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A tactile P300 brain-computer interface

Anne-Marie Brouwer* and Jan B. F. van Erp

TNO Human Factors, Soesterberg, Netherlands

In this study, we investigated a Brain-Computer Interface (BCI) based on EEG responses to 
vibro-tactile stimuli around the waist. P300 BCIs based on tactile stimuli have the advantage of 
not taxing the visual or auditory system and of being potentially unnoticeable to other people. A 
tactile BCI could be especially suitable for patients whose vision or eye movements are impaired. 
In Experiment 1, we investigated its feasibility and the effect of the number of equally spaced 
tactors. Whereas a large number of tactors is expected to enhance the P300 amplitude since 
the target will be less frequent, it could also negatively affect the P300 since it will be diffi cult 
to identify the target when tactor density increases. Participants were asked to attend to the 
vibrations of a target tactor, embedded within a stream of distracters. The number of tactors 
was two, four or six. We demonstrated the feasibility of a tactile P300 BCI. We did not fi nd a 
difference in SWLDA classifi cation performance between the different numbers of tactors. In 
a second set of experiments we reduced the stimulus onset asynchrony (SOA) by shortening 
the on- and/or off-time of the tactors. The SOA for an optimum performance as measured in 
our experiments turned out to be close to conventional SOAs of visual P300 BCIs.
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and vehicle drivers (van Erp and van Veen, 2004) and can even 
result in better navigation  performance than comparable visual 
displays. Tactile stimuli applied around the waist may therefore 
be a good choice for navigation BCIs (van Erp, 2005b, see also 
Thurlings et al., in press). Users can focus their attention on the 
tactile stimulus that corresponds to the direction in which they 
want to move, possibly eliciting a useful P300 signal. Although 
tactile P300 BCIs have not been studied before, the feasibility 
of a BCI based on steady-state somatosensory evoked potentials 
has been demonstrated (Müller-Putz et al., 2006) and the tactile 
modality has been used as a BCI feedback channel (Chatterjee 
et al., 2007; Cincotti et al., 2007).

Previous research has shown that tactile stimuli can elicit 
P300s (Satomi et al., 1995; Ito and Takamatsu, 1997; Nakajima 
and Imamura, 2000). In these studies, electrical and mechanical 
stimuli were delivered to the hands and wrists using relatively long 
inter stimulus intervals (around 2 s in the study by Nakajima and 
Imamura). Obviously, for BCI purposes, short stimulus durations 
and inter stimulus intervals are required. The fi nding that P300s 
can be elicited by tactile stimulation of the hands does not guar-
antee that tactile stimulation of the torso easily elicits P300s as well 
because the sensitivity threshold and the spatial resolution of the 
torso is lower than that of the hands (Wilska, 1954).

Recently, we investigated whether quickly presented vibro-tactile 
stimuli at different locations around the waist can elicit robust 
P300s (Brouwer et al., submitted). We presented participants bursts 
of vibration delivered by one of eight tactors around the partici-
pants’ waist. Vibration duration was 188 ms and vibrations were 
interleaved by 438 ms breaks. In other conditions, we presented 
analogous visual stimuli consisting of fl ashed circles on a monitor 
in a schematic drawing of the tactor layout. Participants attended 
to the vibrations and/or fl ashes of the target tactor presented in a 
rapid stream of stimuli that also contained the seven distracters. The 

INTRODUCTION
A brain-computer interface (BCI), the fi rst of which was developed 
by Vidal (1973, 1977), enables a user to communicate with the world 
through her or his brain signals alone. One of the most well-known 
BCIs was based on the P300 event-related potential (Farwell and 
Donchin, 1988). The P300 is a positive defl ection in EEG that occurs 
around 300 ms after a target stimulus has been presented. In the 
P300 speller by Farwell and Donchin (1988), rows and columns of 
a matrix consisting of letters were sequentially fl ashed in random 
order. Every time the row or column was fl ashed that contained 
the target symbol that the user wanted to spell, a P300 occurred. In 
this way, users could spell words. A P300-speller could be especially 
helpful for, and has been tested on paralyzed users (Hoffmann et al., 
2008; Nijboer et al., 2008). More than two decades later, P300s are 
still popular to drive BCIs since they are relatively robust and easy 
to detect (Donchin et al., 2000).

The vast majority of P300 based BCIs use visual stimuli to elicit 
P300s. Recently (off-line) auditory P300 BCIs have also been devel-
oped (Sellers and Donchin, 2006; Furdea et al., 2009; Schreuder 
et al., 2010). The fundamental research on P300s focuses on visual 
and auditory stimulation. For BCI purposes tactile stimuli can 
be an interesting alternative. Tactile stimuli can be delivered by 
tactors that can be hidden under the user’s clothes, making the 
device go unnoticed to others. Using tactile stimuli will also keep 
the eyes and ears of the user free. Another important advantage 
is that a tactile P300 BCI can be used by patients with impaired 
vision or eye movements. This is especially relevant because one 
of the main potential groups of BCI users, patients with ALS, 
experience problems with their eyes as the disease progresses. 
A tap on your shoulder seems to automatically draw attention 
into the direction of the person tapping. Consistent with this, 
tactors applied around the waist have proven to be successful 
as navigation display, both for pedestrians (van Erp et al., 2005) 

Edited by:

Gert Pfurtscheller, Graz University of 
Technology, Austria

Reviewed by:

Dennis J. McFarland, Wadsworth 
Center for Laboratories and Research, 
USA
Andrea Kubler, University of 
Wuerzburg, Germany

*Correspondence:

Anne-Marie Brouwer, TNO Human 
Factors, Kampweg 5, 3769 ZG 
Soesterberg, Netherlands. 
e-mail: anne-marie.brouwer@tno.nl



Brouwer and van Erp A tactile P300 brain-computer interface

Frontiers in Neuroscience | Neuroprosthetics  May 2010 | Volume 4 | Article 19 | 2

2006) and the exact timing variable(s) underlying possible P300 
effects are still not clear. In most studies about timing, the stimu-
lus onset asynchrony (SOA) was varied, i.e. the time interval in 
between the start of one (non) target stimulus and the next (Farwell 
and Donchin, 1988; Polich et al., 1991; Allison and Pineda, 2006). 
Increasing the SOA while holding everything else constant will also 
increase the time interval between target stimuli (target-to-target 
interval), which may be the key variable affecting the P300 ampli-
tude (Gonsalvez and Polich, 2002; Croft et al., 2003; Martens et al., 
2009). Studies that show an increasing P300 with decreasing relative 
frequency of target presentation amongst non-targets (Polich et al., 
1991; Cahill and Polich, 1992; Allison and Pineda, 2003; Sellers 
et al., 2006) also affect the target-to-target interval. Regardless of 
the specifi c underlying cause, decreasing the SOA (which decreases 
the target-to-target interval if the target probability stays the same) 
could cause a decrease in the P300 amplitude. Nonetheless, with 
the resulting shorter required time to go through the different user 
options, the rate of information transfer may increase. Many P300 
BCI studies successfully used visual stimuli with SOAs ranging from 
as little as 125–500 ms (Farwell and Donchin, 1988; Serby et al., 
2005; Sellers et al., 2006; Mell et al., 2008; Martens et al., 2009). 
We are interested in whether similar SOAs work for tactile stimuli 
as well.

In sum, the present study further evaluated (the feasibility of) 
a tactile P300 BCI. The tactile stimuli were delivered by several 
tactors placed around the waist. Classifi cation for all experiments 
in this study was performed online, and the target stimulus did 
not stand out from the distracters. In Experiment 1, we varied 
the number of tactors. In Experiment 2 we reduced the SOA with 
respect to Experiment 1, both by reducing the vibration duration 
and the breaks in between vibration. Since it turned out that this 
was possible without sacrifi cing classifi cation accuracy, we further 
reduced the SOA in Experiment 3.

MATERIALS AND METHODS
EXPERIMENT 1
Participants
For all experiments described, participants were recruited from 
a pool of potential participants maintained by TNO Human 
Factors. Most of them study at a nearby university. In addition, 
some TNO interns (also students) participated. For each experi-
ment, participants gave informed consent before the experiment 
started. Approval of the experiments was acquired from the local 
ethical committee.

Eleven healthy participants (six female) between 20 and 27 years 
old volunteered to participate in Experiment 1. None of them had 
participated in any other BCI experiment before.

Stimuli
Participants wore an adjustable vest over their clothes lined with 
62 vibrating elements called tactors. For this study, we used one 
row of 12 equally spaced tactors around the participant’s waist, 
approximately at the height of the navel. Different combina-
tions of tactors were used in different experimental conditions. 
Tactors vibrated successively with a vibration time (on-time) of 
188 ms and breaks in between vibrations (off-time) of 438 ms. 
The tactors were custom built. They consisted of plastic cases with 

target was always the front tactor. In addition, this tactor physically 
stood out from the distracter: the distance to the distracters was 
larger than the distance between the distracters themselves, and the 
stimulus intensity of the target was stronger than of the distracters 
(in the tactile condition, a tactor above and below the target tac-
tor vibrated simultaneously with the target, whereas in the visual 
condition the target circle was enlarged when fl ashed). By standing 
out from the distracters, the target probably drew attention by itself. 
The results demonstrated that the amplitudes of P300s elicited by 
tactile and visual stimuli depended on electrode site, but on the 
whole, they were equally high. Classifi cation accuracy (how well 
an algorithm can identify the target stimulus) as determined off-
line was also similar for visual and tactile stimuli. Whereas one or 
the other modality could probably have been favored by choosing 
different experimental parameters, we concluded that it is possible 
to elicit reliable P300s with quickly presented vibro-tactile stimuli 
around the waist.

The present study aimed at extending these proof-of-concept 
fi ndings to a more realistic BCI setting. Whereas the oddball task 
as used in the previous experiment more or less guaranteed the 
attention of the participant to the target, it could not be general-
ized to a BCI where the user can choose the target. Furthermore, 
reliable online classifi cation of tactile P300s remained to be 
demonstrated.

Besides tackling the issues mentioned above, we also wanted to 
explore the effect of varying the number of stimuli (i.e. the number 
of tactors around the waist) and the effect of varying stimulus tim-
ing on classifi cation accuracy and rate of information transfer.

With a large number of tactors, it will be diffi cult to identify 
the individual targets because they will be close to the distracters. 
It has been shown that a low discriminability reduces the P300 
amplitude (Comercho and Polich, 1999). On the other hand, with 
a large number of tactors, the target tactor is activated relatively 
infrequent, which positively affects the P300 (Polich et al., 1991), 
possibly via a longer target-to-target interval (Gonsalvez and Polich, 
2002; Croft et al., 2003; Martens et al., 2009). In case of few tactors, 
the discriminability is high but the probability of target presenta-
tion is also high. In order to guide the development of a tactile 
BCI for navigation, we are interested in the relative importance or 
tradeoff of these potential effects on type classifi cation accuracy 
and rate of information transfer within the context of our vibro-
tactile stimuli around the waist.

Presenting stimuli quickly after each other shortens the time 
needed to go through the several different options. This means that 
the BCI could reach its decision as to which option the user wants 
to select sooner. However, increasing presentation speed will also 
likely decrease the quality of the P300 and decrease classifi cation 
performance. Firstly, refractory effects could result in a lower P300 
(Gonsalvez and Polich, 2002; Martens et al., 2009). Secondly, the 
quicker stimuli are presented, the more stimuli will be refl ected 
in the EEG of the epochs analyzed by the classifi cation algorithm, 
probably making successful classifi cation harder (Martens et al., 
2009). Finally, there will be a limit to presentation speed due to 
human limits in perception and attention. Several studies inves-
tigated the effect of different stimulus timing parameters on the 
P300. Generally, more time between stimuli seem to result in larger 
P300 amplitudes. However, this is not always found (Sellers et al., 
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Design
The order of conditions was randomized for each participant. For 
every condition, there were three blocks: two training blocks fol-
lowed by one test block. After the training blocks, a classifi cation 
algorithm was applied to the collected data. The resulting model was 
used in the test block to give participants feedback about the tactor 
that the algorithm classifi ed as the target. Aside from this feedback, 
the training and test blocks were the same (please note that training 
refers to training the classifi er, not training the participant).

A block consisted of six sequences of stimuli. Each sequence 
started with one of the tactors being designated as the target. In 
condition Six, each of the tactors served as a target once in one 
block, starting with the front-left tactor and every time going to the 
next tactor counter-clockwise. In condition Four, the front target 
and the one counter clockwise served as targets again after the oth-
ers had been a target. In condition Two and FourPlus, the left and 
right tactor were designated as a target three times each, alternating 
and starting with the tactor at the left.

Each of the six sequences consisted of activating each tactor in 
that condition (the target and the one, three or fi ve distracters) 10 
times, in random order. With a stimulus on-time of 188 ms and a 
stimulus off-time of 438 ms this resulted in mean target-to-target 
intervals of 1252 ms (condition Two), 2504 ms (condition Four) 
and 3756 ms (conditions Six and FourPlus).

Task and procedure
Before the experiment started, the complete procedure was 
explained to the participants, with their task being to concentrate 
on the target by counting the number of times it occurred, and to 
ignore the distracters. They were further asked to fi xate the fi xation 
cross displayed on the screen, to blink as little as possible and to 
limit any other movements during tactile stimulation.

Participants were seated comfortably in front of a monitor in a 
dimly lit, shielded room, wearing the tactile vest and an EEG elec-
trode cap. During the recording, an analog noise generator produced 
pink noise in order to mask the sound of the tactors. The monitor 
always displayed a fi xation cross. A sequence of stimuli started by 
the appearance of the word ‘focus’ on the monitor. Simultaneously, 
one of the tactors vibrated for 750 ms. This indicated the target 
for the upcoming sequence. Then, each of the tactors used in that 
condition vibrated 10 times in random order. The appearance of 
a dashed line (in the case of a training block) or the word ‘result’ 
(in the case of a test block) indicated the end of a sequence. In the 
latter case, one of the tactors vibrated for 750 ms simultaneously 

a contact area of 1 × 2 cm, containing 160 Hz vibrating motors. 
(TNO, The Netherlands, model JHJ-3; see van Erp et al. (2007) for 
comparable equipment and tactor layout). During the experiment, 
participants viewed a dimmed LCD (Dell 20 inch fl atpanel, refresh 
rate 75 Hz) displaying instructions and a fi xation cross. To prevent 
participants from using auditory cues, we played pink noise from 
two speakers, one placed left and the other placed right on the desk 
in front of the participant.

EEG Recording
EEG activity was recorded at the Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8 
electrode sites of the 10-20 system (Jasper, 1958) using electrodes 
mounted in an EEG cap (g.tec medical engineering GmbH). A 
ground electrode was attached to the forehead. The EEG electrodes 
were referenced to linked mastoid electrodes. The impedance of 
each electrode was below 5 kΩ. Data were sampled with a frequency 
of 256 Hz and fi ltered before storage by a 0.1-Hz high pass-, a 60-Hz 
low pass- and a 50-Hz notch fi lter (USB Biosignal Amplifi er, g.tec 
medical engineering GmbH). The experiment (stimulus presenta-
tion and data recording) was controlled by a combination of custom 
built software and BCI2000 (Schalk et al., 2004).

Conditions
We used four experimental conditions called Two, Four, Six and 
FourPlus. Conditions Two, Four and Six refer to the number of 
equally distributed tactors used (see Figure 1 for a schematic 
indication of their location). In these conditions, the number of 
distracters was respectively one, three and fi ve. The probability 
of target presentation decreased over these conditions (expected 
to enhance the P300), whereas the distance between the tactors 
and therewith the spatial discriminability between target and dis-
tracters decreased (expected to reduce the P300). The FourPlus 
condition served as a comparison for condition Four and Six. In 
this condition, the same tactors were used as in condition Four 
(see Figure 1), that is, the discriminability in Four and FourPlus 
was the same. However, by having the front and back tactor vibrate 
twice as often as the other tactors and by only designating the left 
and right tactors as targets, we made the target probability equal 
to that in condition Six. This will allow us to directly evaluate 
the relative importance of the factors discriminability and target 
probability: when discriminability plays a more important role, 
condition Four and FourPlus will produce similar results; when 
target probability is more important, condition Six and FourPlus 
will produce similar results.

T wo Four Six FourPlusT wo Four Six FourPlus

FIGURE 1 | Schematic overview of the tactor layout (top view) in the different conditions of Experiment 1. The tactors used are colored gray whereas the 
inactive tactors are white. In the FourPlus condition, only the gray tactors could be targets. The black tactors vibrated twice as often as the gray tactors.



Brouwer and van Erp A tactile P300 brain-computer interface

Frontiers in Neuroscience | Neuroprosthetics  May 2010 | Volume 4 | Article 19 | 4

where M is the mean number of decisions per minute and B is the 
amount of bits communicated per decision:

     B = log
2
N + Plog

2
P + (1 − P)log

2
[(1 − P)/(N − 1)].

N is the number of possible decisions and P is the accuracy prob-
ability. In this study P is the classifi cation performance, without 
the correction for chance. N is set to 2, 4, 6 and 6 in conditions 
Two, Four, Six and FourPlus condition respectively. We computed 
bitrate for each subject and each condition, where we set bitrate to 
the theoretically maximal achievable bitrate of log

2
(N) × M if the 

target was correctly identifi ed after each of the six sequences, and 
to 0 if performance was below chance level.

We used one-sample t-tests, repeated measures ANOVA and post-
hoc Tukey tests to evaluate classifi cation accuracy and bitrate.

Results
Figure 2A shows the classifi cation accuracy for each condition, 
together with an indication of chance performance. Figure 2B 
presents the classifi cation accuracy corrected for chance. The one-
sample t-tests against zero on classifi cation accuracy corrected for 
chance showed that classifi cation accuracy was well above chance 
for all conditions (all p-values < 0.01). A repeated measures ANOVA 
showed no effect of condition [F

(3,30)
 = 0.19, p = 0.90]. Figure 2C 

shows the achieved bitrate for each condition. Again, a repeated 
measures ANOVA indicated no effect of condition [F

(3,30)
 = 0.11, 

p = 0.95]. Table 1 displays timing characteristics of the conditions 
in the different experiments, the maximal achievable bitrate, the 
mean achieved bitrate, the number of participants that achieved 
the maximal achievable bitrate and fi nally the mean bitrate aligned 
to Experiment 2 (see General Discussion). In every condition of 
Experiment 1, at least one participant achieved the maximal achiev-
able bitrate.

Figure 3 depicts the mean Pz EEG samples from 200 ms before 
stimulus onset until 800 ms after, for each condition, and sepa-
rately for target and standard presentations (solid and dashed 

with the word ‘result’, to indicate to the participant which tactor 
the algorithm designated as being the target. Participants took 1- to 
5-min breaks in between blocks.

Classifi cation algorithm and analysis
Classifi cation models were built during the experiment for each 
participant and each of the four conditions after two training 
blocks. Using step-wise linear discriminate analysis (SWLDA; 
Krusienski et al., 2006) a maximum of 60 features were extracted 
from the EEG data. The epochs used in the analysis started at 
stimulus onset and ended 797 ms afterwards. The data was down 
sampled with a factor of four. Each of the two training blocks 
yielded 60 target epochs (6 sequences × 10 repetitions) for the 
algorithm to be trained on. Since the number of distracters dif-
fered between conditions, the number of distracter epochs per 
block was 60 in condition Two, 180 in condition Four and 300 in 
condition Six and Four Plus.

For each participant and each condition, we determined clas-
sifi cation accuracy as the proportion of targets that was correctly 
identifi ed by the algorithm. However, the conditions differed with 
respect to chance level: 50% or three targets correct for each partici-
pant in condition Two, 25% or 1.5 target correct in condition Four, 
and 17% or one target correct in the other conditions. Therefore, 
we also present the results after correcting for chance by subtract-
ing chance performance from the observed classifi cation accuracy 
and normalizing the results.

Besides classifi cation accuracy, BCI performance can also be 
expressed in terms of bitrate (Wolpaw et al., 2002; Serby et al., 2005). 
This is a measure of performance that represents the amount of 
information being communicated, taking into account the number 
of possible options, the classifi cation accuracy and the time required 
to communicate the chosen option. The bitrate is calculated as 
follows (Serby et al., 2005):

     Bitrate = BM
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FIGURE 2 | Mean performance of the classifi cation model in the four conditions of Experiment 1 as expressed by classifi cation accuracy, or proportion of 

targets correct (A), classifi cation accuracy corrected for chance (B) and bitrate (C). The stars in (A) indicate chance performance. Error bars represent standard 
errors of the mean.
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Since at least under these experimental conditions, different 
numbers of tactors do not affect classifi cation accuracy and bitrate, 
the number of choices in a tactile BCI (two, four or six) can be 
directly tailored to the user application. For instance, it makes no 
sense to use a six tactor BCI for a yes–no choice.

The mean EEG signals suggested a slightly different picture than 
the classifi cation results. The amplitude in condition Two seemed 
smaller than in the other conditions. The fact that this was not 
refl ected in the classifi cation accuracy could be because even though 
the amplitude was smaller, it was suffi ciently different from that of 
the distracters. When fewer trials would have been used to train the 
classifi cation algorithm, or fewer repetitions of the stimuli before 
the BCI decided on the target, there may have been a difference. 
Another possible reason for discrepancies between classifi cation 
results and P300 amplitudes is that the classifi cation model used 
different features than P300 amplitude only. From classifi cation 
results obtained in experiments that are supposed to manipulate the 
P300, one cannot directly conclude anything about P300s without 
further looking at the signals and the features that a model uses. 
So-called P300 BCIs (including our own) probably often rely on 
non-P300 components in differentiating between targets and stand-
ards (Allison and Pineda, 2006; Brouwer et al., submitted).

Our main concern for this study was to build an online tactile 
BCI and to compare the effects of tactor number between condi-
tions; not to optimize classifi cation performance. Even so, the 
bitrate that we achieved is modest (see for example bitrates of 
online visual P300 BCIs in Table V of Serby et al. (2005) where 
bitrates range from 2.35 to 10.88 b/m). There are several possible 
reasons for our relatively low bitrate. We used only eight elec-
trodes and each model was trained on a limited dataset obtained 
in 4–10 min. Even though the P300 signal itself is often referred 
to and liked for being relatively independent on training, most 
studies mentioned by Serby et al. (2005) used training times 

curves respectively). Pz is a location where the P300 is usually 
strongly displayed (e.g. Ravden and Polich, 1999; Srinivasan, 
2007). Clearly, a P300 is present in all conditions, even in con-
dition Two, although the amplitude seems to be smaller. The 
P300 occured later than 300 ms after the start of the stimulus. 
This corresponds to many P300 studies that report this as well 
(e.g. Ravden and Polich, 1999; Bledowski et al., 2004; Gerson 
et al., 2006).

Discussion
In a proof-of-concept study (Brouwer et al., submitted) we showed 
that an oddball tactile stimulus presented within a stream of tactile 
distracters around the waist elicited P300s that could be classifi ed 
offl ine. Experiment 1 demonstrated that a BCI in which a tactile 
target is chosen among similar non-targets in an array around the 
waist is also feasible. Using different tactors as targets, online clas-
sifi cation performance was well above chance for all conditions; 
ranging from an average of 58% correct for six alternatives to an 
average of 73% correct for two alternatives.

We did not fi nd signifi cant differences in classifi cation accuracy 
corrected for chance between the conditions that varied in target-
distracter discriminability and target probability. We expected at 
least to fi nd a difference between the FourPlus condition and either 
the Four or the Six condition, or both. The FourPlus condition was 
expected to produce clearer P300s than the Four condition because 
of a more favorable target probability, and than the Six condi-
tion because of a more favorable discriminability. An explanation 
could be that in all conditions, target probability was low enough 
(or target-to-target interval long enough) and that the distinction 
between target and distracter was clear enough (van Erp, 2005a), 
even though some participants remarked that in the Six condition, 
they sometimes experienced diffi culties in distinguishing the target 
from adjacent distracters.

Table 1 | Timing characteristics and bitrate results for the different conditions in the different experiments. The maximal bitrate is the bitrate that would 

be achieved when classifi cation would always be correct. The mean bitrate is the bitrate achieved in the corresponding condition, averaged across participants. 

Asterisks indicate a signifi cant difference within an Experiment as indicated by Tukey post-hoc tests. In the next column, the number of participants that 

achieved the maximal achievable bitrate is indicated. The last column presents the mean bitrate aligned to Experiment 2 (see General Discussion). Equal 

conditions in different experiments that serve to compare results between experiments are highlighted in bold and italic font.

Exp Condition On-time Off-time SOA Max bitrate Mean bitrate Number of Mean bitrate

  (ms) (ms) (ms) (b/m) (b/m) participants with aligned to

       max bitrate (out of 11) Experiment 2

1 Two 188 438 626 4.79 1.72 3 2.37

 Four 188 438 626 4.79 1.81 2 2.49

 Six 188 438 626 4.13 1.56 2 2.15

 FourPlus 188 438 626 4.13 1.43 1 1.97

2 Baseline 188 438 626 4.13 2.15 5 2.15

 Short on 63 313 376 6.87 2.18 2 2.18

 Medium on 188 188 376 6.87 3.71* 4 3.71

 Long on 376 0 376 6.87 0.75* 0 0.75

3 Long on–Long off 188 188 376 6.87 2.80 3 3.71

 Long on–Short off 188 63 251 10.30 2.82 1 3.74

 Medium on–Medium off 125 125 250 10.34 1.87 1 2.48

 Medium on–Short off 125 63 188 13.75 2.16 0 2.86



Brouwer and van Erp A tactile P300 brain-computer interface

Frontiers in Neuroscience | Neuroprosthetics  May 2010 | Volume 4 | Article 19 | 6

St
im

ul
us

 o
ns

et

30
0 

m
s

80
0 

m
s

Two

Four

Six

FourPlus

3

6

0

-3

M
ic

ro
vo

lt

3

6

0

-3

3

6

0

-3

3

6

0

-3

FIGURE 3 | EEG averaged across participants and presented separately 

for targets (solid lines) and distracters (dashed lines) in the four 

conditions of Experiment 1. Only data from electrode Pz is presented.

short compared to classic P300 studies, but long compared to 
P300 BCI studies, leaving a high bitrate unlikely (see Table 1 for 
maximal achievable bitrates).

In Experiment 2 we increased the maximal possible bitrate of 
the tactile P300 BCI by shortening the SOA. This was done by 
adjusting the stimulus on- and off-times by different amounts. 
Even though the effects of SOA and target-to-target interval on 
P300s and classifi cation performance have been studied before (e.g. 
Farwell and Donchin, 1988; Serby et al., 2005; Allison and Pineda, 
2006; Sellers et al., 2006; Martens et al., 2009; Mell et al., 2008), we 
did not encounter studies on the specifi c effect of stimulus on- 
and off-time. However, in a psychophysical discrimination study, 
varying these timing parameters produced differential effects (van 
Erp, 2005a). Participants judged relative location of tactile stimuli. 
Whereas for vibration durations between 50 and 350 ms, vibra-
tion duration did not have a large effect on the discriminability, 
discriminability increased with increasing inter stimulus intervals 
in the range from 0 to 200 ms.

EXPERIMENT 2
Participants
Eleven healthy participants (four female) between 19 and 27 years 
old volunteered to participate in Experiment 2. None of them had 
participated in any other BCI experiment before.

Stimuli
The same vibro-tactile stimuli were used as in Experiment 1, except 
that the tactors were mounted in a belt rather than a vest. Taking 
the participants’ waist circumference into account, six tactors were 
positioned at equal distances from each other along the belt. All six 
tactors were used in all four experimental conditions. The vibrat-
ing on- and off-times differed between conditions as explained 
below. As in Experiment 1, participants viewed a dimmed LCD 
(Dell 20 inch fl atpanel, refresh rate 75 Hz) displaying instruc-
tions and a fi xation cross. Again, pink noise was played to mask 
auditory cues.

Conditions
In Experiment 2 we used four different settings of stimulus tim-
ing (see also Table 1). The on-time and off-time in the Baseline 
condition were the same as those used in Experiment 1 (188 ms on, 
438 ms off), making this condition exactly equal to condition Six of 
Experiment 1. Besides this Baseline condition, we had three other 
experimental conditions in which the SOA was reduced to 376 ms 
as compared to the 626 ms of the Baseline condition. Referring 
to stimulus on-time, these are called Short On (63 ms on, 313 ms 
off), Medium On (188 ms on, 188 ms off) and Long On (376 ms 
on, 0 ms off).

Design
The design was almost the same as in Experiment 1. The order 
of conditions was randomized for each participant. For every 
condition, there were two blocks to train the classifi cation algo-
rithm followed by one block to test it. Again, a block consisted 
of six sequences of stimuli. Each sequence started with one of 
the tactors being designated as the target. Each of the tactors 
served as a target once in one block, starting with the front-left 

from seven sessions up to a few months. We expect that acquiring 
more data to train the model and leaving out less representative 
blocks (e.g. at the start of the experiment) could increase clas-
sifi cation performance. Furthermore, there may be a difference 
between P300s elicited by visual and tactile stimuli. In virtually 
all visual P300 BCI paradigms, participants are allowed to fi xate 
their eyes on the target. This will likely result in a perceptual 
difference between (fi xated) target and (non-fi xated) distracters 
as well as the possibility for the classifi cation algorithm to dis-
tinguish between target and distracter on the basis of low-level 
visual evoked potentials (Treder and Blankertz, submitted). A 
strategy analogous to visual fi xation is not possible in the tac-
tile modality. A third reason for our modest bitrate may be the 
motivation of our (naïve) participants (Nijboer et al., 2009; Kleih 
et al., in press). In our experimental procedure, we did not check 
whether participants counted the correct number of targets and 
the fi nancial reward did not depend on performance. Introducing 
performance checks and possibly boosting their motivation by 
rewarding them for every correctly classifi ed target stimulus may 
be ways to increase performance. Finally, our SOA of 626 ms is 
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conditions of Experiment 2. Only data from electrode Pz is presented.

tactor and every time going to the next tactor counter-clockwise. 
Each of the six sequences consisted of activating each tactor in 
that condition (the target and the fi ve distracters) 10 times, in 
pseudo random order. One tactor could not vibrate twice in a 
row, since that would have resulted in one long vibration for the 
Long On condition.

The recording materials, task and procedure and Classifi cation 
algorithm and analysis were exactly the same as in Experiment 1.

Results
Figure 4A shows the classifi cation accuracy for each condition, 
together with an indication of chance performance (1/6 for all 
conditions). Figure 4B presents the classifi cation accuracy cor-
rected for chance. One-sample t-tests against zero showed that 
the classifi cation was above chance in all conditions (all p-values 
0.01 or lower). A repeated measures ANOVA showed an effect of 
condition [F

(3,30)
 = 4.51; p < 0.01]. Tukey post-hoc tests indicated 

that both the Baseline condition and the Medium On condition 
differed signifi cantly from the Long On condition (p < 0.01 in 
both cases). The difference between the Short On condition and 
the Medium On condition approached signifi cance (p = 0.06). 
Figure 4C shows the bitrate and Table 1 the numerical values. 
A repeated measures ANOVA indicated an effect of condition 
[F

(3,30)
 = 5.03; p < 0.01]. Tukey post-hoc tests showed that bitrate 

was signifi cantly higher in the Medium On than in the Long On 
condition (p < 0.01). In every condition of Experiment 2, except 
for the Long On condition, at least two participants achieved 
the maximal achievable bitrate. For the Baseline and Medium 
On condition the number of participants achieving the maximal 
score was even 5 and 4 respectively.

Figure 5 depicts the mean Pz EEG samples from 200 ms before 
stimulus onset until 800 ms after, for each condition, and separately 
for target and distracter presentations (solid and dashed curves 
respectively). In line with the classifi cation accuracy, the P300 for 
the Long On condition seems relatively small.
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Results
Figure 6A shows the classifi cation accuracy for each condition and 
Figure 6B the classifi cation accuracy corrected for chance. One-
sample t-tests against zero on classifi cation accuracy corrected for 
chance revealed that in all conditions except for the Medium On – 
Short Off condition (p = 0.052), classifi cation performance was sig-
nifi cantly higher than chance (p = 0.046 for Medium On–Medium 
Off, other p-values < 0.01). A repeated measures ANOVA showed 
a signifi cant effect of condition [F

(3,30)
 = 2.98; p < 0.047]. Tukey 

post-hoc tests did not show signifi cant differences, although the 
differences between condition Long on–Long Off compared to 
conditions Medium On–Medium Off and Medium On–Short 
Off approached signifi cance (p = 0.10 and p = 0.07 respectively). 
Figure 6C shows the bitrate and Table 1 the numerical values. A 
repeated measures ANOVA indicated no effect of condition on 
bitrate [F

(3,30)
 = 0.57; p = 0.64]. In every condition of Experiment 

3, except for the Medium On–Short Off condition, at least one 
participant achieved the maximal achievable bitrate.

Figure 7 depicts the mean Pz EEG for each condition. The 
mean P300 amplitudes seem roughly consistent with classifi ca-
tion accuracy.

Discussion
By shortening on- and off-time further in Experiment 3, we did 
not achieve a further increase in classifi cation accuracy or bitrate. 
The best results in terms of bitrate tended to be reached in the 
Long On–Long Off condition (188 ms on-time and 188 ms off-
time, i.e. an SOA of 376 ms) and the Long On–Short Off condition 
(188 ms on time and 63 ms off-time, i.e. an SOA of 251 ms). The 
accuracy tended to decrease in this latter condition. Thus, reducing 
the SOA below the baseline of 376 did not have a positive effect 
in our experiment.

The trend in the pattern of our results did not replicate that 
of the psychophysical study by van Erp (2005a) which indicated 
that off-time affected performance more strongly than on-time. 

Discussion
The results of Experiment 2 showed that we can reduce the SOA 
from 626 to 376 ms without reducing classifi cation accuracy. The 
resulting bitrate could be increased by a factor 1.7 compared to the 
timing settings of Experiment 1. However, consistent with van Erp 
(2005a) it is critical how the SOA was reduced. The Medium On 
condition resulted in a signifi cantly higher classifi cation accuracy 
and bitrate than the Long On condition even though the SOA was 
376 ms in both conditions. Because in our design, SOA and target-
to-target interval were coupled, this means that target-to-target 
interval is at least not the only factor determining classifi cation 
accuracy and bitrate.

Since shortening the SOA from 626 to 376 did not necessarily 
decrease classifi cation accuracy and could result in a higher bitrate, 
we further reduced the SOA in Experiment 3.

EXPERIMENT 3
Participants
Eleven healthy participants (six female) between 19 and 32 years 
old volunteered to participate in Experiment 2. None of them had 
participated in any other BCI experiment before.

Conditions
As a baseline we took the best condition of Experiment 2, which was 
Medium On (188 ms on, 188 ms off) and called it Long On–Long 
Off in this experiment. We then reduced either the on-time or the 
off-time arriving at the following conditions: Long On–Short Off 
(188 ms on, 63 ms off), Medium On–Medium Off (125 ms on, 
125 ms off) and Medium On–Short Off (125 ms on, 63 ms off). 
Table 1 summarizes the details of the four different conditions 
in Experiment 3. As in Experiment 2, there were six tactors in all 
conditions.

The stimuli, recording materials, design, task and procedure 
and classifi cation algorithm and analysis were exactly the same as 
in Experiment 2.
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that participants of Experiment 2 scored about 1.3 times better 
than the participants of Experiment 3. To facilitate a rough direct 
comparison between experiments, we computed the mean bitrate 
aligned to the results of Experiment 2 (last column Table 1). For 
this, the mean bitrates of Experiment 1 were multiplied by 1.4 and 
the mean bitrates of Experiment 3 were multiplied by 1.3. With this 
rough procedure we neglect possible effects that the context created 
by the other conditions in the experiment could exert. Even though 
the conditions are technically exactly the same, the Long On–Long 
Off condition in Experiment 3 could be experienced as relatively 
easy compared to the Medium On condition in Experiment 2 which 
again might have infl uenced the results. Keeping in mind that most 
differences between bitrates were not signifi cant, the highest bitrates 
for our setup were achieved with an on-time of 188 and an off-time 
between 63 and 188 ms (where the accuracy tended to be slightly 
higher for the longer off-time). Lengthening the off-time did not 
result in a higher bitrate (compare Baseline versus Medium On 
in Experiment 2) since higher classifi cation accuracies could not 
outweigh the longer presentation time. Reducing the on-time below 
188 ms while keeping the off-time the same tended to reduce the 
bitrate (compare Long On–Short Off and Medium On–Short Off). 
The only room for further bitrate improvement through manipu-
lation of stimulus timing parameters might be reducing the off-
time below 63 ms for an on-time of 188. However, an off-time of 
0 ms seems too short as indicated by the particularly bad result of 
the Long On condition in Experiment 2. Off-times close to 0 ms 
may result in spatio-temporal interactions like apparent motion 
(Kirman, 1974a) and therewith impede performance.

The optimal timing parameters as found in Experiment 2 and 
3 using six tactors cannot be generalized to other numbers of tac-
tors without further investigation. When using less tactors, ERP 
overlap effects could cause a decrease in performance for short on- 
and off-times. On the other hand, stimuli delivered by few evenly 
spaced tactors are less vulnerable to spatio-temporal interactions 
compared to many tactors (Kirman, 1974b).

The achieved levels of classifi cation accuracy in this study are 
not high enough for most potential applications. There are several 
ways to possibly improve performance (both accuracy and bitrate) 
of our tactile P300 BCI. As already mentioned, more electrodes 
and training could help though obviously, these adjustments have 
their downsides. We also mentioned increasing user motivation. In 
contrast to many studies, we recorded from naïve, paid participants. 
The classifi cation technique that we used may not be optimal, as 
well as the number of stimulus repetitions before the algorithm 
made a decision on the attended tactor. The optimal number of rep-
etitions, the optimal timing parameters and classifi cation technique 
may best be determined for each individual user. With respect to the 
number of repetitions this may be done relatively easy online – that 
is, the BCI could stop presenting stimuli and make a decision once 
it is ‘certain enough’ about the user’s choice. Another potential way 
to (massively) increase bitrate is to adjust stimulus presentation so 
that different combinations of options are presented simultane-
ously, much like the traditional P300 speller. For example, think 
of adding other information than, in our navigation example, the 
desired movement direction such as the desired step size by adding 
a dimension like torso height. In this way, different heights in torso 
location would act as P300 speller rows while different  locations 
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Here we fi nd similar results for conditions with equal on-times and 
varying off-times and different results for conditions with different 
on-times and equal off-times. Thus, the tendency is rather that on-
time has a stronger effect than off-time. Apparently the task used in 
van Erp (2005a), judging relative locations of tactile stimuli, does 
not directly generalize to the present task (counting tactile stimuli 
at a particular absolute location on the body).

GENERAL DISCUSSION AND CONCLUSIONS
The bitrate results of the three experiments are summarized in 
Table 1. It is diffi cult to compare bitrates across experiments directly, 
since different participants were recorded in each experiment and 
(as commonly found in BCI experiments) there are large individual 
differences in performance. In Experiment 2, participants scored 
on average 1.4 higher than in Experiment 1 as can be seen when 
comparing the Six and the Baseline condition. Comparing the 
Medium On condition to the Long On–Long Off condition shows 
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around the waist act as columns. Finally, an intelligent way of pre-
senting options, e.g. by taking into account how likely different 
options are to be chosen and omitting presentation of impossible 
options (which will be often present in navigation applications) 
will certainly improve accuracy and bitrate.

This study demonstrated the feasibility of a BCI controlled by 
EEG responses, elicited by attending to specifi c vibro-tactile stimuli 
around the waist. Tactile stimuli are particularly useful in BCIs 
for patients who cannot fi xate or move their eyes well, or who 
completely lost visual perception. For other users the advantages 
of a tactile BCI are that it allows them to look and listen to their 
environment rather than to stimuli necessary for controlling the 
BCI, and that tactile stimuli can easily go unnoticed by others. 
Although a BCI with tactile stimuli to for example the hands and 
wrists could work as well (Satomi et al., 1995; Ito and Takamatsu, 

1997; Nakajima and Imamura, 2000) and would be suitable for 
some applications, tactile stimuli around the waist are specifi cally 
appropriate for navigation displays (van Erp and van Veen, 2004; 
van Erp et al., 2005) and thus a logical choice for navigation BCIs. 
We tested stimulus confi gurations consisting of two, four and six 
equally distributed tactors and did not fi nd a signifi cant difference 
in classifi cation performance. This suggests that all of these num-
bers of tactors could be used in such a BCI. With optimal on-times 
of about 188 ms and off-times of 63–188 ms, SOAs are similar to 
those of many visual BCIs.
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