
www.frontiersin.org September 2010 | Volume 4 | Article 172 | 1

Original research article
published: 30 September 2010
doi: 10.3389/fnins.2010.00172

Effect of sampling frequency on the measurement of 
phase‑locked action potentials

Go Ashida* and Catherine E. Carr

Department of Biology, University of Maryland, College Park, MD, USA

Phase-locked spikes in various types of neurons encode temporal information. To quantify the 
degree of phase-locking, the metric called vector strength (VS) has been most widely used. 
Since VS is derived from spike timing information, error in measurement of spike occurrence 
should result in errors in VS calculation. In electrophysiological experiments, the timing of an 
action potential is detected with finite temporal precision, which is determined by the sampling 
frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, 
we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling 
rates. We next estimate errors in VS assuming random sampling effects, and show that our 
theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results 
provide a practical guide for choosing the appropriate sampling frequency in measuring VS.
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rate cannot be set arbitrarily high because of costs and technical 
limitations. Thus any spike timing calculation is subject to errors 
associated with sampling.

Phase-locking, or periodic increase in spike discharge rate at a 
certain phase of the reference stimulus, is often quantified by the 
metric called vector strength (VS) (Goldberg and Brown, 1969). 
The mean vector (X,Y) of a spike train is calculated as:
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where f
signal

 is the reference signal frequency, t
j
 is the timing of the 

j-th spike, N is the total number of spikes. VS, or the length of the 
mean vector, is calculated as

VS = +X Y2 2 .  (3)

By definition, VS takes values between 0 and 1 (Fisher, 1993). A 
VS of 1 means that all the spikes occurred in a certain phase of the 
signal (i.e., perfect phase-locking) and a VS of 0 implies that the 
spike train has no phase preference for the reference signal. Since 
VS is a quantity derived from spike timing information, it can be 
substantially affected by the temporal sampling error. How high 
a sampling rate is high enough to obtain an accurate measure of 
VS? How robust a measure is VS when sampling rate is not ideally 
high? In this technical note, we derive theoretical upper and lower 
bounds for errors in VS calculated from spikes collected with finite 
sampling rates. We also calculate errors in VS using an assumption 
of random sampling effects, and compare our theoretical estima-
tion with data from in vivo recordings. Our results provide a practi-
cal guideline for determining the appropriate size of the sampling 
window in measuring VS.

IntroductIon
Information coding via synchronized neural activity is a common 
feature in the nervous system. Various types of neurons encode 
temporal information by phase-locked spiking activities (Carr 
and Friedman, 1999). Phase-locking is most widely seen in the 
auditory system, including auditory nerves or auditory brainstem 
neurons in dogs (Goldberg and Brown, 1969), redwing blackbirds 
(Sachs and Sinnott, 1978), cats (Johnson, 1980; Joris et al., 1994), 
guinea-pigs (Palmer and Russell, 1986), songbirds (Gleich and 
Narins, 1988), pigeons (Hill et al., 1989), chicks (Salvi et al. 1992), 
owls (Köppl, 1997), emus (Manley et al., 1997), geckos (Sams-
Dodd and Capranica, 1994), caimans and alligators (Smolders and 
Klinke, 1986; Carr et al., 2009), and auditory cortex neurons in cats 
(Eggermont and Smith, 1995). Apart from the auditory system, 
phase-locking has also been found in electrosensory lateral line 
lobe neurons in weakly electric fish (Kawasaki and Guo, 1996), 
Mauthner cells in teleosts (Weiss et al., 2009), frog mechanorecep-
tor afferents (Ogawa et al., 1981), locust olfactory system (Stopfer 
et al., 2003), rat barrel cortex (Ewert et al., 2008), cat visual cortex 
(Gray and Singer, 1989), and rat hippocampal place cells (Harris 
et al., 2002; Diba and Buzsáki, 2008; Mizuseki et al., 2009).

In electrophysiological experiments, action potentials are 
detected from intra- or extracellular potentials and a sequence of 
spikes (“spike train”) is obtained. In most cases, the internal clock 
of the recording system determines the temporal resolution of data 
acquisition and therefore spike timing data can be obtained only 
with finite temporal accuracy (Figure 1). Collected spike timing 
could be shifted as much as the length of the clock cycle or the 
“ sampling window.” Any quantity or metric derived from spike tim-
ing information is more or less subject to this temporal uncertainty. 
In this paper, we refer to the error emerged from finite temporal 
sampling resolution as “temporal sampling error.” Theoretically 
(and intuitively), sampling rate, which is the reciprocal of the 
length of the sampling window, should be as high as possible to 
obtain precise spike timing data. However, in practice, sampling 
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temperature was maintained by a feedback-controlled heating blan-
ket. An electrocardiogram was recorded via needle electrodes placed 
in the muscles of legs and/or wings to monitor muscle potentials and 
the heart beat. The head was held in a constant position by gluing 
a stainless steel head post and the skull was opened to expose the 
cerebellum. If necessary, a portion of the cerebellum was aspirated 
to expose the dorsal surface of the brainstem. Recordings were made 
with tungsten (2–20 MΩ) or glass electrodes (5–100 MΩ).

Custom-written software (xdphys, Caltech, CA, USA) was used 
for controlling acoustic stimuli and collecting data together with 
the TDT2 signal-processing system (Tucker Davis Technology, TDT, 
Gainesville, FL, USA). Acoustic stimuli were passed through a D/A 
converter (TDT DD1), filtered (TDT FT6-2), attenuated (TDT PA4), 
impedance-matched (TDT HB4) and delivered to the animal by 
earphones placed into the ear canals. Sound pressure levels were 
calibrated before recordings using built-in miniature microphones 
(Knowles EM3068, Itasca, IL, USA). Responses to acoustic stimuli 
were continuously monitored until the electrode reached the coch-
lear nuclei in the auditory brainstem (nucleus magnocellularis, NM; 
or nucleus laminaris, NL). After isolating a single unit, characteris-
tic frequency (CF) and response threshold at CF were determined 
(Köppl and Carr, 2003). To measure the degree of phase-locking, 
continuous tones at or near the CF were presented with an inten-
sity of 20 dB above the threshold. Signals from the electrode were 
amplified and filtered by a custom-built headstage and amplifier 
and passed through an A/D converter (TDT DD1), a threshold dis-
criminator (TDT SD1) with an event timer (TDT ET1) and fed to 
the computer. In about half of the recordings, extracellular potential 
waveforms were stored to the computer and later analyzed. In other 
cases, only spike timing data generated by the level detector (TDT 
SD1) were stored. Both the potential waveforms and the spike timing 
data were digitized and stored at a sampling rate of 48077 Hz.

data analysIs, down-samplIng, and calculatIon of vector 
strengths
Custom-written Matlab (MathWorks, Natick, MA, USA) scripts 
were used for data analysis. For units with potential waveform data, 
spike timings t

j
 were calculated by peak detection (Figure 1) and 

VS was calculated according to Eqs. 1–3. For units without poten-
tial waveforms, stored spike timing data (which was generated by 
the threshold discriminator) was used to calculate VS. Note that 
no significant difference between data with and without potential 
waveforms was found in the results shown in Section “Examples 
From In Vivo Recording.” For each single unit, timing data from 400 
to 10000 action potentials were stored. For Figure 6, we used timing 
data of 400 spikes from each unit recording to calculate VS.

To quantify the effect of sampling rate on VS calculation, poten-
tial waveforms or spike timing data were down-sampled with var-
ious sampling frequencies f

sample
. Peaks ′t j  of each downsampled 

waveform were detected and VS of the spike train was computed. 
For a unit without a stored waveform, downsampled spike timing 
′t j  was assigned by shifting each spike time t

j
 to the nearest sampling 

point after t
j
 and VS was calculated. In order to test significance 

of the phase preference, we calculated the significance probability 
for VS of each spike train by P = exp(−N(VS)2) with N being the 
number of spikes (Fisher, 1993). All the single unit data used in our 
analysis satisfy VS > 0.2 and N > 400, yielding P < 1.1 × 10−7.

materIals and methods
In vIvo recordIngs of audItory braInstem neurons
Data from auditory brainstem neurons in barn owls, chicks and 
American alligators were used to assess the effect of sampling on the 
calculation of VS. Animal husbandry and experimental protocols were 
approved by the Animal Care and Use Committee of the University of 
Maryland, the Regierung von Oberbayern (Germany), the University 
of Sydney Animal Ethics Committee, and/or the Marine Biological 
Laboratory (Woods Hole, MA, USA). Detailed procedures for surgery, 
stereotaxis, acoustic stimulus generation, and data collection have 
been provided by Carr and Köppl (2004) for owls, Köppl and Carr 
(2008) for chicks, and Carr et al. (2009) for alligators. In brief, animals 
were anesthetized and placed in a sound-attenuating chamber. Body 

10 ms

    correct 
spike timing

recorded 
spike timing

sampling
window

time

1 ms

0.2 ms

0.02 ms

Figure 1 | recorded spike waveforms and the effect of sampling 
window. Since sampling windows have finite lengths, recorded spike timing 
can be shifted within the length of each sampling window. Filled circles in the 
third and fourth panels indicate sample points. Filled triangles indicate spike 
occurrence. In this figure, a peak detector is used to discriminate spikes. Note 
that other spike detection algorithms, such as threshold crossing detection, 
are also subject to temporal sampling errors.
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The lower bound of VS can be obtained similarly but assumes that 
all the spike timings are shifted toward the opposite direction of the 
mean phase of the original distribution to decrease the value of 
VS (Figure 2C). In this case, the length of the mean vector of the 
shifted spike train is calculated as:
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results
In this section, we evaluate the effect of temporal sampling error 
on VS calculation by deriving the lower and upper bounds for VS, 
examining expected error in VS, and comparing our theoretical 
calculation with physiologically recorded data in vivo.

upper and lower bounds of vector strength
In this subsection, we derive the theoretical upper and lower bounds 
of VS values with temporal sampling errors. We assume, for the-
oretical simplicity, that a sufficiently large number of spikes are 
collected and that the von Mises distribution (Fisher, 1993) can 
properly approximate the phase histogram of the spike trains.

Let g(x) be a periodic function with a period of 2π and be normal-
ized as g d( )x x

−∫ =
π

π
1. The mean vector (X,Y) of the function g(x) is 

defined as:

X =
−∫ g cos d( ) ,x x x

π

π

 
(4)

Y =
−∫ g sin d( )x x x

π

π

 
(5)

and the VS is:

VS = +X Y2 2 .  (6)

The von Mises distribution is defined as:

g
I

exp cos( ) ( ( )),x k x m= −1

2 0π  
(7)

where k and m are the parameters determining the concentration 
and the mean phase, respectively. I

0
 is the modified Bessel func-

tion of order zero satisfying I exp cos d0 1 2=
−∫( / ) ( )π

π
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k x x  and thus 
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1  By assuming m = 0 without any loss of generality, 

VS with the von Mises distribution can simply be calculated as:
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The subscript “exact” means that no temporal sampling 
error is incorporated in this calculation. An example is given 
in Figure 2A.

As discussed in the previous subsection, collected spike tim-
ing can be shifted within the length of the sampling window  
T = 1/f

sample
. This temporal sampling error corresponds to a maxi-

mum phase error of ±πR. In the following text, R = f
signal

/f
sample 

is 
referred to as the “sampling ratio.” The theoretical upper bound of 
the VS is obtained by assuming that all the spike timings are shifted 
in a biased fashion toward the direction of the mean phase of the 
original distribution to increase the value of VS (Figure 2B). In 
this case, the length of the mean vector of the shifted spike train 
is calculated as:

L x x x x x x x xU g cos d g cos d g d= − + + +
− +

−

−∫ ∫ ∫( ) ( ) ( ) ,θ θ
π θ

π θ

θ

θ0

0  
(9)

where θ = πR = πf
signal

/f
sample

. The first, second, and third terms 
denote the contribution of the probability distributions on (−π,0), 
the distribution on (0,π) and the distribution concentrated at phase 
0, respectively. The upper bound of VS is:

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.6

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.74
0

5

-π 0 π

A

B

C

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.40

Figure 2 | Theoretical upper and lower bounds of VS. (A) Example of the 
von Mises distribution with a concentration parameter k = 1.5157, mean 
direction m = 0 (rad) and vector strength VS = 0.6. (B) Increase in estimated 
VS due to sampling biased toward the mean direction. The sharp peak at 0 
(rad) indicates a delta function, or dense concentration of the unevenly 
sampled distribution. Width of sampling window W = 0.2π (sampling ratio 
R = 0.1). (C) Decrease in estimated VS due to biased sampling opposite to the 
mean direction. The peaks at ±π (rad) indicate delta functions, or dense 
concentration of the unevenly sampled distribution. Width of sampling 
window = 0.2π (sampling ratio R = 0.1). Since delta functions cannot be 
drawn exactly, bars with a bin width of π/50 (rad) were drawn instead (B,C). 
Inset in (B) shows the peak of the binned delta function.
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The window function w(x) = 1/2θ (−θ < x < θ) and = 0 (otherwise). 
Since the Fourier transform of a convolution is the product of the 
Fourier transforms of the two functions, the mean vector (X

sampled
, 

Y
sampled

) of the function h(x) can be calculated as:

The first, second, third, and fourth terms denote the contribu-
tion of the probability distributions on (−π,0), the distribution on 
(0,π), the distribution concentrated at phase −π, and the distribu-
tion concentrated at phase π, respectively. In contrast to the upper 
bound L

U
, the value of L

L
 can be less than 0, since the “length” here 

is calculated with respect to the direction of the mean phase of the 
original distribution. A negative value of L

L
 means that the mean 

vector of the shifted spike train lies in the opposite direction of 
the original direction and in such a case VS can take an arbitrary 
value between 0 and VS

exact
. Therefore we obtain the lower bound 

of VS as:

VS
L
 = max{0,L

L
}. (12)

The upper and lower bounds for five VS values ranging from 
0.1 to 0.9 are shown in Figure 3 (dashed lines). The horizontal 
axis is the sampling ratio R = f

signal
/f

sample
. When the sampling 

ratio increases to 1, the upper bound of VS approaches to 1 and 
the lower bound to 0. This means that we cannot obtain a good 
estimate of VS if the sampling rate is as low as the reference 
stimulus frequency. Since the upper and lower bounds depend 
on VS

exact
, we calculated the theoretical “maximum error” as 

max { }.
0 1≤ ≤

−
VS

U L
exact

VS VS  Maximum VS errors calculated for several 

sampling rates are shown in Table 1. For R < 0.1, the maximum 
error is almost linear with R.

expected error of vector strength
In the previous section, we obtained the upper and lower bounds 
of VS, assuming the von Mises distribution. Although these upper 
and lower bounds are of theoretical importance, it is practi-
cally unlikely that sampling is totally biased toward the direction 
where these limits are attained. In this section, we derive another 
estimate for error in VS by adopting the more natural assump-
tion that collected spike timing is jittered randomly within the 
sampling window. Generally, this random sampling jitter flattens 
the spike distribution. Figure 4 shows examples of narrow (A), 
wide (B) and extremely wide sampling windows (C). Note that 
the length of sampling window (=1/f

sample
) is converted to the 

length of the window function (=2πf
signal

/f
sample

, see next paragraph 
for detail). If the sampling window is small (or equivalently, 
if the sampling rate is high) compared to the reference signal, 
the effect of temporal sampling error is limited (Figure 4A). If 
the sampling rate is equal to the signal frequency, the temporal 
sampling error totally hides the temporal structure of the spike 
trains (Figure 4C).

Let g(x) be a periodic function with a period of 2π and be nor-
malized as g d( ) .x x

−∫ =
π

π
1  In the following derivation, we do not 

need to assume any particular shape for g(x). Only a sufficiently 
large number of spikes are assumed to be collected to form the dis-
tribution function g(x). Since a spike occurred at phase x is assumed 
to be randomly shifted within the range of ±θ (θ= πR = πf

signal
/f

sample
), 

the distribution function h(x) of sampled spikes (Figure 4, gray 
areas) can be obtained as a convolution of the original distribution 
function g(x) (Figure 4, dashed lines) and a window function w(x) 
(Figure 4, insets). Precisely,

h w g w g d g d( ) ( )( ) ( ) ( ) ( ) .x x x t t t t t
x

x

= = − =
−∞

∞

−

+

∫ ∫∗ 1

2θ θ

θ

 
(13)
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Figure 3 | (A–e) Estimated VS plotted against sampling ratio R = fsignal/fsample. 
Dashed lines indicate the theoretical upper and lower bounds of VS calculated 
from the von Mises distribution. Solid lines show vector strength calculated 
with an assumption of random sampling errors. Exact vector strengths VSexact 
of 0.9 (A), 0.7 (B), 0.5 (C), 0.3 (D), 0.1 (e) were used.
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Thus VS of sampled spike train is:
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Note that VS
sampled

 obtained here does not depend on a specific 
shape of the spike distribution g(x) whereas the upper and lower 
bounds discussed in the previous section were obtained only with 
the von Mises distribution.

We calculated VS
sampled

 for five VS
exact

 values ranging from 0.1 to 
0.9 (Figure 3, solid lines). Although VS

sampled
 approaches to 0 when 

the sampling ratio R = f
signal

/f
sample

 increases to 1, it is much more 
robust to R than the lower bound VS

L
 (Figure 3, dashed lines). Since 

VS
sampled

 = (sinπR/πR) VS
exact

, the “expected error” of VS, defined as 
e

expected
 = (VS

exact
 − VS

sampled
)/VS

exact
 can be calculated as:

eexpected = −1
sin

.
π

π
R

R  
(17)

Expected errors with several sampling rates are shown in Table 1. 
Expected error is much smaller than the theoretically calculated maxi-
mum error (see also Figure 2), and is less than 2% if the sampling fre-
quency f

sample
 is only 10 times greater than the signal frequency f

signal
.

Figure 3 and Table 1 imply that the expected error increases 
quite slowly with the sampling ratio R for small R values. Using the 
Taylor expansion sinπR = (πR) − (πR)3/3! + O(R5), the expected 
error can be calculated as:

e
sin R

Oexpected = − = +1
6

2
4π

π
π

R

R
R

( )
( )

 
(18)

The approximation e
expected

 = (πR)2/6 is 99.5% accurate for R < 0.1. 
This approximation explains the slow increase in the expected error 
to the sampling ratio.

examples from In vIvo recordIng
In this section, we compare the expected VS errors obtained in the 
previous subsection with spiking data recorded in vivo. We use 
data from neurons in the nucleus magnocellularis (NM) and the 
nucleus laminaris (NL) in the auditory brainstem of owls, chicks, 
and alligators. These neurons show phase-locked spiking activity 
and play a key role in sound localization (Carr and Konishi, 1990; 
Köppl, 1997; Köppl and Carr, 2008; Carr et al., 2009). In our original 
data set, spike timing was collected with a sampling frequency of 
48077 Hz. We downsampled the data with various sampling fre-
quencies and re-calculated VS values (see Materials and Methods). 
Figure 5 shows the phase-locked activity of eight neurons with best 
frequencies ranging from 350 to 7000 Hz and with VS ranging from 
0.27 to 0.82. In all the neurons shown, VS values decay according to 
the estimation given as VS

sampled 
= (sinπR/πR) VS

exact 
(Eq. 16), where 

the sampling ratio R = f
signal

/f
sample

.

Table 1 | errors in VS calculation. Maximum errors are obtained from the 

theoretical upper and lower bounds for VS. Expected errors are calculated as 

1 − sinπR/πR with an assumption of random sampling errors (see text).

Sampling Sampling Maximum  expected  

rate fsample ratio R error (%) error eexpected (%)

200 × fsignal 0.005 2.0 0.004

100 × fsignal 0.01 4.0 0.016

50 × fsignal 0.02 8.0 0.066

20 × fsignal 0.05 20 0.41

10 × fsignal 0.1 39 1.64

5 × fsignal 0.2 73 6.45

2 × fsignal 0.5 100 36.3

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.0

-π π

1/2π

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.59

-0.1π 0.1π

5/π

0

 0.5

-π -π/2 0 π/2 π
phase [rad]

 VS = 0.38

-0.5π 0.5π

1/π

A

B

C

Figure 4 | Change in the shape of distribution and decrease in estimated 
VS due to random sampling error. (A) Sampling window width W = 0.2π, 
sampling ratio R = 0.1 (i.e., fsample = 10 × fsignal). (B) W = 1.0π, R = 0.5 (i.e., 
fsample = 2 × fsignal). (C) W = 2.0π, R = 1.0 (i.e., fsample = fsignal). Dashed lines indicate 
the original von Mises distribution with a VS of 0.6 (as shown in Figure 2A), 
while gray areas show windowed distributions. Inset figures show window 
functions w(x).
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samplIng effects on other parameters of cIrcular 
dIstrIbutIon
In this section, we examine the sampling effect on several circular 
statistics other than VS.

Mean phase
As we have discussed, the length of the mean vector (=VS) is expected 
to change as VS

sampled
 = (sinπR/πR) VS

exact
 by sampling. We did not 

assume any specific spike detection algorithms in deriving this equa-
tion. The direction (phase) of the mean vector, however, strongly 
depends on the method used in spike discrimination. For example, 

The above result was entirely consistent with much larger 
data sets we have tested (Figure 6). Since VS

sampled
 = (sinπR/πR) 

VS
exact,

 we can estimate VS
exact

 = (πR/sinπR) VS
sampled

. We use the 
data recorded at 48 kHz (original sampling frequency) to obtain 
the estimate value of VS

exact
. In Figure 6, we plotted VS

sampled
 from 

downsampled spike data divided by estimated VS
exact

. Decay of 
VS

sampled
 with the sampling ratio R is accurately predicted by 

the equation VS
sampled 

= (sinπR/πR) VS
exact

. When the sampling 
rate f

sample
 is 20 times as large as the signal frequency f

signal
 (i.e., 

R = 0.05), VS
sampled

 can be predicted with a root mean square 
error of about 1%.
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Figure 5 | examples from in vivo recording. The left panel in each subfigure 
is a period histogram showing the spiking probability in each bin. Cell types, 
stimulus frequency, and the number of spikes recorded are also shown. Note 
that the number of bins is 50 and therefore the spiking probability in each bin 
would be 0.02 for non-phase-locked spike trains. The right panel in each 
subfigure shows the dependence of VS on the sampling ratio R = fsignal/fsample. 

Open circles indicate vector strengths calculated from the original data sampled 
at 48077 Hz. Filled circles indicate VS calculated from down-sampled data (see 
Materials and Methods). Solid lines show VS = (sinπR/πR) VSexact. (A–C) from 
nucleus magnocellularis (NM) neurons of barn owls, (D) from an NM neuron of a 
chicken, (e,F) from nucleus laminaris (NL) neurons of chickens (monaural 
stimulation), (g,H) from NM neurons of alligators.
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Using the Taylor expansions sinπR = (πR) − (πR)3/3! + O(R5), 
log(1 − x) = −x − x2/2 + O(x3), and 1 1 2 2+ = + +x x x/ ( )O , we 
have:

σ
σ

πsampled

exact exactlog VS
= − +1

12

2 2
4R

O R
( )

( ).
 (22)

This equation indicates that the expected error in circular standard 
deviation increases sublinearly to the increasing sampling ratio R 
for small R values (Figure 7A).

Significance probability
Significance probability for VS can be approximated as 
P = exp(−N(VS)2) with N (>50) being the number of spikes (Fisher, 
1993). Defining c = 1 − (sinπR/πR), the P-values for exact and 
downsampled data can be related as:

when peak detection is used to discriminate spikes and detected 
spike timing t

j
 is assumed to be assigned to the sampling time point 

nearest to the true peak of the waveform (Figure 1), t
j
 could be before 

or after the true peak. Assuming that 50% of the spike occurrences 
are recorded before the true peaks (and, equivalently, the other 50% 
of the spikes are recorded after the true peaks), the phase of the mean 
vector is expected to be the same as the true mean.

When threshold detection is used, however, the mean phase could be 
different from the true direction, because a threshold crossing event is 
detected only after the waveform crossed the threshold. In this case, mean 
phase of the recorded spike train is always ahead of the true mean.

Assuming that correct spikes are evenly distributed within the 
sampling window, the expected shift between the recorded mean 
phase and the true mean phase can be calculated as:

πR = πf
signal

/f
sample

 (rad). (19)

From these two different examples, we conclude that the informa-
tion on the spike discrimination algorithm is necessary to appro-
priately quantify the sampling effect on the mean phase.

Circular standard deviation
Circular standard deviation σ is defined as:

σ = −2log VS( )
 

(20)

(Fisher, 1993). The relationship between the circular standard 
deviation of the exact distribution and that of the downsampled 
distribution is calculated as:

σ

π π

sampled sampled

exact

log VS

2log sin VS

log s

= − ( )
= − ( )
= −

2

2

( / )

(

R R

iin log VS

log sin

log VS

exact

exact

exact

π π

σ π π

R R

R R

/ ) ( )

( / )

( )

+( )

= +1 ..
 

(21)
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Figure 6 | Vector strengths calculated from downsampled data 
(VSsampled) divided by the estimated VSexact calculated from original 
(non-downsampled) data recorded at 48 kHz. The mean and standard 
deviation (error bars) of 154 single unit recordings from the auditory brainstem 
nuclei are shown (68 units in alligators with BFs of 275–1500 Hz and with VS 
values of 0.20–0.95, 35 units in chicks with BFs of 90–3200 Hz and with VS 
values of 0.20–0.85, 51 units in owls with BFs of 1400–7000 Hz and with VS 
values of 0.20–0.77). Four hundred spikes from each unit recording were used 
to calculate VS values shown. Solid line shows sinπR/πR with R = fsignal/fsample.
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Figure 7 | effect of undersampling on the circular standard deviation 
and significance probability. (A) Increase in circular standard deviation with 
increasing sampling ratio R (see Eqs. 21 and 22). (B–C) Increase in 
significance probability with increasing sampling ratio R (see Eqs. 23 and 24). 
Note the logarithmic scales (abscissa in (B) and ordinates in (B) and 
(C)). VSexact = 0.5 and N = 1000 are used in this example.



Frontiers in Neuroscience | Neuroscience Methods  September 2010 | Volume 4 | Article 172 | 8

Ashida and Carr Sampling effect in measuring phase-locking

which we have discussed in this paper, corresponds to the question 
of how high a sampling rate is necessary to accurately calculate 
a specific Fourier component, assuming that the timing of each 
sampled spike is subject to measurement error. Therefore, both of 
these two questions are related to the Fourier analysis, while the 
latter considers the error in sample timing.

It should be noted that no matter how many spikes are obtained, 
the temporal sampling error in VS cannot be eliminated. For exam-
ple, even if spikes in a train are perfectly phase-locked (VS

exact
 = 1), 

sampling procedure can shift the collected spike timings within 
the length of the sampling window and therefore calculated vector 
strength (VS

sampled
) could be less than 1. Increase in the number of 

spikes leads to the convergence of VS to the theoretically calculated 
value of VS

sampled
 but not to VS

exact
. The way to reduce the temporal 

sampling error is to increase the sampling rate (or equivalently, to 
decrease the length of the sampling window). For very precise VS 
measurement, a sampling rate f

sample
 of 50 times greater than the 

signal frequency f
signal

 (i.e., R = 0.02) yields the maximum error of 
8% and the expected error of less than 0.1% (Table 1). Practically, 
however, f

sample
 = 20 × f

signal
 (i.e., R = 0.05) would suffice because the 

expected error is still less than 0.5%. When this high sampling fre-
quency is not achievable, f

sample
 = 10 × f

signal
 (i.e., R = 0.1) might work 

with an expected error of less than 2%, especially if this amount of 
error is supposed to be comparable to or less than the errors aris-
ing from other sources. If R > 0.1, however, the temporal sampling 
error will no longer be negligible. In such a case, recorded spike 
timings need to be corrected to obtain precise VS. Complementary 
tools for data analysis, such as interpolation (Stoer and Bulirsch, 
2002), could improve spike timing measurement and thus reduce 
the error in VS estimation.

In the preceding analysis and discussion, we implicitly assumed 
that the frequency and the phase of the reference stimulus can 
be rigorously determined. Place cells in the rat hippocampus, for 
example, are known to generate action potentials phase-locked to 
the internally generated population activity, or the theta oscilla-
tion (Harris et al., 2002; Diba and Buzsáki, 2008; Mizuseki et al., 
2009). In such cases, frequency and phase of the reference signal 
need to be calculated from temporally discretized waveforms before 
phase-locking is quantified. Assuming that conventional Fourier 
transforms are used to estimate the frequency and the phase, esti-
mation accuracy is governed by the well-known Nyquist–Shannon 
theory, which requires sampling frequency to be at least twice as 
high as the signal frequency. Once the reference signal is deter-
mined, phase-locking can then be assessed from digitized spike 
timing data, which is the subject of the present study. Thus in these 
cases, we still suggest using at least f

sample
 = 10 × f

signal
 (i.e., R = 0.1), 

so that the reference signal can be properly estimated and VS can 
be calculated with an expected error below 2%.

There are multiple sources of variation and errors in VS (Ashida 
et al., 2010). Some of them are purely biological and the others 
are more technical. Whereas biological mechanisms of altering 
VS have been studied intensively (Palmer and Russell, 1986; Weiss 
and Rose, 1988; Kidd and Weiss, 1990; Rothman et al., 1993; Joris 
et al., 1994; Joris and Smith, 2008), technical considerations of VS 
measurement have not yet been fully addressed (e.g., Sullivan and 
Konishi, 1984; Joris et al., 2006). Although a new metric that can 
be applied to not only periodic but also aperiodic spiking activity 

P
sampled

 = exp(−N(VS
sampled

)2 )

    =exp(−N (1 − c)2 (VS
exact

)2)

    =exp(−N (VS
exact

)2 + N (VS
exact

)2 (2c − c2))

    =P
exact

 exp(N(VS
exact

)2 (2c − c2)). (23)

Using the Taylor expansions sinπR = (πR) − (πR)3/3! + O(R5), and 
exp(x) = 1 + x + O(x2), we have:

P

P

N R
O Rsampled

exact

exactVS= + +
2

1
3

2 2
4( )

( ).
π

 (24)

Although Eq. 24 indicates that the expected error in the sig-
nificance probability increases sublinearly to the increasing 
sampling ratio R for small R values, it is not always practically 
useful in evaluating P-values for downsampled data. For exam-
ple, VS

exact
 = 0.5, N = 1000 and R = 0.2 yield P

exact
 = 2.7 × 10−109 

and P
sampled

 = 9.6 × 10−96 (Figure 7B). The significance probability 
increased more than 1013-fold by downsampling, but P

sampled
 is 

still far below commonly used significance levels (such as 0.01 or 
0.001, see Figure 7C). Thus in examining the significance prob-
ability, we suggest using the original equation P = exp(−N(VS)2), 
instead of Eqs. 23 or 24.

dIscussIon
“Any measurement that you make without the knowledge of its uncer-
tainty is completely meaningless” (Lewin, 1999). Although this state-
ment was made originally with physics in mind, it is totally applicable 
to biological recordings. In this paper we have studied the effect of the 
length of the sampling window on the measurement of VS, which has 
been widely used to quantify the degree of phase-locking since it was 
first introduced to the analysis of neural data 40 years ago (Goldberg 
and Brown, 1969). We derived theoretical upper and lower bounds 
for VS with the von Mises distribution (Figures 2, 3 and Table 1). 
We also calculated the expected errors in VS calculations, assuming 
random sampling effects but not any specific distribution (Figures 3, 
4, and Table 1). The expected error e

expected
 changes almost linearly to 

the square of the sampling ratio R (for R < 0.1), indicating that this 
error does not increase as much as the error in spike timing calcula-
tion. Our physiological recordings of auditory brainstem neurons in 
owls, chicks, and alligators showed that errors in VS can be predicted 
well by the expected errors we calculated, but not by the theoretical 
upper and lower bounds of VS, which are several tens to hundred 
times greater than the expected errors (Figures 4 and 5).

A similar issue was discussed by Bair et al. (1994). They pointed 
out that the power spectrum of a spike sequence can be corrupted 
due to the aliasing effect arising from finite sampling intervals. 
Since VS is the Fourier component of a spike train at the stimu-
lus frequency normalized by the total number of spikes (see, for 
example, Ashida et al., 2010), VS is nonetheless subject to aliasing, 
which we refer to as the temporal sampling error. Regarding the 
Fourier analysis, here we point out the relationship of our results 
to the Nyquist frequency, which is f

sample
/2. The Shannon–Nyquist 

theorem (Shannon, 1949) determines how high a sampling rate is 
necessary (how many sample points are required) to reconstruct 
the original analog waveform, assuming that the timing of each 
sample point is errorless. However, the spike sampling problem, 



www.frontiersin.org September 2010 | Volume 4 | Article 172 | 9

Ashida and Carr Sampling effect in measuring phase-locking

Shannon, C. E. (1949). Communication 
in the presence of noise. Proc. IRE 37, 
10–21.

Smolders, J. W. T., and Klinke, R. (1986). 
Synchronized responses of primary 
auditory fiber-populations in Caiman 
crocodilus (L.) to single tones and 
clicks. Hear. Res. 24, 89–103.

Stoer, J., and Bulirsch, R. (2002). 
Introduction to Numerical Analysis, 
3rd Edn. New York, NY: Springer.

Stopfer, M., Jayaraman, V., and Laurent G. 
(2003). Intensity versus identity cod-
ing in an olfactory system. Neuron 39, 
991–1004.

Sullivan, W. E., and Konishi, M. (1984). 
Segregation of stimulus phase and 
intensity coding in the cochlear 
nucleus of the barn owl. J. Neurosci. 
4, 1787–1799.

Weiss, S. A., Preuss, T., and Faber, D. 
S. (2009). Phase encoding in the 
Mauthner System: implications in left-
right sound source discrimination. J. 
Neurosci. 29, 3431–3441.

Weiss, T. F., and Rose, C. (1988). Stages 
of degradation of timing informa-
tion in the cochlea: a comparison of 
hair-cell and nerve-fiber responses 
in the alligator lizard. Hear. Res. 33, 
167–174.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
financial relationships that could be con-
strued as a potential conflict of interest.

Received: 27 April 2010; paper pend-
ing published: 23 May 2010; accepted: 
31 August 2010; published online: 30 
September 2010.
Citation: Ashida G and Carr CE (2010) 
Effect of sampling frequency on the meas-
urement of phase-locked action potentials. 
Front. Neurosci. 4:172. doi: 10.3389/
fnins.2010.00172
This article was submitted to Frontiers 
in Neuroscience Methods, a specialty of 
Frontiers in Neuroscience.
Copyright © 2010 Ashida and Carr. This is 
an open-access article subject to an exclusive 
license agreement between the authors and 
the Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

cochlear nucleus angularis of 
the barn owl. J. Neurophysiol. 89, 
2313–2329.

Köppl, C., and Carr, C. E. (2008). Maps 
of interaural time difference in the 
chicken’s brainstem nucleus laminaris. 
Biol. Cybern. 98, 541–559.

Lewin, W. H. G. (1999). Physics I: classi-
cal mechanics. MIT Open Course Ware 
#8.01. Cambridge, MA: Massachusetts 
Institute of Technology.

Manley, G. A., Köppl, C., and Yates, G. K. 
(1997). Activity of primary auditory 
neurones in the cochlear ganglion of 
the Emu Dromaius novaehollandiae 
I: spontaneous discharge, frequency 
tuning and phase locking. J. Acoust. 
Soc. Am. 101, 1560–1573.

Mizuseki, K, Sirota, A., Pastalkova, E., 
and Buzsáki, G. (2009). Theta oscil-
lations provide temporal windows 
for local circuit computation in the 
entorhinal-hippocampal loop. Neuron 
64, 267–280.

Ogawa, H., Morimoto, K., and 
Yamashita, Y. (1981). Physiological 
characteristics of low threshold 
mechanoreceptor afferent units 
innervating frog skin. Q. J. Exp. 
Physiol. 66, 105–116.

Palmer, A. R., and Russell, I. J. (1986). 
Phase-locking in the cochlear nerve 
of the guinea-pig and its relation to 
the receptor potential of inner hair-
cells. Hear. Res. 24, 1–15.

Rothman, J. S., Young, E. D., and Manis, 
P. B. (1993). Convergence of auditory 
nerve fibers onto bushy cells in the 
ventral cochlear nucleus: implica-
tions of a computational model. J. 
Neurophysiol. 70, 2562–2583.

Sachs, M. B., and Sinnott, J. M. (1978). 
Responses to tones of single cells in 
nucleus magnocellularis and nucleus 
angularis of the redwing blackbird 
(Agelaius phoeniceus). J. Comp. Physiol. 
[A] 126, 347–361.

Salvi, R. J., Saunders, S. S., Powers, N. L., 
and Boettcher, F. A. (1992). Discharge 
patterns of cochlear ganglion neurons 
in the chicken. J. Comp. Physiol. [A] 
170, 227–241.

Sams-Dodd, F., and Capranica, R. R. 
(1994). Representation of acoustic 
signals in the eighth nerve of the 
Tokay gecko: I. Pure tones. Hear. Res. 
76, 16–30.

Goldberg, J. M., and Brown, P. B. (1969). 
Response of binaural neurons of dog 
superior olivary complex to dichotic 
tonal stimuli: some physiological 
mechanisms of sound localization. J. 
Neurophysiol. 32, 613–636.

Gray, C., and Singer, W. (1989). Stimulus-
specific neuronal oscillations in orienta-
tion columns of cat visual cortex. Proc. 
Natl. Acad. Sci. U.S.A. 86, 1698–1702.

Harris, K. D., Henze, D. A., Hirase, H., 
Leinekugel, X., Dragoi, G., Czurkó, 
A., and Buzsáki, G. (2002). Spike train 
dynamics predicts theta-related phase 
precision in hippocampal pyramidal 
cells. Nature 417, 738–741.

Hill, K. G., Stange, G., and Mo, J. (1989). 
Temporal synchronization in the pri-
mary auditory response in the pigeon. 
Hear. Res. 39, 63–74.

Johnson, D. H. (1980). The relationship 
between spike rate and synchrony in 
responses of auditory-nerve fibers to 
single tones. J. Acoust. Soc. Am. 68, 
1115–1122.

Joris, P. X., Carney, L. H., Smith, P. H., 
and Yin, T. C. T. (1994). Enhancement 
of neural synchronization in the 
anteroventral cochlear nucleus. I. 
Responses to tones at the character-
istic frequency. J. Neurophysiol. 71, 
1022–1036.

Joris, P. X., Louage, D. H., Cardoen, L., 
and van der Heijden, M. (2006). 
Correlation index: a new metric to 
quantify temporal coding. Hear. Res. 
216-217, 19–30.

Joris, P. X., and Smith, P. H. (2008). The 
volley theory and the spherical cell 
puzzle. Neuroscience 154, 65–76.

Kawasaki, M., and Guo, Y. X. (1996). 
Neuronal circuitry for comparison of 
timing in the electrosensory lateral line 
lobe of an African wave-type electric 
fish, Gymnarchus niloticus. J. Neurosci. 
16, 380–391.

Kidd, R. C., and Weiss, T. F. (1990). 
Mechanisms that degrade timing 
information in the cochlea. Hear. Res. 
49, 181–207.

Köppl, C. (1997). Phase locking to high 
frequencies in the auditory nerve and 
cochlear nucleus magnocellularis of 
the barn owl, Tyto alba. J. Neurosci. 17, 
3312–3321.

Köppl, C., and Carr, C. E. (2003). 
Computational diversity in the 

RefeRences
Ashida, G., Wagner, H., and Carr, C. E. 

(2010). “Processing of phase-locked 
spikes and periodic signals,” in Analysis 
of Parallel Spike Trains, eds S. Grün and 
S. Rotter (New York: Springer).

Bair, W., Koch, C., Newsome, W., and 
Britten, K. (1994). Power spectrum 
analysis of bursting cells in area MT 
in the behaving monkey. J. Neurosci. 
14, 2870–2892.

Carr, C. E., and Friedman, M. A. (1999). 
Evolution of time coding systems. Neural. 
Comput. 11, 1–20.

Carr, C. E., and Konishi, M. (1990). A cir-
cuit for detection of interaural time 
differences in the brain stem of the 
barn owl. J. Neurosci. 10, 3227–3246.

Carr, C. E., and Köppl, C. (2004). Coding 
interaural time differences at low best 
frequencies in the barn owl. J. Physiol. 
(Paris) 98, 99–112.

Carr, C. E., Soares, D., Smolders, J., and 
Simon, J. Z. (2009). Detection of inter-
aural time differences in the alligator. 
J. Neurosci. 29, 7978–7982.

Coffey, C. S., Ebert, C. S. Jr, Marshall, A. 
F., Skaggs, J. D., Falk, S. E., Crocker, W. 
D., Pearson, J. M., and Fitzpatrick, D. 
C. (2006). Detection of interaural cor-
relation by neurons in the superior oli-
vary complex, inferior colliculus and 
auditory cortex of the unanesthetized 
rabbit. Hear. Res. 221, 1–16.

Diba, K., and Buzsáki, G. (2008). 
Hippocampal network dynamics con-
strain the time lag between pyramidal 
cells across modified environments. J. 
Neurosci. 28, 13448–13456.

Eggermont, J. J., and Smith, G. M. (1995). 
Synchrony between single-unit activ-
ity and local field potentials in rela-
tion to periodicity coding in primary 
auditory cortex. J. Neurophysiol. 73, 
227–245.

Ewert, T. A. S., Vahle-Hinz, C., and Engel, 
A. K. (2008). High frequency whisker 
vibration is encoded by phase-locked 
responses of neurons in the rat’s barrel 
cortex. J. Neurosci. 28, 5359–5368.

Fisher, N. I. (1993). Statistical Analysis 
of Circular Data. Cambridge, UK: 
Cambridge University Press.

Gleich, O., and Narins, P. M. (1988). The 
phase response of primary auditory 
afferents in a songbird (Sturnus vul-
garis L.). Hear. Res. 32, 81–92.

Acknowledgments
The authors thank J. L. van Hemmen for his comments on the man-
uscript. This work was supported by NIH DC00436 to Catherine 
E. Carr, NIH P30 DC04664 to the University of Maryland Center 
for the Evolutionary Biology of Hearing.

has been proposed recently (Joris et al., 2006), VS is still an intuitive 
and widely used metric to measure synchrony of periodic spiking 
activities (Coffey et al., 2006; Köppl and Carr, 2008; Weiss et al., 
2009). Therefore systematic investigation on the technical problems 
of the VS measurement remains practically important.




