comparison was done by calculating Sørensen–Dice similarity
coefficients and their average value for every pair of comparisons
to manual segmentation masks of the same brain slice. Finally,
the obtained average coefficients for suMRak and ITK-SNAP
were compared using a paired samples t-test, with the statistical
significance level set at α = 0.05.

All data from these comparisons are reported in text as the
arithmetic mean± standard deviation.

Results

Segmentation

The SuMRak segmentation pipeline was applied to five different
coronal brain slices in a T2-weighted imaging sequence (Figure 2).
All slices were segmented using the same workflow order,
starting with initial brain region K-means clustering, followed by
morphological brain mask opening and closing, and finishing with
manual corrections using traditional polygonal ROI selection.

Most of the segmentation processes in suMRak are condensed
in the automated clustering and morphological operations,
with most slices requiring little to no manual corrections.
This finding was further confirmed in the validation and
comparison process of suMRak to manual segmentation, which
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FIGURE 2

Segmentation results of five coronal mouse brain slices imaged with a T2-weighted imaging sequence. The upper three rows depict suMRak
standard segmentation steps: k-means clustering, morphological opening and closing, and manual corrections. The bottom row depicts ITK-SNAP
segmentation results in which the active contour method fails to extend to anterior brain regions (yellow arrows).

showed that without manual corrections, suMRak clustering
and morphological operations achieved an average Sørensen–
Dice similarity coefficient of 0.98 ± 0.01. Furthermore, the
semi-automatic segmentation offered by ITK-SNAP achieved an
average Sørensen–Dice similarity coefficient of 0.94 ± 0.06,
and when compared with the results from suMRak using a
paired samples t-test, the difference was found to be statistically
significant (p = 0.03). This difference is most notable in the
caudal region of the mouse brain (Table 1, slices 23 and 21),
where suMRak performs much better than active contours
in ITK-SNAP.

Registration

Figure 3 shows a sample standard moving/fixed registration
workflow in which central brain slices of arterial spin labeling
cerebral blood flow (ASL-CBF) maps were registered onto
a corresponding T2-weighted image to account for spatial
distortions inherent in echoplanar imaging (EPI) acquisition
and, in turn, improve the topographical connection to
anatomical areas. By using the raw ASL image data and
registering it to the T2-weighted image first, a more precise
transformation parameter map was obtained for map
registration, which was subsequently applied to both relative
and absolute ASL-CBF maps to obtain the final registration
results.

TABLE 1 Resulting Sørensen–Dice similarity coe�cients of suMRak and

ITK-SNAP when compared with manual segmentation of 10 di�erent

coronal mouse brain slices in Fiji.

Mouse
ID

Slice
number

suMRak/manual
segmentation

ITK-
SNAP/manual
segmentation

1550 2 0.98 0.96

3 0.98 0.97

11 0.98 0.95

15 0.99 0.98

23 0.97 0.82

1582 3 0.98 0.94

7 0.98 0.96

14 0.99 0.97

16 0.99 0.97

21 0.95 0.85

Each coefficient represents an average value of the coefficient pairs obtained when comparing

suMRak/ITK-SNAP slice masks with the two different manually segmented masks for the

corresponding brain slice. Caudal slices nos. 21 and 23 exhibited the greatest observed

differences (highlighted in green).

Parameter maps

Sample T1 and T2 parameter maps were generated with and
without prior segmentation of a banana imaging experiment and
are shown in Figure 4. By incorporating segmentation prior to
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FIGURE 3

A sample moving/fixed registration workflow; raw ASL image data were registered onto a T2-weighted image to obtain a transformation parameter
map, which was then applied to relative and absolute ASL-CBF maps.

map generation within a unified interface, suMRak effectively
eliminated background noise, showcasing its versatility in this
relatively unusual imaging experiment.

3D viewer

The three-dimensional data visualization capabilities of
suMRak are presented in Figure 5, which shows different options
for rendering three-dimensional volume from multislice 2D MRI
data. The blood vessels of an adult mouse brain in Figure 5A
were visualized from a gradient echo angiography sequence data

using a maximum intensity projection option and displayed
applying the MATLAB colormap hot. Figure 5B shows a three-
dimensional visualization of the same mouse brain segmented
from a T2-weighted image using the volume rendering method.

Discussion

In this study, we presented an overview of the functionalities
provided by the novel MATLAB application for preclinical brain
MRI analysis—suMRak along with the sample results obtained by
testing it on accompanying real-world datasets.
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FIGURE 4

Sample calculation results of T1 and T2 parameter maps with and without prior segmentation. This figure shows suMRak’s capability to handle a wide
variety of MRI data.

FIGURE 5

(A) Blood vessels of an adult mouse brain, visualized in an imported MR angiography sequence. (B) Segmented mouse brain from a T2-weighted
image visualized in 3D.
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The integration of brain segmentation, volumetric statistics
calculation, image data registration, parameter map generation,
and a 3D data viewer into a unified interface marks a fundamental
aspect of suMRak. A seamless transition between various analyses
without the need for multiple standalone tools fosters a cohesive
and streamlined workflow, which not only saves time but also
ensures consistency across different analyses—minimizing errors
and increasing the reliability of results. For instance, by using
suMRak, a researcher can import raw image data, segment a
region of interest, calculate its parameter map, register it to
a reference anatomical scan, extract the ROI statistics, and,
optionally, export it to a NifTI file with the correct header set,
all in a singular environment. To the best of our knowledge,
none of the available MRI analysis tools are able to provide
that functionality.

The enhanced speed of brain segmentation achieved by our
application stands out among its core utilities. By leveraging K-
means clustering and morphological operations, suMRak greatly
reduces the processing time for brain structures, thus enabling
more efficient work with larger datasets. This finding was
confirmed by comparing suMRak with manual segmentation of
coronal mouse brain slices, with the obtained data showing that
suMRak achieved an average Sørensen–Dice similarity coefficient
of 0.98 ± 0.01—a result that demonstrates how close K-means
clustering and morphological operations get to the accuracy of
fully manual segmentation. Furthermore, when compared with
semi-automatic segmentation offered by ITK-SNAP through active
contours (average Sørensen–Dice similarity coefficient of 0.94
± 0.06), suMRak showed significant improvement, especially
for brain slices located caudally. Moreover, it is important to
mention that, although suMRak also provides active contour
segmentation for regions of interest, this method may not
be appropriate for rostral mouse brain slices. This limitation
arises because the brain mask can readily extend to the
eyes and optic tract due to similar voxel intensities on a
T2-weighted image. Finally, all segmentation masks generated
in suMRak are easily exportable and reusable, allowing for
greater consistency across work sessions and transparent error-
checking.

While suMRak currently accepts a relatively narrow range of
file formats for data importing, the standardized set of information
was extracted from all data types and stored in a singular MATLAB
table format, allowing for straightforward implementation of
support for other data types in the future.

In conclusion, suMRak represents an advancement in the
realm of preclinical brain MRI analysis. By addressing the
need for integration and speed, suMRak stands out as a
versatile tool that can help researchers process their MRI
data more efficiently and redirect saved time into other fields
of interest.
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