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Decision neuroscience research, as currently practiced, employs the methods of neuroscience 
to investigate concepts drawn from the social sciences. A typical study selects one or more 
variables from psychological or economic models, manipulates or measures choices within 
a simplified choice task, and then identifies neural correlates. Using this “neuroeconomic” 
approach, researchers have described brain systems whose functioning shapes key economic 
variables, most notably aspects of subjective value. Yet, the standard approach has fundamental 
limitations. Important aspects of the mechanisms of decision making – from the sources of 
variability in decision making to the very computations supported by decision-related regions – 
remain incompletely understood. Here, I outline 10 outstanding challenges for future research 
in decision neuroscience. While some will be readily addressed using current methods, others 
will require new conceptual frameworks. Accordingly, a new strain of decision neuroscience 
will marry methods from economics and cognitive science to concepts from neurobiology and 
cognitive neuroscience.
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Deconstructing the dual-systems mindset
The most pervasive conceptual frameworks for decision 
neuroscience – and for decision science and even all of psychology, 
more generally – are dual-systems models. As typically framed, such 
models postulate that decisions result from the competitive inter-
actions between two systems: one slow, effortful, deliberative, and 
foresightful, the other rapid, automatic, unconscious, and focused 
on the present state (Kahneman, 2003). Considerable behavioral 
research supports key predictions of this class of models: e.g., time 
pressure and cognitive load have more limiting effects on delib-
erative than automatic judgments (Shiv and Fedorikhin, 1999). 
Many decision neuroscience studies, including seminal work, have 
described their findings in dual-systems terms (Sanfey et al., 2003; 
McClure et al., 2004a; De Martino et al., 2006), typically linking 
regions like lateral prefrontal cortex to the slow deliberative system 
and regions like the ventral striatum and amygdala to the rapid 
automatic system.

The dual-systems framework has been undoubtedly successful 
for psychological research, both by sparking studies of the con-
tributions of affect to decision making and by generating testable 
predictions for new experiments. Yet, it has had some unintended 
consequences for decision neuroscience, often because the psycho-
logical and neural instantiations of each system vary dramatically 
across studies. Psychological factors attributed to the emotional 
system include a range of disparate processes, from time pres-
sure and anger to pain and temptation. Conversely, brain regions 
like the orbitofrontal cortex can be labeled as making cognitive 
or emotional contributions, in different contexts (Bechara et al., 
2000; Schoenbaum et al., 2006; Pessoa, 2008). Some key regions 
do not fit readily into either system; e.g., insula and dorsomedial 
prefrontal cortex, which may play important roles in shaping acti-
vation in other regions (Sridharan et al., 2008; Venkatraman et al., 
2009a). As a final and most general limitation, studies of functional 

Introduction
Decision neuroscience, including its subfield of neuroeconomics, 
has provided new insights into the mechanisms that underlie a wide 
range of economic and social phenomena, from risky choice and 
temporal discounting to altruism and cooperation. However, its 
greatest successes clearly lie within one domain: identifying and 
mapping neural signals for value. Canonical results include the link-
ing of dopaminergic neuron activity to information about current 
and future rewards (Schultz et al., 1997); the generalization of value 
signals from primary rewards to include money (Delgado et al., 2000; 
Knutson et al., 2001), social stimuli and interpersonal interactions 
(Sanfey et al., 2003; King-Casas et al., 2005); and the identification 
of neural markers for economic transactions (Padoa-Schioppa and 
Assad, 2006; Plassmann et al., 2007). And, in recent studies, these 
value signals can be shown to be simultaneously and automatically 
computed for complex stimuli (Hare et al., 2008; Lebreton et al., 
2009; Smith et al., 2010). In all, research has coalesced on a common 
framework for the neural basis of valuation; for reviews see Platt and 
Huettel (2008), Rangel et al. (2008), Kable and Glimcher (2009).

Despite these successes, other aspects of the neural basis of 
decision making remain much less well understood. Even where 
there has been significant progress – as in elucidating the neu-
ral basis of other decision variables like probability and temporal 
delay – there remain key open and unanswered questions. Below 
are described ten major problems for future research in decision 
neuroscience (Table 1). By focusing on theoretical and conceptual 
challenges specific to decision neuroscience, this review necessarily 
omits important future methodological advances that will shape 
all of neuroscience: applications to new populations, longitudi-
nal analyses of individuals, genomic advances, and new technical 
advances (e.g., linking single-unit and fMRI studies). Even with 
these caveats, this list provides a broad overview of the capabilities 
of and challenges facing this new discipline.
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support more abstract, integrative, and planning-oriented processes 
(Koechlin et al., 2003; Badre and D’Esposito, 2007). Recent work 
has extended this posterior-to-anterior organization to dorsomedial 
PFC (Kouneiher et al., 2009; Venkatraman et al., 2009b), which has 
often been implicated in processes related to reward evaluation.

By connecting to this burgeoning literature on PFC organization, 
decision neuroscience could move beyond simple reverse-inference 
interpretations of control (Poldrack, 2006). Simple links can be 
made through increased specificity in descriptions of activation 
locations and their putative contributions to control (Hare et al., 
2009). Stronger links could be made through parallel experimenta-
tion. When a decision variable is mapped to a specific sub-region 
(e.g., the frontopolar cortex), researchers should also test non-deci-
sion-making tasks that challenge the hypothesized control processes 
of that region (e.g., relational integration). If the attributed function 
is correct, then both sorts of tasks should modulate the same brain 
region, ideally with similar effects of state and similar variability 
across individuals. Furthermore, manipulation techniques like tran-
scranial magnetic stimulation should not only alter preferences and 
choices in the decision task, but also should influence performance 
in the simpler non-decision context – providing converging evidence 
for the underlying control processes.

Distinguishing forms of uncertainty
Uncertainty pervades decision making. Nearly all real-world choices 
involve some form of psychological uncertainty, whether about the 
likelihood of an event or about the nature of our future prefer-
ences. Most studies in the decision neuroscience literature – like in 
its counterparts in the social sciences – have examined the effects 
of risk; for reviews see Knutson and Bossaerts (2007), Platt and 
Huettel (2008), Rushworth and Behrens (2008). While definitions 
vary across contexts, a “risky decision” involves potential outcomes 
that are known but probabilistic, such that risk increases with vari-
ance among those outcomes, potentially normalized by the expected 
value (Weber et al., 2004). Uncertainty can have other forms, how-
ever. Outcomes may be known but occur with unknown probability; 
such decisions reflect ambiguity (Ellsberg, 1961). Only a handful of 
studies, so far, have investigated the neural basis of ambiguity (Smith 
et al., 2002; Hsu et al., 2005; Huettel et al., 2006; Bach et al., 2009). 
And, still other states of uncertainty might be evoked in cases where 
the outcomes themselves are unknown, as is the case in complex 
real-world decisions.

So far, decision neuroscience research has established weak, 
albeit numerous, links between uncertainty and its neural sub-
strates. During active decision making, risk modulates regions of 
lateral prefrontal cortex, parietal cortex, and anterior insular cortex 
(Mohr et al., 2010), all of which contribute to the adaptive control 
of other aspects of behavior. Yet, risk also influences activation in 
other regions seemingly associated with simpler sensory, motor, 
or attentional processes (McCoy and Platt, 2005), as well as in the 
brain’s reward system directly (Berns et al., 2001; Fiorillo et al., 
2003). The presence of ambiguity likewise modulates activation in 
both regions that support executive control (Huettel et al., 2006) 
and regions that track aversive outcomes (Hsu et al., 2005). In some 
of the above studies, these brain regions have been linked to the 
characteristics of the decision problem, in others to the choices 
made by a participant, and in still others to individual differences 

connectivity throughout the brain indicate the often-simultaneous 
engagement of a larger set of functional systems (Beckmann et al., 
2005; van den Heuvel et al., 2009).

The intuitiveness of the dual-system framework poses challenges for 
its replacement. Even so, considering models that involve a wider array 
of processes – each engaged according to task demands – would better 
match decision neuroscience to adaptive, flexible choice mechanisms 
(Payne et al., 1992; Gigerenzer and Goldstein, 1996).

Describing neural mechanisms of self-control 
processes
Self-control is a common construct in decision research, both in 
interpretations of real-world behavior (Thaler and Shefrin, 1981; 
Baumeister et al., 2007) and in explanations of neuroscience results 
(Hare et al., 2009). Social psychology researchers have operational-
ized self-control as the ability to pursue long-term goals instead 
of immediate rewards. Cognitive psychology and neuroscience 
researchers often adopt a broader perspective: control processes 
shape our thoughts and actions in a goal-directed and context-
dependent manner. Prior cognitive neuroscience research has 
linked control processing to the prefrontal cortex (PFC), specifi-
cally lateral PFC, which is assumed to modulate processing in other 
parts of the brain based on current goals (Miller and Cohen, 2001). 
Decision neuroscience studies have argued that lateral PFC exerts 
an influence upon regions involved in the construction of value 
signals (Barraclough et al., 2004; McClure et al., 2004b; Plassmann 
et  al., 2007), potentially leading to the adaptive behaviors (e.g., 
delay of gratification) considered by social psychology research 
(Figner et al., 2010).

But, control demands are not identical across contexts, nor is 
control processing likely to be linked to one neural module. Even a 
unique link to PFC would be an oversimplification; across humans 
and other great apes the PFC constitutes approximately one-third 
of the brain, by volume (Semendeferi et al., 2002). Accordingly, a 
core theme of cognitive neuroscience research has been to parse PFC 
according to distinct sub-regions’ contributions to control of behav-
ior. Considerable evidence now supports the idea that, within lateral 
PFC, more posterior regions contribute to the control of action 
in an immediate temporal context, while more anterior regions 

Table 1 | Challenges for decision neuroscience.

Theoretical challenges

  1. Deconstructing the dual-systems mindset

  2. Describing neural mechanisms of self-control processes

  3. Establishing a general framework for temporal discounting 

  4. Distinguishing forms of uncertainty

Conceptual challenges

  5. Reconciling the conceptual frameworks of decision and cognitive (neuro) 

       science

  6. Determining the neural basis for meta-decision processes 

  7. Moving from single traits to composite factors

  8. Using state effects to build convergent models 

  9. Identifying domain specificity in decision mechanisms 

Empirical challenge

10. Generalizing to choices outside the laboratory
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in cognitive neuroscience about how brain systems are organized 
and interact. Yet, there is a conceptual disconnect between decision 
neuroscience and cognitive neuroscience. In decision neuroscience, 
concepts are typically described in terms of their behavioral conse-
quences (e.g., temporal discounting) or decision variables (e.g., risk, 
ambiguity); i.e., contributions to a model of behavior. In cognitive 
science and cognitive neuroscience, however, functional concepts 
are typically described in terms of their contributions to a model 
of process (e.g., inhibition, working memory). Without reconciling 
these concepts, research in each field will continue apace.

The key challenge, accordingly, will be to create a functional 
taxonomy that maps decision behavior onto its underlying process. 
Because most economic models predict choices, but do not describe 
the choice process, they may have only an “as if” relationship to 
mechanisms. Each variable or operation in the model results from 
a host of independent computations, many of which may corre-
spond to specific functions studied by cognitive neuroscience. To 
elucidate these relations will require two changes to typical deci-
sion-neuroscience methods. First, psychological studies of decision-
making behavior can decompose key processes; e.g., interference 
observed in a dual-task paradigm can reveal that the primary 
decision process relies on the secondary process. Second, parallel 
measurement of cognitive tasks alongside decision-making tasks 
can strengthen functional claims, especially when an individual-
difference variable or external manipulation exerts similar effects 
on multiple measures.

Determining the neural basis for meta-decision 
processes
Early integrations of behavioral economics and psychology shared 
a common perspective: individuals vary in their approaches to deci-
sion making, especially in realistic scenarios (Simon, 1959; Tversky 
and Kahneman, 1974). Individuals can choose based on complex 
rules that involve compensatory trade-offs between decision varia-
bles or based on simplifying rules that ignore some information and 
emphasize other, depending on immediate task demands (Payne 
et al., 1992). Yet, the nature of most neuroscience experimentation 
discourages analysis of strategic, meta-decision processes. The fMRI 
signal associated with a single decision is relatively small, compared 
to ongoing noise, while PET and TMS studies collapse across all 
decisions in an entire experimental session. Thus, trial-to-trial vari-
ability is an infrequent target for analyses. Tasks in most studies 
are simple, with small stakes (e.g., tens to hundreds of dollars) 
obtained over a short duration, reducing the incentive to explore 
the full space of possible decision strategies. Participants are often 
well-practiced, especially in non-human primate single-unit stud-
ies that can involve thousands of trials; this can lead to stereotypy 
of behavior. Moreover, meta-decision processing can be difficult 
to model – in many contexts, different strategies could lead to the 
same expressed behavior.

Despite the challenges of describing strategic aspects of deci-
sion making, such analyses will become increasingly feasible. 
Neuroimaging techniques, in particular, provide an unique 
advantage by characterizing large-scale functional relationships, 
via recent advances in connectivity analyses (Buckner et al., 2009; 
Greicius et al., 2009). The explosion of interest in condition-specific 
connectivity modeling, functional mediation analyses, and similar 

in uncertainty aversion. Still needed are characterizations of both 
common and distinct computational demands associated with 
different sorts of uncertainty – which would in turn provide new 
insights into neural function.

Establishing a general framework for temporal 
discounting
Decision neuroscience research has long sought to understand the 
neural mechanisms of temporal discounting (Luhmann, 2009). 
Much of the recent debate in this area has revolved around ques-
tions of value: Do rewards available at different delays engage dis-
tinct value systems, such as a rapid, immediate system versus a 
patient, delayed system (McClure et al., 2004a)? Conversely, other 
evidence indicates that immediate rewards have no special status, 
at least in the monetary domain; they engage the same value system 
as observed for more distal rewards (Kable and Glimcher, 2007).

Monetary value, however, constitutes an unnatural reward for 
discounting experiments. The same research subject who discounts 
rewards by 5% per month – as when indifferent between $40 now 
and $42 four weeks later – might simultaneously evince discounting 
of few percent a year in their financial investments. This participant, 
who would likely be coded as relatively “patient”, evinces a labora-
tory discount rate more than an order of magnitude faster than that 
of typical real-world monetary investments. Even more strikingly, 
non-human animals often discount rewards completely within 
a few seconds (Mazur, 1987). Some differences in discount rate 
may come from task effects; e.g., animals are tested during reward 
learning while humans are asked about the value of prospective 
rewards. However, reward modality also affects discount rate: When 
human subjects make decisions about primary and social rewards, 
they show appreciable discounting within the seconds-to-minutes 
range (Hayden et al., 2007; McClure et al., 2007). Non-monetary 
rewards, therefore, may represent a better model for evolutionarily 
conserved processes of discounting.

The vast range of temporal discounting behavior – from patient 
real-world investments to impulsive laboratory choices – presents 
both a challenge and an opportunity. Research using human par-
ticipants will need to test a wider range of rewards – both primary 
rewards like juice and more complex rewards like visual experiences 
(McClure et al., 2007) – and will need within-participant comparisons 
to monetary stimuli. By investigating individual differences in resist-
ance to immediate rewards, more generally, researchers may iden-
tify interactions between control-related regions and value-related 
regions that together shape intertemporal choice (Hare et al., 2009). 
And, research will need better links to the well-established literature 
on interval timing (Buhusi and Meck, 2005); for example, parallel 
manipulations of time perception could provide a bridge between 
discounting phenomena and the associated neural processes. Through 
such integrative approaches, new research will provide more satisfying 
answers to core decision neuroscience questions about differences in 
processing of temporally immediate and distant rewards.

Reconciling the conceptual frameworks of decision 
and cognitive (neuro)science
For the dual-systems model to be replaced, simple criticisms will 
be insufficient – new models must be set forth in its place. Ideally, 
any replacement model should build upon cutting-edge findings 
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to create mechanistic models that allow generalization across a 
range of states. For one potential direction, consider the growing 
evidence that emotion interacts with cognitive control in a com-
plex, and not necessarily antagonistic, manner (Gray et al., 2002; 
Pessoa, 2008). A general model of control would need to predict the 
effects of individual difference variables across several states; e.g., 
how trait impulsiveness influences choices under anger, following 
sleep deprivation, and after consumption of alcohol. Even more 
problematic will be creating models that account for combinations 
of states, such as interactions between drug abuse and depression. 
A key milestone for the maturity of decision neuroscience, as a 
discipline, will be the development of biologically plausible models 
that can predict behavior across a range of states.

Identifying domain specificity in decision 
mechanisms
Research in decision neuroscience is often motivated via examples 
from evolutionary biology. A canonical example comes from the 
domain of resource acquisition (e.g., foraging): Humans and other 
animals must identify potential sources of food in their local envi-
ronment, each of which may lead to positive (e.g., nourishment) or 
negative (e.g., predation) consequences with different likelihoods. 
Thus, organisms have evolved with faculties for learning and decid-
ing among options with benefits, costs, and probabilities – and the 
expression of these faculties in the modern environment results 
in the general models of decision-making found within econom-
ics and psychology (Weber et al., 2004). While such examples can 
provide important insights into the behavior of humans and our 
primate relatives, they also can lead to simple, ad hoc (or “just-so”) 
explanations based on evolutionary pressures.

An important new direction for decision neuroscience will lie 
in the evaluation of potential domain specificity. Different sorts of 
decision problems may led to different sorts of selection pressures. 
For example, compared to foraging decisions, choices in social con-
texts may have dramatically different properties. Our social deci-
sions can be infrequent but have long-lasting consequences, poor 
social decisions limit the space of our future interactions, and all 
social interactions are made in a dynamic landscape altered by 
others’ behavior. Some of these features may change the cogni-
tive processing necessary for adaptive social decisions, resulting 
in distinct neural substrates (Behrens et al., 2009). Because of this 
potential variability, decision neuroscience will need to consider 
how domains shape decision-making priors – the biases (and even 
mechanisms) that people bring to a decision problem. A focus on 
contextual priors has been very profitable in explaining other adap-
tive behaviors; perceptual biases, for example, reflect the natural 
statistics of our visual environment (Howe and Purves, 2002; Weiss 
et al., 2002). By identifying and characterizing distinct domains of 
decision making, and by understanding the natural properties of 
those domains, researchers will be better able to construct models 
that span both individual and social decision making.

Generalizing to choices outside the laboratory
Concepts and paradigms from decision making have had unques-
tionably salutary effects on neuroscience research. Neuroscience, 
conversely, has had a much more limited influence on decision-
making research in the social sciences. Concepts from decision 

techniques will provide new insights into how the same brain 
regions can support very different sorts of behavior, across indi-
viduals and contexts. Moreover, proof-of-concept examples can be 
seen in domains where a priori models exist – as in cases of explo-
ration/exploitation (Daw et al., 2006) or compensatory/heuristic 
choice (Venkatraman et al., 2009a).

Moving from single traits to composite factors
Some of the most striking results in decision neuroscience link 
specific brain regions to complex cognitive traits. Most such 
examples come from across-subjects correlations between trait 
scores – whether derived based on observed behavior or self-
reported on a questionnaire – and fMRI activation associated 
with a relevant task. In recent years, researchers have identified 
potential neural correlates for behaviors and traits as diverse as 
reward sensitivity (Beaver et al., 2006), Machiavellian personality 
(Spitzer et al., 2007), loss aversion (Tom et al., 2007), and altru-
ism (Tankersley et al., 2007; Hare et al., 2010).

Trait-to-brain correlations, in themselves, provide only limited 
information about the specific processes supported by the associ-
ated brain regions. Due to the small sample sizes of fMRI research, 
relatively few studies adopt the methods of social and personality 
psychology. Even if a single trait is desired, incorporating related 
measures can improve specificity of claims; e.g., identifying the 
effects of altruism, controlling for empathy and theory-of-mind. 
In other areas of cognitive psychology, for example, measures 
of processing speed, memory, and other basic abilities can pre-
dict individual differences in more complex cognitive functions 
(Salthouse, 1996). And, factor and cluster analyses can take a set 
of related measures and derive composite traits – or can segment 
a sample into groups with shared characteristics, as frequently 
done in clinical settings. Improved trait measures will also facili-
tate genomic analyses; single genes will rarely match to traditional 
trait measures, making identification of robust traits crucial for 
multi-gene analyses.

Using state effects to build convergent models
Choices depend on one’s internal state. Long-recognized have been 
the effects of emotion and mood states; e.g., anger can lead to 
impulsive and overly optimistic choices, while fear and sadness can 
lead to considered, analytic, but pessimistic choices (Lerner and 
Keltner, 2001). Sleep deprivation leads to attentional lapses and to 
impairments in memory, reducing the quality of subsequent deci-
sions and increasing risk-seeking behavior (Killgore et al., 2006), 
with concomitant effects on brain function (Venkatraman et al., 
2007). And, state manipulations of key neurotransmitter systems 
can have effects similar to those of chronic drug abuse and of brain 
damage (Rogers et al., 1999). Given the wide variety of phenomena 
investigated, the study of state effects provides some of the clearest 
applications for decision neuroscience research.

The standard approach, so far, has been the characterization 
(cataloging) of each state effect separately. That is, researchers adopt 
a paradigm used in prior decision neuroscience research and then 
measure how a single manipulation of state alters the function-
ing of targeted brain regions. The result has been a collection of 
independent observations – each valuable in itself, but difficult to 
combine. A challenge for subsequent research, therefore, will be 
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Summary
So far, the field of decision neuroscience reflects a particular 
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