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Tetrahydrobiopterin (BH4) is a naturally occurring cofactor essential for critical metabolic 
pathways. Studies suggest that BH4 supplementation may ameliorate autism symptoms; the 
biological mechanism for such an effect is unknown. To help understand the relation between 
central BH4 concentration and systemic metabolism and to develop a biomarker of central BH4 
concentration, the relationship between cerebrospinal fluid BH4 concentration and serum amino 
acids was studied. BH4 concentration was found to be distributed in two groups, a lower and 
higher BH4 concentration group. Two serum amino acids, citrulline and methionine, differentiated 
these groups, and the ratio of serum citrulline-to-methionine was found to correlate with the 
cerebrospinal fluid BH4 concentration (r = −0.67, p < 0.05). Both citrulline and methionine are 
substrates in inflammation and oxidative stress pathways – two pathways that utilize BH4 and 
are abnormally activated in autism. These data suggests that central BH4 concentration may 
be related to systemic inflammation and oxidative stress pathways.
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that demonstrates a wide range of symptoms and age of presenta-
tions but invariably patients demonstrate dystonia with diurnal 
variation (Hyland et al., 1993).

Less well understood is the role of BH
4
 in neurodevelopmental 

disorders. Unconjugated 6R-5,6,6,8-tetrahyrobiopterin cerebros-
pinal fluid concentration in autistic children has been reported to 
be 42% lower than in neurotypical children. Further analysis of 
the autistic group found that only autistic children younger than 
7 years old, but not older autistic children, demonstrated signifi-
cantly lower 6R-5,6,6,8-tetrahyrobiopterin levels as compared to 
the control group. This younger group also demonstrated a reduc-
tion in total pterins and biopterin (Tani et al., 1994).

Several investigators have demonstrated a therapeutic effect of 
BH

4
 supplementation in children with autism. Over a 7-year period 

from 1984 to 1990, Japanese researchers demonstrated moderate or 
marked improvement in 41 to 64% in over 300 mildly to severely 
affected autistic children with 1–3 mg/kg/day of BH

4
 in five open-la-

bel and one double-blind placebo-controlled studies (Naruse et al., 
1984, 1990a,b; Nagahata et al., 1990; Nakane et al., 1990; Takesada 
et al., 1992). In the double-blind placebo control study, Naruse et al. 
(1990a) demonstrated that the improvement in autism symptoms 
was limited to autistic children younger than 5 years of age. While 
these aforementioned studies treated children with autism without 
knowing cerebrospinal fluid BH

4
 concentrations, both Fernell et al. 

(1997) and Danfors et al. (2005) measured cerebrospinal fluid BH
4
 

concentration and treated children with cerebrospinal fluid BH
4
 

concentrations less than 12 and 30 nM/L, respectively. Treating 
children with 3 mg/kg/day over a 12-week period in an open-labeled 
manner, Fernell et al. (1997) found improvements in social respon-
siveness, communication, and cognitive abilities and demonstrated 
a decrease in the baseline elevation in D

2
 receptor binding found by 

positron emission tomography. In a 26-week double-blind, rand-
omized, placebo-controlled trial Danfors et al. (2005) demonstrated 

IntroductIon
Tetrahydrobiopterin, sapropterin, or BH

4
 is a naturally occurring 

essential cofactor for several critical metabolic pathways, including 
the production of monoamine neurotransmitters, the breakdown 
of phenylalanine, and the production of nitric oxide. Using BH

4
 

as a cofactor, two aromatic amino acid hydroxylases, tyrosine-3-
hydroxylase and tryptophan-5-hydroxylase, catalyze the conversion 
of tyrosine and tryptophan to l-dopa and 5-hydroxytryptophan, 
respectively. These products are then further converted into 
dopamine and serotonin, respectively, and then further metab-
olized into norepinephrine and melatonin, respectively. BH

4
 is 

used as a cofactor with a third aromatic amino acid hydroxylase, 
phenylalanine-4-hydroxylase, to convert phenylalanine to tyrosine. 
Additionally, BH

4
 is essential in the production of nitric oxide, an 

important second messenger molecule used primarily for com-
munication in vascular and neural tissues. In this reaction, nitric 
oxide synthase converts l-arginine and oxygen to l-citrulline and 
nitric oxide.

BH
4
 is synthesized from guanosine-5′-triphosphate, a 

purine nucleotide, by three enzymatic reactions (guanosine-5′-
triphosphate cyclohydrolase, 6-pyruvoyltetrahydropterin syn-
thase, and sepiapterin reductase; Thony et al., 2000). A deficiency 
in BH

4
 production can result in two neurological disorders. 

Hyperphenylalaninemia, specifically phenylketonuria type IV, 
presents at birth with elevated phenylalanine in the blood and 
represents approximately 1–2% of phenylketonuria cases. This 
condition results from a reduction in phenylalanine-4- hydroxylase 
activity due to a deficiency in the necessary cofactor for this enzyme, 
BH

4
, and should be differentiated from classic phenylketonuria 

where phenylalanine-4-hydroxylase itself is defective. If pheny-
lalanine levels are not controlled early in life in phenylketonuria, 
severe mental retardation will develop. BH

4
 deficiency can also 

result in dopamine-responsive dystonia, a neurological disorder 
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that BH
4
 levels were reduced below normal in three patients with 

subacute and chronic rabies infection. These investigators suggested 
that this acquired BH

4
 deficit was secondary to excess oxidation of 

BH
4
 and demonstrated significant neurological improvement in 

one of the two patients treated with 20 mg/kg of BH
4
.

Here it is suggested that prolonged excessive consumption and 
poor recycling of BH

4
 by non-central nervous system metabolic 

pathways deplete the available BH
4,
 thereby preventing adequate 

BH
4
 levels in the central nervous system. To provide support for 

this notion, the relation between cerebrospinal fluid BH
4
 concentra-

tions from a range of children with developmental and neurological 
disorders, and serum markers of oxidative stress and nitric oxide 
is examined. In this study serum amino acids are used as serum 
markers. It is hypothesized that these markers will be associated with 
cerebrospinal fluid BH

4
 concentration. Specifically it is hypothesized 

that a lower cerebrospinal fluid BH
4
 concentration will be associ-

ated with a reduction in methionine due to a reduced availability 
of folate and activation of the oxidative stress pathway (James et al., 
2004), a reduction in arginine and an increase in citrulline due to 
an increase in the production of nitric oxide from inflammatory 
processes, and an increase in phenylalanine, tyrosine and tryptophan 
due to reduced aromatic amino acid hydroxylase activity.

MaterIals and Methods
The goal of this study was to examine the association of amino 
acid biochemical markers with cerebrospinal fluid BH

4
 concentra-

tion. This required a population with a wide range of cerebrospinal 
fluid BH

4
 concentrations, and the patients reviewed in this study 

provided a wide range of cerebrospinal fluid BH
4
 concentrations. 

Including controls in the current study would not be appropriate 
due to ethical considerations. Specifically, the risk-benefit ratio of 
the lumbar puncture procedure is prohibitively high for healthy typ-
ically developing individuals who would not otherwise require such 
a procedure. A chart review found twenty patients who underwent 
a diagnostic lumbar puncture with measurement of cerebrospinal 
fluid BH

4
 concentration. All patients had a neurological diagnosis. 

Children with autism were diagnosed with developmental delays 
and encephalopathy and were distinguished from individuals with 
global developmental delay without autistic features.

Patients provided permission for review of their medical records 
through an Institutional Review Board approved protocol. Patient 
characteristics, including positive family history of neurologic or 
psychiatric disorder, findings from electroencephalogram and 
magnetic resonance imaging were abstracted from the charts. 
Cerebrospinal fluid was obtained through a lumbar puncture 
under general sedation to rule out metabolic and/or infectious 
disorders. The cerebrospinal fluid of all patients demonstrated 
a normal number of white and red blood cells, protein, glucose, 
5-methyltetrahydrofolate and succinyladenosine concentrations. 
Cerebrospinal fluid was collected with standardized reagent tubes 
and frozen at −80°C until BH

4
 analysis. BH

4
 content was measured 

by reversed-phase high performance liquid chromatography with 
electrochemical detection (Howells and Hyland, 1987). Eleven 
patients also had plasma amino acids measured within 4 months 
of the cerebrospinal fluid collection. Since plasma amino acids 
measured several times for most patients, the average values were 
calculated and used in further analysis.

an improvement in social interactions with a dose of 3 mg/kg of 
BH

4
 given twice a day. This improvement was found to be greater 

for autistic children with higher intelligence. Lastly, most recently, 
Frye et al. (2010) reported that five of eight (63%) patients with 
autism and low pterin levels demonstrated improvement in social 
interactions and either verbal or non-verbal communication with 
treatment of 20 mg/kg/day of BH

4
 in an open-labeled manner.

Although studies have demonstrated that children with autism, 
as a group, have a reduced cerebrospinal fluid BH

4
 concentration 

and that some children with autism respond positively to BH
4
 

supplementation, the biological mechanism for these findings has 
not been explained. It is clear from clinical studies that not all 
children with autism benefit from BH

4
 supplementation and that 

some children have side effects of BH
4
 supplementation, such as 

increased irritability and sleep disruption (Frye et al., 2010). Thus, 
understanding the biological mechanisms involved in BH

4
 supple-

mentation is essential for determining which children may benefit 
from treatment with BH

4
 supplementation, understanding which 

underlying biological pathways are being modified with BH
4
 sup-

plementation, and understanding which patients may be at risk for 
side effects of BH

4
 supplementation. To this end, this study exam-

ines whether biochemical markers of common metabolic pathways 
sampled from the blood are associated with cerebrospinal fluid BH

4
 

concentration. Developing a biomarker of cerebrospinal fluid BH
4
 

concentration would allow individuals with low central BH
4
 levels 

to be selected for supplementation without undergoing a lumbar 
puncture and would allow the effect of BH

4
 supplementation to 

be monitored during the treatment period in order to verify an 
adequate metabolic response to BH

4
 supplementation and optimize 

dosing of BH
4
 supplementation.

In order to consider what biochemical markers might respond 
to BH

4
 supplementation, the metabolic pathways that may benefit 

from BH
4
 supplementation in autism are considered. Here the focus 

is on children with autism since this is the population of individu-
als that has been found to have a positive response to BH

4
 (Frye 

et al., 2010). Examination of the metabolism characteristics unique 
to autism demonstrates that pathways that consume and recycle 
BH

4
 may be particularly dysfunctional in autism. For example, 

several lines of evidence suggest that children with autism manifest 
excessive inflammation and over activation of the immune sys-
tem (Pardo et al., 2005; Dietert and Dietert, 2008; Castellani et al., 
2009). Nitric oxide, a key mediator of inflammation and immune 
response, is produced by a BH

4
 dependent reaction. It is possible 

that a prolonged over activation of the immune system can result 
in excessive nitric oxide production and can, over time, deplete 
BH

4
. Children with autism might also have an underlying reduc-

tion in BH
4
 recycling for several reasons. Children with autism 

have been shown to have an impaired methylation capacity and 
markers of increased oxidative stress (James et al., 2004; Kern and 
Jones, 2006; Pardo and Eberhart, 2007; Deth et al., 2008). Folate is 
a key metabolite used to reduce oxidative stress. It is possible that 
a depletion of folate can result in reduced BH

4
 recycling through 

an over activation of the oxidative stress pathway. In addition, BH
4
 

itself can act as an antioxidant, thus being depleted in the setting 
of high oxidative stress. Empirical evidence exists to support the 
notion that excess inflammation and oxidative stress can result in 
an acquired BH

4
 deficiency. Willoughby et al. (2009) demonstrated 
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line, arginine, and methionine. In a separate analysis, age was also 
added to the model since cerebrospinal fluid BH

4
 concentrations 

may be age dependent. Once the stepwise discriminant analysis 
selected the significant plasma amino acids, the selected variables 
were entered into the “DISCMIN” procedure in SAS, with and 
without prior probabilities, to determine the performance of the 
discriminant function.

results
hIgh and low Bh4 groups and theIr characterIstIcs
Cluster analysis was used to determine if there were distinct groups 
of patients with a common range of BH

4
 values. The cluster analysis 

identified two groups based on BH
4
 values: a cluster with 14 values 

with a cerebrospinal fluid BH
4
 concentration of 31 nM/L and below 

(mean = 20.14, SE = 0.160) and another cluster with 7 values with 
a cerebrospinal fluid BH

4
 concentration of 35 nM/L and above 

(mean = 39.43, SE = 1.24; see Table 1). From these clusters we 
formed low and high cerebrospinal fluid BH

4
 groups. The low BH

4
 

Cluster analysis using the Ward technique as implemented by 
the “CLUSTER” procedure of SAS was used to determine if there 
were groups with different cerebrospinal fluid BH

4
 concentrations, 

and if there were different groups, how many. Groups were analyzed 
with respect to differences in age, positive family history, spikes 
or slowing on electroencephalogram, abnormal magnetic reso-
nance imaging and 5-hydroxyindoleacetic acid, homovanillic acid 
and 3-O-methyldopa concentrations. Defining these groups also 
allowed the assignment of prior probabilities for each group. These 
prior probabilities were important for examining the performance 
of the discriminant functions defined in the next step.

To determine which plasma amino acids were related to cer-
ebrospinal fluid BH

4
 and could be used to predict the groups 

identified, a stepwise discriminant analysis as implemented by the 
“STEPDISC” procedure of SAS was used to select the plasma amino 
acids that, in combination, could differentiate the BH

4
 groups 

found. The specific plasma amino acids entered into the discrimi-
nant analysis included tyrosine, tryptophan, phenylalanine, citrul-

Table 1 | Participant characteristics.

Presenting FHx EEG MRI Age (m)/ BH4 5-HIAA HVA 3OMD 

diagnosis    gender (nM/L) (nM/L) (nM/L) (nM/L)

GDD MM NL NL 15/F 12 332 669 24

GDD ED, MR ND NL 14/M 12 301 479 91

Chorea NS NL Punctate 204/F 13 129 189 12 

   lesions

Autism Mom Sz NL Posterior 72/M 17 89 342 18 

   fossa cyst

Autism NS NL NL 48/F 19 191 636 38

GDD ED Slow PVL 67/M 19 281 573 16

Autism NS NL NL 30/M 19  177 558 83

Refractory Sz, Psych NL Volume loss 168/M 20 179 374 18 

seizures

Autism NS NL DWMA 65/M 21 230 414 24

GDD NS Slow Volume loss 42/M 21 226 720 35

GDD NS NL PVL 63/F 23 201 318 12

Dystonia NS ND NL 52/M 27 363 359 61

     28 177 234 25

Autism Sz, AD Multifocal PVL 32/M 31 195 599 26 

  spikes

SD Sz Focal spikes NL 38/F 35 226 720 35

Autism PDD NL NL 34/M 38 89 342 18

GDD Sz Slow Volume 21/F 38 187 500 53 

   loss, PVL

GDD DD ND Thin CC 22/M 40 321 575 56

GDD NS Multifocal Volume loss 29/M 40 244 622 21 

  spikes

Refractory NS Multifocal NL 6/F 40 336 602 48 

seizures  spikes

GDD ADHD Focal Spikes DWMA 22/M 45 201 619 18

Presenting diagnosis: GDD, global developmental delay; Family history (FHX): AD, autism disorder; ADHD, attention deficit hyperactivity disorder; DD, developmental 
delay; ED, early death; MM, multiple miscarriage; MR, mental retardation; NS, not significant; PDD, pervasive developmental disorder; Psych, psychiatric disorders; 
Sz, seizure disorder; Electroencephalogram (EEG): ND, not done; NL, normal; Slow, generalized slowing; Magnetic resonance imaging (MRI): CC, corpus callosum; 
DWMA, diffuse white matter abnormalities; NL, Normal; PVL, periventricular leukomalacia; Age (m)/gender: M, male; F, female; 5-HIAA, 5-hydroxyindoleacetic acid; 
HVA, homovanillic acid; 3-OMD, 3-O-methyldopa.
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 individuals in the high and low BH
4
 groups. The amino acids, 

 citrulline and methionine, significantly contributed to the discri-
minant function [Wilks’ lambda F(2,8) = 6.66, p < 0.05]. As can be 
seen in Figure 1A, citrulline was significantly elevated in the low 
BH

4
 group [t(10) = 2.34, p < 0.05] while methionine was non-sig-

nificantly depressed in the low BH
4
 group [t(10) = 1.32, p > 0.05]. 

Assuming equal prior group probabilities, the discriminant func-
tion did not make any errors, resulting in perfect sensitivity, spe-
cificity, and positive and negative predictive values (Table 2). The 
scatter plot of all citrulline-to-methionine values, along with the 
criteria that divided the two groups assuming an equal prior group 
probability, is displayed in Figure 1B. The discriminant function 
produced using the observed prior group probabilities misclassified 
one patient from the high BH

4
 group but none of the patients from 

the low BH
4
 group, resulting in a perfect sensitivity and negative 

predictive value. Since we found an age difference between the 
two BH

4
 groups, we added age and interactions of age with amino 

acid markers into the initial stepwise discriminant analysis. This 
analysis selected citrulline and the interaction between citrulline 
and age [Wilks’ lambda F(2,8) = 8.69, p < 0.01]. Assuming equal 
prior group probabilities, the discriminant function classified one 

group was significantly older (mean = 66.0 months, SE = 15.10) 
than the high BH

4
 group [mean = 24.6, SE = 4.3; t(20) = 2.66, 

p < 0.05] and age was found to correlate negatively with cerebros-
pinal fluid BH

4
 level [r(19) = −0.44, p < 0.05]. There was a signifi-

cantly greater percentage of patients in the high BH
4
 group (60%) 

with discharges on electroencephalogram as compared to the low 
BH

4
 group [9%, χ2 (1) = 4.75, p < 0.05]. The two groups were not 

different in the proportion of patients with a positive family his-
tory, slowing on electroencephalogram or abnormal magnetic reso-
nance imaging findings. 5-Hydroxyindoleacetic acid, homovanillic 
acid and 3-O-methyldopa were not significantly different between 
groups. The majority of the children with autism were in the low 
BH

4
 group (80%) as compared to the high BH

4
 group. Defining 

these groups also enabled us to assign prior probabilities of 0.70 
for the low group and 0.30 for the high group.

seruM cItrullIne and MethIonIne concentratIons 
dIfferentIate the hIgh and low Bh4 groups
As discussed above, amino acids believed to be related to BH

4
 

metabolism were entered into a discriminant analysis to deter-
mine if concentrations of specific amino acids could  differentiate 

FIGuRE 1 | The relationship between central tetrahydrobiopterin (BH4) 
concentration and serum citrulline and methionine concentration. 
(A) Citrulline was found to be higher and methionine was found to be lower in 
individuals in the low BH4 group as compared to individuals in the high BH4 group. 

(B) Scatter plot of citrulline and methionine values illustrating the separation 
between the low and high BH4 groups. The diagonal line illustrates the group 
separate. (C) The ratio of citrulline-to-methionine is significantly different between 
the low and high BH4 groups and (D) correlated with the central BH4 concentration.



www.frontiersin.org July 2010 | Volume 4 | Article 52 | 5

Frye BH4 in neurodevelopmental disorders

Alternatively, the citrulline-to-methionine ratio could be used with 
the caveat that the value does not appear to discriminate among 
groups as well as the quantity derived from Eq. 1. The dividing point 
for this ratio, as calculated by the discriminant function, is 1.05 
assuming equal group probabilities and 0.98 assuming observed 
group probabilities.

dIscussIon
This report examined cerebrospinal fluid BH

4
 concentrations in 20 

children and adolescents with neurological disorders. First, clus-
ter analysis was used to determine if, and how many, BH

4
 groups 

were in the patient population. Two groups of patients were found: 
70% of the patients had cerebrospinal fluid BH

4
 concentrations of 

31 nM/L and below and 30% had concentrations of 35 nM/L and 
above. Significantly more patients in the group with higher BH

4
 

concentrations demonstrated epileptiform activity on electroen-
cephalogram, and the majority of the children with the diagnosis 
of autism were in the low BH

4
 group. The discriminant analysis 

revealed that the serum concentration of two amino acids, citrul-
line and methionine, could discriminate the high and low BH

4
 

groups and that the ratio of citrulline-to-methionine correlated 
with the cerebrospinal fluid BH

4
 concentration. The relevance of 

these specific amino acids to BH
4
 metabolism is discussed below. 

The relation identified in the analysis above is significant in that it 
implies that measurement of these peripheral markers of metabo-
lism may be useful for identifying individuals with low central BH

4
 

levels who might benefit from BH
4
 supplementation.

The low and high BH
4
 groups appear to correspond to patients 

with low-to-normal and normal-to-high cerebrospinal fluid BH
4
 

concentrations, respectively. It is somewhat surprising that a group 
with markedly low cerebrospinal fluid BH

4
 levels was not found 

since some research suggests that cerebrospinal fluid BH
4
 concen-

trations in autism might be depressed; however, only a subset of 
individuals within our population had features of autism. Two 
studies that measured BH

4
 concentrations in children with autism 

have found concentrations, for the most part, below the lowest 
cerebrospinal fluid BH

4
 concentration of our patient population 

(Tani et al., 1994; Fernell et al., 1997). However, another study 
found cerebrospinal fluid BH

4
 concentrations in a group of autistic 

children more comparable with our findings (Danfors et al., 2005). 
In addition, Danfors et al. (2005) also excluded about one-third of 
the children they evaluated due to cerebrospinal fluid BH

4
 concen-

tration greater than 30 μmol/mL, a proportion very close to the 
proportion of patients in the high BH

4
 group reported in this study. 

The great majority of studies that have shown an  improvement 

observation in the low BH
4
 group incorrectly resulting in high 

sensitivity, specificity, and positive and negative predictive values. 
Assuming the observed prior group probabilities, the discriminant 
function classified all observations correctly, resulting in perfect 
sensitivity, specificity, and positive and negative predictive values.

the cItrullIne-to-MethIonIne ratIo: a sIMple Index that 
dIfferentIates hIgh and low Bh4 groups
To produce a simple, easy to calculate index of cerebrospinal fluid 
BH

4
, the ratio of citrulline-to-methionine was calculated. Figure 1C 

demonstrates that the citrulline-to-methionine ratio was signifi-
cantly higher in the low BH

4
 group as compared to the high BH

4
 

group [t(10) = 3.44, p < 0.01]. In addition, the citrulline-to-me-
thionine ratio was found to significantly correlate with cerebros-
pinal fluid BH

4
 levels [r(9) = −0.67, p < 0.05; see Figure 1D]. The 

discriminant function with the citrulline-to-methionine ratio was 
statistically significantly [Wilks’ lambda F(1,9) = 11.35, p < 0.01]. 
The discriminant function with equal prior group probabilities 
classified one observation in the low BH

4
 group incorrectly but 

no observations in the high BH
4
 group incorrectly, resulting in a 

perfect specificity and positive predictive value but a lower sen-
sitivity and negative predictive value. The discriminant function 
produced using the observed prior group probabilities misclassified 
one observation in the high BH

4
 group and no patients in the low 

BH
4
 group, resulting in a perfect sensitivity and negative predictive 

value. Including age and the interaction of age with the citrulline-
to-methionine ratio as predictors in the stepwise analysis did not 
improve the model.

a practIcal Method for applyIng the dIscrIMInant  
functIon results
In order to make the discriminant functions clinically useful, a sim-
ple method for calculating group membership is discussed. Since 
the discriminant function that included methionine and citrulline 
did not make assumptions about prior group probabilities and 
provided perfect discrimination between groups, it was used to 
calculate group membership. Group membership can be calculated 
by using Eq. 1 with a patient’s methionine and citrulline values. If 
the resulting quantity is greater than 0, then the patient would be 
considered to be in the low BH

4
 group. If the quantity resulting 

from Eq. 1 is less than 0, then the patient would be classified in 
the high BH

4
 group.

Group citrulline M L

methionine M L

= − + ×
− ×

3 48 0 39

0 22

. . ( / )

. ( / ).

µ
µ

 (1)

Table 2 | Performance statistics for discriminant functions.

Model variables Prior group Sensitivity (%) Specificity (%) Positive predictive  Negative predictive  

 probability   value (%) value (%)

Citrulline and methionine Equal 100.00 100.00 100.00 100.00

Citrulline and methionine Observed 100.00 75.00 87.50 100.00

Citrulline and citrulline × age Equal 85.71 100.00 100.00 80.00

Citrulline and citrulline × age Observed 100.00 100.00 100.00 100.00

Citrulline/methionine ratio Equal 85.71 100.00 100.00 80.00

Citrulline/methionine ratio Observed 100.00 75.00 87.50 100.00
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tomography has demonstrated a reduction in the baseline increase 
in dopamine D

2
 receptor binding after 12 weeks of BH

4
 supple-

mentation (Fernell et al., 1997). It is important to state that it is 
highly likely that not all children with autism have low monoamine 
neurotransmitters, as the support for this idea across studies in 
mixed (Kolevzon et al., 2006; Posey et al., 2006b; Soorya et al., 
2008). This is most likely the result of the heterogeneity in the 
biological mechanisms underlying autism and supports the need 
to develop biochemical markers of central metabolic processes in 
children with autism and other neurodevelopmental disorders, 
and might explain why not all children with autism respond to 
BH

4
 supplementation.

Low central nervous system BH
4
 levels can result in several sec-

ondary central nervous system consequences. First, BH
4
 is necessary 

for the production of nitric oxide, a soluble signaling molecule that 
appears to be important for cell proliferation, neuronal motility, 
and synaptic maturation during development (Tegenge and Bicker, 
2009) and communication between neurons and both neuronal 
and non-neuronal cells (Garthwaite, 2008). Second, BH

4
 is associ-

ated with growth factors, including nerve growth factors, in animal 
models (Anastasiadis et al., 1997). Third, BH

4
 has been shown to be 

a protective factor for nitric oxide toxicity and a superoxide radical 
scavenger (Kojima et al., 1995; Koshimura et al., 1998). Fourth, 
reduced levels of monoamine neurotransmitters could result in 
dysfunction of important neural pathways, leading to underdevel-
opment of such important pathways. Fifth, BH

4
 is an enhancer of 

the synaptic release of a wide range of neurotransmitters includ-
ing the catecholamines, serotonin, acetylcholine, glutamate, and 
gamma aminobutyric acid (Koshimura et al., 1990; Mataga et al., 
1992). Thus, a reduction in BH

4
 could result in a reduction in 

neurotransmitter release during a critical time in development. 
Clearly BH

4
 is involved in several metabolic and neurotransmitter 

pathways critical for brain function, and development and low BH
4
 

levels during development could have devastating consequences 
on brain development.

Two serum amino acids, citrulline and methionine, were found 
to differentiate high and low cerebrospinal fluid BH

4
 concentration 

in individuals with neurological disorders. In addition, the ratio 
of these two amino acids was correlated with the cerebrospinal 
fluid BH

4
 concentration. Since these amino acids are an integral 

part of metabolic pathway that uses BH
4
 both systemically and 

centrally, it is suggested that dysfunction of such metabolic path-
ways is linked to changes in BH

4
 levels. Specifically, a reduction in 

serum methionine is proposed to be linked to a reduction in folate 
availability and activation of the oxidative stress pathway, and an 
increase in serum citrulline is proposed to be linked to an increase 
in nitric oxide production from overactive inflammatory path-
ways. This notion is supported by the fact that some children with 
autism demonstrate these metabolic abnormalities and respond 
to BH

4
 supplementation.

Several aspects of the hypothesized relation between cerebro-
spinal fluid BH

4
 concentration and serum amino acids were not 

verified by our analysis. For example, arginine was not found to be 
reduced. This is most likely due to the fact that changes in metabo-
lism, including BH

4
 metabolism, are due to long-standing chronic 

effects of disease. In such states, enzymes are regulated to compen-
sate for the abnormal metabolic state. For example, down regulation 

in autism symptomatology with BH
4
 supplementation did not 

 measure blood, urine or cerebrospinal fluid BH
4
 concentrations. 

Thus, it is difficult to know whether BH
4
 supplementation affected 

children with low, normal or high BH
4
 levels or children with a 

mixture of these levels. In fact it may be better to think of patient 
populations that might have over activation of metabolic systems 
associated with BH

4
 utilization, such as autism, as having a relative 

insufficiency in BH
4
, rather than a BH

4
 deficiency. In such a case, 

the central BH
4
 concentration could be low normal and still be 

insufficient to meet the metabolic demands of the individual.
One of the important insights that this report highlights, regard-

less of the exact cerebrospinal fluid BH
4
 concentrations of our 

patients, is that central nervous system BH
4
 levels may very well be 

associated with peripheral metabolic pathways. As discussed above, 
we believe that this relationship is a result of consumption and recy-
cling of BH

4
 by non-central metabolic pathways. Additionally, poly-

morphisms in one of the several genes that code for BH
4
 production 

could be associated with reduced or inefficient BH
4
 production or 

recycling. Such a notion would be consistent with the significant 
nominal association between the 6-pyruvoyl-tetrahydropterin syn-
thase gene and autism (Schnetz-Boutaud et al., 2009). Of course, 
the population studied does not represent typically developing indi-
viduals, and many of the children we examined may be expected 
to have activation of metabolic pathways that consume BH

4
. This 

limits the application of the relationship observed to those children 
and adolescents with neurodevelopmental disorders. However, this 
population may be one of the most important populations to which 
to apply the findings of this study since they may be high consum-
ers of BH

4
 and have a high need for BH

4
 supplementation. Indeed, 

several studies have demonstrated improvement in development 
and behavior with supplementation of BH

4
 in children with autism 

(Naruse et al., 1984, 1990a,b; Nagahata et al., 1990; Nakane et al., 
1990; Takesada et al., 1992; Fernell et al., 1997; Danfors et al., 2005; 
Frye et al., 2010).

Children with autism have symptoms consistent with a central 
BH

4
 deficiency. For example, BH

4
 deficiency can result in low pro-

duction of monoamine neurotransmitters, including serotonin, 
dopamine, and norepinephrine. There is a significant amount of 
evidence that deficits in these monoamine neurotransmitters are 
present in some children with autism. Dysfunction in the serotonin 
system in autism has been documented by several investigators 
(Pardo and Eberhart, 2007). Children with autism have clini-
cal symptoms, such as obsessive-compulsive disorder and anxi-
ety, seen in other disorders where serotonin deficiency has been 
implicated (McDougle et al., 1995), and there are many studies 
that suggest that selective-serotonin reuptake inhibitors may be 
efficacious in the treatment of autistic symptoms (Kolevzon et al., 
2006; Posey et al., 2006a). Children with autism have a high inci-
dence of sleep initiation and maintenance disorders, suggesting 
a deficit in melatonin, a metabolite of serotonin (Richdale and 
Schreck, 2009). Children with autism have a high rate of execu-
tive function, attention regulation and hyperactivity, all symptoms 
suggesting dopamine and norepinephrine deficits (Bramham et al., 
2009; Corbett et al., 2009; Jahromi et al., 2009). Such behaviors are 
mitigated by psychopharmaceuticals designed to increase levels 
of dopamine and norepinephrine in children with autism (Posey 
et al., 2006b; Troost et al., 2006). In addition, positron emission 
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of arginase, the enzyme that catalyzes the breakdown of arginine to 
urea and ornithine in the urea cycle results in an increase in citrul-
line (Rabier and Kamoun, 1995; Tenu et al., 1999). Inhibition of 
arginase would prevent the decrease in arginine and would result 
in an increase in citrulline as seen in this study.

Clearly, future studies will need to examine other biomarkers 
of oxidative stress, nitric oxide, and inflammation to understand 
whether they correlate with the serum amino acid markers iden-
tified in this study and systemic and/or cerebrospinal fluid BH

4
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