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to watch the stimulus as long as they wanted and responded with a 
goal-directed eye movement to one of three choice targets. Choices 
and response times were measured. On each trial the computer 
randomly picked a combination of coherences from 51 possible 
trial types. The symbols in Figure 1C show the choice data, mean 
response times (RTs) are shown in Figure 1B. The position on the 
horizontal axis indicates the coherence of the strongest motion 
component in the stimulus, the other two coherences are defined 
by the color of the symbol (see legend). In the choice plot circles 
represent correct choices, squares are choices of the direction of the 
intermediate motion component, and diamonds are choices of the 
direction of the weakest motion component. Figure 1C indicates 
that accuracy improved with stronger sensory evidence for making 
a particular choice (without changing the coherences of the com-
ponents providing evidence for one of the alternative choices; same 
color in the plot), that the psychometric function was getting shal-
lower the more distracting sensory evidence was present (from blue 
to red to green), and that the relative frequencies of the three possi-
ble choices followed the order of the coherences of the three motion 
components (circles above squares above diamonds). Figure 1B 
shows that responses were, on average, faster when stronger sen-
sory evidence was presented for a particular choice (again without 
changing the coherences of the components providing evidence 
for one of the alternative choices; same color in the plot). One 
of the striking features of our behavioral dataset is that accuracy 
and mean RT can change independently. For example, all stimuli 
with three identical motion strengths are associated with choice 
performance at chance level, but the mean RTs are quite different 
for the different coherences (faster responses for higher coherence; 
see the leftmost blue, red, and green symbols in Figures 1B,C). 

IntroductIon
Perceptual decision making involves selecting an appropriate action 
based on sensory evidence at an appropriate time. While there seems 
to be general agreement that perceptual decisions, at least those with 
response times that clearly exceed simple motor reaction times, 
involve some kind of integration-to-threshold mechanism, which 
accumulates sensory evidence until a decision boundary is crossed, 
there is still considerable debate about the details of the decision 
mechanism and their neural implementation. Furthermore, while 
an optimal algorithm for decisions between two alternatives based 
on sensory evidence that fluctuates over time is known: the sequen-
tial probability ratio test (SPRT; Wald, 1945), to date we only know 
an asymptotically optimal algorithm for decisions between more 
than two alternatives, which only applies to the asymptotic case of 
negligible error rates (Dragalin et al., 1999).

Niwa and Ditterich (2008) have presented a human behavioral 
dataset from a three-alternative random-dot motion direction-
discrimination task, spanning a wide range of accuracy levels 
(from chance to perfect) and mean response times (with more 
than a second difference between the fastest and the slowest task 
condition). The observers made a judgment about the direction of 
the strongest motion component in a multi-component stimulus, 
allowing independent control of how much sensory evidence was 
provided for each of the alternatives and therefore an independ-
ent manipulation of speed and accuracy. Details on the behavioral 
dataset can be found in Niwa and Ditterich (2008). Briefly, human 
observers were watching a random-dot motion stimulus with three 
embedded coherent motion components, moving in three different 
directions all separated by 120°. The task was to identify the direc-
tion of the strongest motion component. The subjects were allowed 
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Model of the sensory response to the MultI-coMponent 
randoM-dot patterns
All of the models for explaining the behavioral data rely on the same 
representation of the sensory information as the input to the deci-
sion stage. As in Niwa and Ditterich (2008), the response of three 
pools of sensory neurons tuned to the three possible directions of 
coherent motion in the stimulus was modeled as three independent 
normal (Gaussian) random processes with means of
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with j ranging from 1 to 3. Each stimulus is characterized by a set of 
three coherences c

1
, c
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j
 is the coherence (between 0 and 1) 

of the motion component in the preferred direction of a particular 
pool of neurons. The first term of the sum in the numerator repre-
sents a strong linear response to coherent motion in the preferred 
direction. The second term reflects a weaker linear response to 
the noise component of the stimulus. The denominator reflects a 
divisive normalization process. Most of the models discussed here 
assume that the variance of each stochastic process scales linearly 
with its mean:

σs v jj
k s2 = ⋅

Only the LCA model with fixed variance assumes that the vari-
ances of the random processes are all the same and do not depend 
on the stimulus.

The means and the variances expressed by these formulas are 
means and variances per unit time, which we defined to be 1 ms. 
Thus, when performing a simulation with larger time steps, as we 
did (see below), both means and variances need to be multiplied 
accordingly when generating the random samples (by a factor of 
5 for a time step of 5 ms).

sIMulatIon of the decIsIon Models and fIt to the Mean 
response tIMe data
All models were simulated in MATLAB (The MathWorks, Natick, 
MA, USA) using the Stochastic Integration Modeling Toolbox 
developed by the author, which can be downloaded from http://
master.peractionlab.org/software/. A temporal resolution of 
5 ms was chosen for all simulations. Optimal model parameter 
sets were obtained through an optimization procedure using a 
multi-dimensional simplex algorithm (provided by MATLAB’s 
Optimization Toolbox). Simulations with 10,000 trials per experi-
mental condition were run in parallel on a small computer cluster 
(using MATLAB’s Parallel Computing Toolbox and Distributed 
Computing Server) to minimize the sum of the squared differ-
ences between the mean RTs in the data and the mean RTs pre-
dicted by the model, taking the standard errors of the estimated 
means into account. We used the mean RTs for each combina-
tion of coherences, regardless of choice (15 data points). For 
the model these were obtained by calculating a weighted sum 
of the predicted mean RTs for the different choices based on 

Likewise, whereas mean RT was largely governed by the average 
of the two lower coherences (high degree of overlap between red 
and magenta symbols and green and cyan symbols in Figure 1B), 
accuracy was more sensitive to the individual coherences (larger 
separation between red and magenta circles and green and cyan 
circles in Figure 1C).

In Niwa and Ditterich (2008) we have also demonstrated 
that both the datasets from individual subjects as well as the 
pooled dataset (which we are focusing on in this study) are 
consistent with a decision mechanism that assumes a race-to-
threshold between three independent integrators, each of which 
accumulates a different linear combination of three relevant 
sensory signals. Our model made use of perfect integrators and 
feedforward inhibition was responsible for mediating competi-
tion between the alternative choices. However, many alternative 
models of multi-alternative perceptual decision making assume 
purely excitatory feedforward connections, propose feedback 
inhibition as the mechanism responsible for mediating competi-
tion between the choice alternatives, and involve imperfections 
of the integrators, like leakiness or saturation effects (Usher and 
McClelland, 2001; McMillen and Holmes, 2006; Bogacz et al., 
2007; Beck et al., 2008; Furman and Wang, 2008; Albantakis 
and Deco, 2009).

It was therefore natural to ask whether our behavioral dataset 
was also consistent with some of these alternative model archi-
tectures. We chose to use one aspect of the behavioral dataset, the 
mean RTs, to fit these models and to test their predictive power for 
the remaining aspects of the dataset, the choice proportions and 
the RT distributions. As we will see, the behavioral data cannot dis-
tinguish well between different decision mechanisms. We therefore 
wanted to know whether different models would make different 
predictions for decision-related internal signals, which should allow 
a dissociation of the competing models based on neurophysiologi-
cal experiments. Furthermore, we wanted to discuss how different 
model structures relate to decision theory, in particular the multi-
hypothesis sequential probability ratio test (MSPRT; Dragalin et al., 
1999). To be able to fit models to our data we will focus on abstract 
stochastic process models with only a small number of parameters 
rather than more complex biologically inspired models like Furman 
and Wang (2008) or Albantakis and Deco (2009), which require 
a different approach, but we will consider decision mechanisms 
based on both feedforward and feedback inhibition, integration 
with and without leakage, saturating integration, and non-linear 
mechanisms for a closer approximation of MSPRT (Bogacz and 
Gurney, 2007; Bogacz, 2009; Zhang and Bogacz, 2010). Finally, since 
MSPRT is only known to be optimal for the asymptotic case of 
negligible error rates, we wanted to address the optimality of dif-
ferent decision mechanisms over a wider range of error rates since 
human/animal decisions do not tend to be perfect.

MaterIals and Methods
analysIs of the behavIoral data
Details on the data analysis can be found in Niwa and Ditterich 
(2008). The 95% confidence limits for the probabilities of mak-
ing a particular choice are based on a method proposed by 
Goodman (1965).
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results
Models based on feedforward InhIbItIon
We will start with a model that is similar to the one presented in 
Niwa and Ditterich (2008). The structure of this model is shown 
in Figure 1A. Three independent integrators race against each 
other until the first one reaches a fixed decision threshold, which 
determines the choice and the decision time. Each of the integra-
tors accumulates a different linear combination of three relevant 
sensory signals (with one sensory pool providing feedforward exci-
tation and the other two pools providing feedforward inhibition). 
Each sensory pool shows a linear response to the coherent motion 
in its preferred direction as well as a weaker linear response to the 
noise (non-coherent) component of the stimulus. Simultaneous 
activation of multiple sensory pools by coherent motion induces 
divisive normalization, and the variance of the response of a sensory 
pool is proportional to its mean. The formulas describing the sen-
sory response can be found in section “Materials and Methods.” The 
response time is determined by adding a constant residual (non-
decision) time to the decision time. The model shown in Figure 1 
is different from the one presented in Niwa and Ditterich (2008) in 
two aspects: the integrators are leaky and saturate. The leakiness was 
chosen to be identical to the one of a feedback inhibition model, 
which will be discussed later, to be able to make a direct comparison 
between both models. As we will see below, the feedforward inhibi-
tion model is able to explain the behavioral data for a wide range of 
integration time constants. The second modification is motivated 
by a biological constraint: since we want to look at model predic-
tions for neurophysiological data later in this manuscript and since 
neural integrators cannot represent negative values by their firing 
rates, we imposed the constraint that the integrators cannot assume 
negative values. An upper limit is naturally given by the decision 
threshold. Since one of the model parameters can be chosen arbi-
trarily we defined the decision threshold to be 1. The starting point 
of the integration was chosen to be 1/3 of the decision threshold. 
This choice was informed by a preliminary analysis of recordings 
from the lateral intraparietal area (LIP) in monkeys performing the 
same task (Bollimunta and Ditterich, 2009), but is also consistent 
with the findings of Churchland et al. (2008). The exact location 
of the starting point turns out not to be too critical for being able 
to explain the behavioral data (data not shown). Figure 1B shows 
a fit of the model to the mean RT data. The symbols represent the 
data, the lines the model. The model parameters can be found in 
Table 1. This table also lists the remaining error after the fit as a 
goodness of fit measure with smaller numbers indicating a better 
fit. However, these numbers need to be taken with a grain of salt. 
All model calculations are based on simulations and even when 
simulating 50,000 trials per experimental condition this number 
shows a standard deviation of roughly 2.5 when repeating simula-
tions with the same parameter set. Furthermore, the model fitting 
procedure had to be based on lower-resolution simulations (10,000 
trials per condition), making the error during the optimization 
process even more variable. Once the mean RT data have been 
used for fitting the model, other aspects of the dataset can be used 
for testing the model. Figure 1C shows a comparison between the 
model’s predictions for the choice data (lines) with the actual choice 
data (symbols). Figure 1D compares the model’s predictions for the 

the predicted  probabilities of these choices. The set of model 
parameters yielding the smallest error (shown in brackets in the 
column “Remaining error” in Table 1) was then used to perform 
a higher-resolution simulation with 50,000 trials per condition 
for obtaining the behavior. The remaining error resulting from 
this simulation is shown in front of the brackets in the column 
“Remaining error” in Table 1. These simulations yield distribu-
tions of decision times. A fixed residual time t

res
 was added to con-

vert these into distributions of response times. Leaky integrators 
are characterized by an exponential decay of their state toward 0 in 
the absence of any other input. How quickly an integrator decays 
is defined by the integration time constant τ. After τ the state has 
decayed to 37% of its initial value. Mathematically, the leakage 
shows up in the differential equation describing the integrator 
as a term that is proportional to the current integrator state with 
a negative sign:

 x x= − ⋅ +1

τ

All of the simulations of models that were also used for making 
predictions for neurophysiology did not allow negative integrator 
states (indicated as “≥0” in the signal flow diagrams). This was 
implemented by setting an integrator state to 0 in any given time 
step if, without restrictions, it would have ended up with a negative 
state. Only the simulations of the model shown in Figure 6 did not 
prohibit negative integrator states since this model was excluded 
from further discussing its neurophysiological predictions due to 
its unrealistic predictions for the threshold crossing activity of the 
winning integrator (shown in Figure 6D). All of the shown tra-
jectories of internal signals are based on simulations with 10,000 
trials per condition.

sIMulatIons for coMparIng the optIMalIty of dIfferent 
decIsIon MechanIsMs
To obtain the relationship between error rate and mean sample size 
for each of the compared mechanisms, 20,000 trials were simulated 
for a variety of decision thresholds. For these simulations the inte-
gration range was unlimited, meaning that any integrator state was 
allowed, to provide a fair comparison between the feedforward and 
the feedback inhibition models and MSPRT, which also requires 
non-saturating integrators for a true implementation. For the feed-
forward inhibition mechanism the integrators x

k
(k = 1…3) were 

updated in each time step n according to

x l x ek n k n k n, , ,( )= − ⋅ +−1 1

with l defining the leakiness of the integrators and e
k,n

 being the 
current sensory evidence (linear combinations of random sam-
ples). For the feedback inhibition mechanism the integrators were 
updated according to

x x b x ek n k n i n
i

k n, , , ,= − ⋅ +− −
=
∑1 1

1

3

with b being the strength of the inhibitory feedback and e
k,n

 again 
being the current sensory evidence, which, in this case, are just the 
random samples.
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The match is not as good as the one for the longer integration time 
constant. In particular, the model’s mean RTs for the hardest trials 
are too long and the shape of the RT distributions approaches the 
typical exponential distribution of a probability summation model, 
a memory-free mechanism that keeps comparing incoming sam-
ples with a threshold until a threshold crossing occurs. However, 
overall, the results indicate that the behavioral data are consistent 
with a surprisingly wide range of integration time constants. To 
determine how other model parameters change with the integration 
time constant (τ) we fitted a number of models with different time 
constants to the mean RT data. The results are shown in Figure 2D. 
All model parameters but the strength of the divisive normalization 
(k

s
; blue) changed systematically with τ (significant correlations 

with p < 0.01). As the leakiness increases (smaller τ) the strength 
of the sensory input (g; red solid line) has to increase as well as the 
Fano factor, the ratio between the variance of a sensory input and 
its mean (k

v
; black solid line). However, g changes faster than k

v
, 

leading to an improved signal-to-noise ratio (red dashed line) for 
smaller time constants. Being able to achieve the same  performance 

RT distributions (blue lines) with the actual RT distributions (gray 
histograms) for the four combinations of coherences for which we 
have the largest number of trials. The results indicate that adding 
some leakiness to the integrators and limiting the integration range 
to positive values (prohibiting negative integrator states) does not 
impact the model’s ability to account for the behavioral data.

We had previously demonstrated that a feedforward inhibition 
model was able to capture the behavior of monkeys performing 
a two-choice random-dot motion discrimination (Roitman and 
Shadlen, 2002) over a wide range of integration time constants 
(degrees of leakiness of the integrators; see section Simulation of 
the Decision Models and Fit to the Mean Response Time Data for an 
explanation; Ditterich, 2006). It turns out that the same is true for 
our human three-choice dataset. Figure 2A shows the results of fit-
ting a model with the same structure as the one shown in Figure 1, 
but with very leaky integrators with an integration time constant of 
just 50 ms to the mean RT data. The model parameters can again 
be found in Table 1. Figures 2B,C show a comparison between 
the model’s predictions and the choice data and RT  distributions. 
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Figure 1 | Slightly leaky feedforward inhibition model. (A) Structure of 
the model. Solid lines indicate excitatory connections, dashed lines inhibitory 
connections. (B) Fit of the model (lines) to the mean response time data 
(symbols). The coherence of the strongest motion component is plotted on the 
horizontal axis. The color codes for the strengths of the other two 
components. Data points within the light gray bars, which would normally all 

be aligned with the center of the bar, have been shifted horizontally for 
presentation purposes to reduce overlap. (C) Comparison between the 
model’s choice predictions (lines) and the behavioral data (symbols). The error 
bars indicate 95% confidence intervals. (D) Comparison between the model’s 
predictions for some RT distributions (blue lines) and the behavioral data (gray 
histograms).
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of inhibition equals leakiness of integrators) generates a decision 
behavior that is very similar to the one generated by a drift-diffusion 
model, which, in turn, is equivalent to a feedforward inhibition 
model (Bogacz et al., 2006). Here, we will also focus on the bal-
anced version of a multi-alternative LCA model. A particularly 
interesting alternative implementation of this model is shown in 
Figure 3B. The need for tuning the network parameters in such a 
way that the intrinsic leak of the integrators matches the strength 
of the lateral inhibition disappears when the effective leakiness 
of the integrators is provided by an explicit inhibitory feedback 
rather than by intrinsic leakage. Mathematically, leaky integration 
simply means that the differential equation for the change of the 
state of the integrator has a term that is proportional to the current 
state with a negative coefficient. Whether this term is provided by 
an intrinsic leak of the integrator or by an external feedback does 
not matter. Thus, it is possible to start out with integrators whose 
intrinsic leakiness (yielding an intrinsic integration time constant 

requires better quality sensory signals when the integrators are 
not as efficient (leakier). At the same time, the residual time (t

res
; 

magenta) also increases, meaning that the mean decision time is 
getting shorter for leakier integrators.

Models based on feedback InhIbItIon
Rather than basing the competition between the integrators on feed-
forward inhibition, the majority of published models of perceptual 
decisions between multiple alternatives rely on feedback inhibi-
tion. One of the most influential models in this area is the “leaky, 
competing accumulator (LCA) model” (Usher and McClelland, 
2001). The structure of this model is shown in Figure 3A. Several 
leaky integrators compete against each other by laterally inhibiting 
their competitors. The integrators have an intrinsic leakiness (given 
by the inverse of the integration time constant τ) and inhibit each 
other with strength b. It has been pointed out that in the case of 
decisions between two alternatives a balanced LCA model (strength 

100

0.6

0.8

1

1.2

1.4

1.6

Integration time constant [ms]

M
od

el
 p

ar
am

et
er

 v
al

ue
 n

or
m

al
iz

ed
 b

y
m

ea
n 

ac
ro

ss
 ti

m
e 

co
ns

ta
nt

s

 

 
g
kn

ks

kv

tres

S/N ratio (g/k
v
)

50050 200

0 10 20 30 40

600

800

1000

1200

1400

1600

1800

Motion strength of strongest component [%]

M
ea

n 
R

T
 (

+
/−

 1
 a

nd
 2

 S
E

) 
[m

s]

 

 
( max. /   0% / 0%   )
( max. / 10% / 10% )
( max. / 20% / 20% )
( max. / 15% / 5%   )
( max. / 25% / 15% )

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Motion strength of strongest component [%]

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 c

ho
ic

e

 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

# of observations: 997

# of observations: 1316

# of observations: 907

# of observations: 1180

( 20% / 15% / 5% )
correct choices

( 30% / 25% / 15% )
correct choices

( 40% / 25% / 15% )
correct choices

( 30% / 15% / 5% )
correct choices

RT [ms] RT [ms]

A B

C D

Figure 2 | Very leaky feedforward inhibition model. (A) Fit of the model 
(lines) to the mean response time data (symbols). (B) Comparison between the 
model’s choice predictions (lines) and the actual data (symbols). (C) 
Comparison between the model’s predictions for some RT distributions (blue 

lines) and the behavioral data (gray histograms). (D) Dependency of remaining 
model parameters on the integration time constant. All parameters but the 
strength of the divisive normalization (ks; blue) were significantly correlated 
with τ.
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the integrators and the strength of lateral inhibition means that the 
same amount of inhibitory feedback has to be provided from the 
output of an integrator to its own input as well as the inputs of all 
other integrators. Thus, this kind of inhibition can be  provided by 

τ
int

) is substantially lower than the desired effective leakiness and 
to set the effective leakiness (yielding an effective integration time 
constant τ

eff
) by feedback inhibition from the output of an integra-

tor to its own input. A balance between the effective leakiness of 
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RT distributions (blue lines) are compared with the actual data 
(gray histograms) in Figure 4C. While the overall match seems 
slightly worse than in the case of the feedforward inhibition model, 
the results indicate that our behavioral dataset is consistent with 
both feedforward as well as feedback inhibition models of multi-
alternative perceptual decision making.

As mentioned in the section “Introduction,” one of the striking 
features of our behavioral dataset is that in the case of three motion 
components with identical coherence faster mean RTs were observed 
for higher coherence. As we have pointed out in Niwa and Ditterich 
(2008), in the context of the feedforward inhibition model this 
observation can only be explained through changes in the variance 
of the combined sensory signals (e

1
, e

2
, and e

3
 in Figure 1A) since 

the means are always 0 for three  identical coherences. We therefore 

a common inhibitory signal that can be derived from the sum of 
all current states of the integrators. The structure of such a model 
(Figure 3B) is therefore very similar to the structure of more 
biologically inspired models that make use of a common pool of 
inhibitory interneurons (Furman and Wang, 2008; Albantakis and 
Deco, 2009).

We were wondering whether our behavioral dataset was consist-
ent with such a balanced LCA model. Using the same formalism for 
describing the sensory responses as the one used in the feedforward 
inhibition model, we again fitted the feedback inhibition model to 
the mean RT data (Figure 4A). The resulting model parameters 
can be found in Table 1. Figure 4B shows a comparison between 
the model’s predictions for the choice behavior (lines) and the 
actual choice data (symbols). The model’s predictions for some 
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Figure 4 | Feedback inhibition model with scaling variance. (A) Fit of the model (lines) to the mean response time data (symbols). (B) Comparison between the 
model’s choice predictions (lines) and the actual data (symbols). (C) Comparison between the model’s predictions for some RT distributions (blue lines) and the 
behavioral data (gray histograms).
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concluded that a significant scaling of the variance of the sensory 
signals with their mean has to be postulated. However, the situation 
is different in the case of the feedback inhibition model. The excita-
tory input to a particular integrator changes whenever the mean of 
the associated sensory signal changes. Thus, changes in the means 
only (without any changes of the variance) could, in principle, be 
driving the behavioral effects. To test whether such an alternative 
explanation would be consistent with our data we also fitted a ver-
sion of the feedback inhibition model with fixed (rather than scal-
ing) variance sensory signals. The results are shown in Figure 5A; 
the model parameters can be found in Table 1. Figures 5B,C show 
comparisons of the model’s predictions for choice and RT distri-
butions with the actual data. The results indicate that a feedback 
inhibition model could explain the observed independent changes 
of accuracy and mean RT on the basis of changes of the mean sen-
sory signals only without having to postulate additional changes 
of the variance (although, as we have seen in Figure 4, a scaling of 
the variance does not hurt).

Models IMpleMentIng or approxIMatIng Msprt
For choices between two alternatives Gold and Shadlen (2001) were 
able to demonstrate that, under reasonable assumptions about how 
sensory neurons represent the state of the sensory world, integrat-
ing the difference between the activities of two pools of oppos-
ing sensory neurons up to a decision threshold provides a good 
approximation of the SPRT, which has been shown to be optimal 
in the sense of minimizing the average decision time for any desired 
accuracy level (Wald, 1945). This is because the difference between 
the activities of the two sensory pools can be shown to be (roughly) 
proportional to the logarithm of the likelihood ratio between the 
two competing hypotheses based on the momentary sensory evi-
dence. Assuming statistical independence, summing these differ-
ences over time yields a value proportional to the logarithm of the 
likelihood ratio based on the complete sensory evidence provided 
so far. According to SPRT the decision process should be terminated 
when this likelihood ratio exceeds a decision threshold.

While the optimal algorithm for decisions between more than 
two alternatives for any desired accuracy level is still unknown, an 
extension of SPRT, the MSPRT has been shown to be asymptoti-
cally optimal for negligible error rates (Dragalin et al., 1999). As will 
be discussed later in this manuscript, the models that we have been 
looking at so far do not implement MSPRT. However, Bogacz and 
Gurney (2007) have proposed that a circuit involving the basal ganglia 
could help implementing or at least approximating this algorithm. 
Dragalin et al. (1999) have proposed two versions of MSPRT: MSPRTa 
calculates the posterior probability of each hypothesis and stops the 
decision process when one of these exceeds a decision threshold; 
MSPRTb is based on multiple pairwise comparisons and stops the 
decision process when all likelihood ratios between a given hypothesis 
and all alternative hypotheses exceed a decision threshold. Bogacz 
and Gurney (2007) describe a potential implementation of MSPRTa. 
Cortex is assumed to integrate sensory evidence for each hypothesis 
independently and the basal ganglia are assumed to perform the cal-
culations that are necessary for obtaining the posterior probabilities. 
The decision process is assumed to terminate when one of the poste-
rior probabilities exceeds a critical threshold. The structure of such a 
model is shown in Figure 6A. Calculating the posterior  probabilities 
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Figure 5 | Feedback inhibition model with fixed variance. (A) Fit of 
the model (lines) to the mean response time data (symbols). 
(B) Comparison between the model’s choice predictions (lines) and the 
actual data (symbols). (C) Comparison between the model’s predictions 
for some RT distributions (blue lines) and the behavioral data (gray 
histograms).
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shows a comparison between this model’s predictions for the choice 
behavior and the actual choice data. As can be seen, our behavioral 
dataset seems also consistent with an MSPRT model.

This feedforward implementation of MSPRT, however, makes a 
prediction that is incompatible with experimental observations that 
have been made in non-human primates performing random-dot 
motion discrimination tasks. Figure 6D shows the model’s pre-
diction for the state of the winning integrator immediately prior 
to the decision threshold crossing for different combinations of 
motion coherences. The dashed vertical line marks the time of the 
threshold crossing. It is obvious that, at this point in time, the state 
of the winning integrator spans a wide range for different coherence 
combinations. This is because the thresholding is not performed on 
the state of the integrator, but on the output of the circuit calculat-
ing the posterior probabilities. In contrast, recordings from parietal 
cortex of monkeys performing such tasks, which have revealed neu-
rons that appear to reflect the state of the integrator, suggest that 
the activity of the winning integrator is very stereotyped around 
the time when the decision is made (Roitman and Shadlen, 2002; 
Churchland et al., 2008; Bollimunta and Ditterich, 2009). Aware 

involves obtaining the logarithm of a sum of exponentials. A truth-
ful implementation of MSPRT would require the weight (g*) of the 
excitatory connections with the red, green, and blue arrowheads to 
change with the statistics of the sensory input. However, Bogacz and 
Gurney (2007) have demonstrated that the model is relatively robust 
with respect to how this weight is set. Here we only consider a model 
where these weights are set to 1. We used perfect integrators (since 
this is what a true implementation of MSPRT would require) and 
initialized them with a value of 0. The starting point of the integration 
can actually be chosen arbitrarily since it is easy to demonstrate that 
adding the same offset to the states of all integrators does not alter 
the result of calculating the posterior probabilities (see Bogacz and 
Gurney, 2007, Appendix D or Bogacz, 2009, Appendix E). The result 
of fitting this model to the mean RT data is shown in Figure 6B and 
the resulting model parameters can be found in Table 1. Note that 
the decision threshold is negative. This is because the logarithm of 
a probability is a negative number. Bogacz and Gurney (2007) have 
therefore proposed that the output of the basal ganglia should be the 
negative of this logarithm and that a threshold crossing would then 
occur when one of the outputs drops below a critical value. Figure 6C 
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the model (lines) to the mean response time data (symbols). (C) Comparison 
between the model’s choice predictions (lines) and the actual data (symbols). 
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additive offset, since the combination of the additive offset with the 
feedback circuit takes care of automatically setting the starting point 
of integration. Why is this? Let us assume that the integrators start 
out with any arbitrary activity A. What exactly A is does not matter 
as long as the activation of all integrators is identical. This leads 
to an inhibitory feedback signal of size ln[3 exp(A)] = A + ln 3. In 

of this issue, Bogacz (2009) has considered an alternative imple-
mentation: rather than having the basal ganglia circuit operate 
downstream from the cortical integrators, it could also be part of a 
cortico-cortical feedback loop. Thus, if the circuit could be arranged 
such that the integrators themselves carry the information about 
the posterior probabilities, the thresholding could be moved back 
to the cortical level.

Figure 7A shows a feedback implementation of MSPRT that 
closely follows the suggestion in Bogacz (2009). What does this 
mechanism calculate compared to the mechanism shown in 
Figure 6A? The feedforward mechanism in Figure 6A takes an 
integrated sensory evidence signal S

i
, multiplies it with g*, and sub-

tracts the logarithm of the sum of the exponentials of all integrated 
evidence signals, again multiplied by g*, to obtain the logarithm of 
the posterior probability P

i
:

ln ( ) * ( ) ln exp * ( )P t g S t g S ti i j
j

= ⋅ − ⋅( )









=
∑

1

3

Thinking of this as a discrete time process, which will make it 
easier to compare it with the feedback process, the integrals over the 
sensory signals up to time t would be replaced by sums of sensory 
samples up to some index n:

ln * ln exp *, , ,P g s g si n i k
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Let us now have a look at the mechanism in Figure 7A. As dem-
onstrated in the Appendix, for a g* of 1 the feedback signal f

i,n
 is 

always the logarithm of the posterior probability from the previ-
ous iteration ln P

i,n−1
. The summation nodes update these with the 

current sensory evidence and the feedback loops again normalize 
the results. Note that in this implementation the accumulation of 
the sensory evidence (temporal integration) is performed by the 
feedback loops involving the basal ganglia.

However, the integration does not necessarily have to be per-
formed by the cortico-cortical loop involving the basal ganglia. 
A closer inspection of the feedback signals reveals that they are 
composed of two additive components: an excitatory component 
with a gain of 1 for feeding back each individual signal and a shared 
inhibitory component that carries the logarithm of the sum of 
exponentials. The individual excitatory component simply ensures 
perfect integration and can be separated from the shared inhibi-
tory component, removing the function of temporal integration 
from the basal ganglia loop and using it only for the normalization 
process. Such an implementation is shown in Figure 7B. Another 
modification has been applied to this implementation. Recall that 
the logarithm of a probability is a negative number. However, we 
want the integrators to operate in a positive range. To achieve this, 
we are adding an identical excitatory offset to the inputs of all inte-
grators. Remember that adding an identical offset to all integrators 
does not change the outcome of the posterior probability calcula-
tion (see above). This circuit has in interesting property: Assume 
that the actual decision thresholds are fixed. (We set them to 1 as in 
the earlier models.) To change the effective decision threshold the 
excursion from the starting point of integration to the actual thresh-
old has to be adjusted. In this circuit this is achieved by changing the 
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Figure 7 | Structure of feedback MSPrT models. (A) Feedback 
implementation of MSPRT following Bogacz (2009). The basal ganglia are part 
of a cortico-cortical feedback loop that provides an excitatory feedback signal 
representing the logarithm of the posterior probability. Note that in this 
implementation the integration of the sensory evidence is mediated by the 
cortico-cortical feedback loop involving the basal ganglia. The yellow boxes 
with “∆t” in them indicate some time delay in the feedback loop. 
(B) Alternative feedback implementation of MSPRT. The feedback signals in 
(A) have been separated into an excitatory component responsible for 
integrating the sensory evidence and an inhibitory component responsible for 
normalizing the posterior probabilities. This implementation no longer requires 
the basal ganglia to participate in the temporal accumulation process. 
Furthermore, an excitatory offset has been added to the inputs of all 
integrators to move the operating point of the circuit into the positive range 
(recall that the logarithm of a probability is a negative value). As long as the 
same offset is added to the input of all integrators, this does not affect the 
result of calculating the posterior probabilities. Thus, each integrator now 
carries the sum of the logarithm of the posterior probability and the offset. The 
integrators now also have the property that they cannot represent negative 
values (like the integrators in the earlier models).
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the absence of sensory input the integrators therefore receive an 
excitatory input of size “Offset” and an inhibitory input of size 
A + ln 3. Thus, the current integrator activity is subtracted and 
the integration starting point is set at Offset − ln 3.

Figure 8A shows a fit of the model in Figure 7B to the mean 
RT data, again using a more realistic integrator that cannot assume 
negative values. The parameter values can be found in Table 1. 
Figures 8B,C compare the model’s predictions for choice behav-
ior and RT distributions with the actual data. The automatically 
set starting point of integration turns out to be roughly 0.38 (see 
Figure 11), which is not unrealistic and similar to the imposed start-
ing point of 0.33, which has been applied to all other models on the 
basis of neurophysiological observations in animal experiments.

predIctIons for neurophysIology
What we have seen so far is that the pattern of behavioral data that we 
have observed in our multi-alternative perceptual decision-making 
task seems to be consistent with a number of integration-to-threshold 
model structures that involve a broad range of integration time con-
stants, feedforward as well as feedback inhibition mechanisms, as well 
as linear and non-linear mechanisms for combining signals across 
alternatives. Since it seems to be virtually impossible to discriminate 
between these different options based on the behavioral data alone, 
the question arises whether other types of data would help with this 
discrimination. What I am going to demonstrate in the following 
is that, although the models make almost identical predictions for 
behavior, the predictions for how the internal state of the system 
should evolve over time are quite different. Thus, invasive recordings 
in animal models that aim at tapping into the state of the integrator 
(like Roitman and Shadlen, 2002; Churchland et al., 2008) should be 
helpful in discriminating the alternatives.

We will be looking at a number of measures for assessing the 
internal dynamics of a decision mechanism: how the activity of the 
integrator associated with the strongest motion component evolves 
over time, how the summed activity of all integrators evolves over 
time, and how the states of the two integrators associated with the 
two larger motion coherences move through state space over time. 
Figure 9 shows all of these measures for the feedforward inhibition 
model presented in Figure 1. The left column indicates the expected 
trajectories during the first 200 ms after integration onset (ignoring 
the outcome of the decision); the right column presents the expected 
trajectories during the last 200 ms before the decision threshold cross-
ing (for correct trials only). Different trajectories are associated with 
different combinations of coherences, with the width of the line rep-
resenting the coherence of the strongest motion component and the 
color representing the coherences of the other two components.

How can these measures be used to differentiate between different 
decision mechanisms? How, for example, can we dissociate a slightly 
leaky feedforward inhibition mechanism (Figure 1) from a very 
leaky feedforward inhibition mechanism (Figure 2)? As shown in 
Figure 9A, the slightly leaky mechanism predicts early trajectories that 
are roughly linear ramps with different slopes for different combina-
tions of coherences. The very leaky mechanism on the other hand, as 
shown in Figure 10A, predicts that the integrator assumes different 
steady states for different combinations of coherences. Likewise, the 
slightly leaky mechanism predicts  continuously rising late trajectories 
(Figure 9B), whereas the very leaky mechanism again predicts differ-

B

A

0 10 20 30 40
500

1000

1500

2000

Motion strength of strongest component [%]

M
ea

n 
R

T
 (

+
/−

 1
 a

nd
 2

 S
E

) 
[m

s]

 

 
( max. /   0% /   0% )
( max. / 10% / 10% )
( max. / 20% / 20% )
( max. / 15% /   5% )
( max. / 25% / 15% )

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Motion strength of strongest component [%]

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 c

ho
ic

e

 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

0 1000 2000 3000 4000
 

 

# of observations: 997

# of observations: 1316

# of observations: 907

# of observations: 1180

( 20% / 15% / 5% )
correct choices

( 30% / 25% / 15% )
correct choices

( 40% / 25% / 15% )
correct choices

( 30% / 15% / 5% )
correct choices

RT [ms] RT [ms]

C

Figure 8 | results of the feedback MSPrT model (shown in Figure 7B). 
(A) Fit of the model (lines) to the mean response time data (symbols). 
(B) Comparison between the model’s choice predictions (lines) and the actual 
data (symbols). (C) Comparison between the model’s predictions for some RT 
distributions (blue lines) and the behavioral data (gray histograms).

ent steady states during the second to last 100 ms before the threshold 
crossing (Figure 10B). Is there a way to tell a feedback inhibition 
mechanism with scaling variance (Figure 4) from one with fixed 
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Figure 9 | internal dynamics of feedforward inhibition mechanism (shown 
in Figure 1). (A) Expected activity (relative to threshold) of the integrator 
associated with the strongest motion component during the first 200 ms after 
integration onset. The thickness of the line represents the coherence of the 
strongest motion component (thicker = higher coherence), the color codes for 
the coherences of the other two components (see legend). The black dot marks 
the starting point of integration. (B) Expected activity of the integrator associated 

with the strongest motion component during the last 200 ms before threshold 
crossing on correct trials. The dashed line indicates the decision threshold. 
(C) Expected sum of the activities of all integrators during the first 200 ms. 
(D) Expected sum of the activities of all integrators during the last 200 ms on 
correct trials. (e) Expected movement through state space (states of the 
integrators associated with the two stronger motion components) during the first 
200 ms. (F) Expected movement through state space during the last 200 ms.
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Figure 10 | Deviating internal dynamics of other decision mechanisms. (A) 
Very leaky feedforward inhibition model (Figure 2): Early activity of leading 
integrator. (B) Very leaky feedforward inhibition model (Figure 2): Late activity of 
winning integrator. (C) LCA model with scaling variance (Figure 4): Early 

summed activity of all integrators. (D) LCA model with fixed variance (Figure 5): 
Early summed activity of all integrators. (e) LCA model with scaling variance 
(Figure 4): Late state space. (F) Feedback MSPRT model (Figure 8): Late 
summed activity of all integrators.

 variance (Figure 5)? Figure 10C shows the early expected summed 
activity of all integrators for the scaling variance model. It can be 
seen that for trials with only a single coherent motion component 

(blue lines) the summed activity is expected to be lowest for the high-
est coherence (thicker lines below thinner lines). On the contrary, 
Figure 10D shows that in the fixed variance case the summed  activity 
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inhibitory feedback input. The input signals to different integrators 
are therefore expected to be positively correlated, which could again 
show up as an increased likelihood of simultaneous spiking of neurons 
belonging to different integrator populations.

relatIonshIp wIth decIsIon theory
We have seen that a variety of integration-to-threshold models are 
apparently able to explain behavioral data from multi-alternative 
perceptual decision making, but what is it that these mechanisms 
are calculating and what is the relationship between the underlying 
algorithms and decision theory? Making a decision has two essen-
tial aspects: deciding when one has collected enough evidence for 
being able to make an informed choice, which we will refer to as the 
“stopping rule,” and choosing one out of a limited set of alternative 
hypotheses, which we will refer to as the “decision rule.” For example, 
when making a decision between two possible alternatives based on 
sequential sampling of sensory evidence, it has been demonstrated 
that the SPRT is the optimal algorithm in the sense of minimizing the 
mean sample size for any given desired accuracy level (Wald, 1945). In 
this case the stopping rule is to terminate the decision process when 
the likelihood ratio for the two alternatives exceeds a particular criti-
cal threshold that depends on the desired accuracy. And the decision 
rule is to pick the alternative with the larger likelihood.

To address the relationship between the discussed multi-alter-
native decision mechanisms and decision theory, I will start out 
developing an argument that is analogous to what Gold and Shadlen 
(2001) have done for the case of two alternatives: we will see that 
under certain circumstances the integration of the difference between 
the activities of two pools of sensory neurons yields a result that is 
proportional to the log-likelihood ratio between two hypotheses. To 
keep the argument as simple as possible, let us consider a slightly less 
complex problem than what the discussed experimental task requires: 
assume that the brain is listening to the outputs of three pools of 
sensory neurons, which are emitting random samples that can be 
described as originating from a stochastic process. The mean of one 
of these processes μ+ is slightly larger than the means of the other 
two, which are identical (μ−; this is the simplification). The brain’s 
job is to find out which of the three streams is the one with the larger 
mean. Thus, there are three possible hypotheses H

1
, H

2
, and H

3
 with 

H
i
 meaning that stream i is the one with the larger mean:

H

H

H

1 1 2 3

2 2 1 3

3 3 1 2
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Each time step k we observe a sample x
k
 from the first stream, a 

sample y
k
 from the second stream, and a sample z

k
 from the third 

stream. In the following we will consider two special cases: (1) all 
stochastic processes are Poisson and (2) all stochastic processes are 
normal with equal variance.

Let us first look at the Poisson case. The conditional probabilities 
of observing a sample x

k
 given the different hypotheses are
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is expected to be highest for the highest coherence (thicker blue lines 
above thinner blue lines). Can we also tell a feedforward inhibition 
model (Figure 1) from a feedback inhibition model (Figure 2)? 
Figure 9F shows how a feedforward inhibition mechanism (regard-
less of the leakiness) approaches the decision threshold: the activity 
of the integrator associated with the intermediate motion component 
keeps falling as the activity of the winning integrator keeps rising. In 
contrast, Figure 10E shows the situation for the feedback inhibition 
mechanism (regardless of whether the variance scales or not): the 
integrator associated with the intermediate motion component tends 
to assume different steady states as the winning integrator approaches 
threshold. Finally, how can we tell a feedback MSPRT mechanism 
(Figure 8) from any of the mechanisms based on linear combinations 
of signals (regardless of feedforward or feedback inhibition)? With 
the exemption of high coherence single component trials, most of 
the presented decision mechanisms predict a continuous increase in 
the summed activity of all integrators during the last 200 ms before 
threshold crossing. Only two mechanisms are different: the very 
leaky feedforward inhibition mechanism (Figure 2), which predicts 
a roughly flat sum up to approx. 50 ms before threshold crossing 
when the sum starts rising continuously, and the feedback MSPRT 
mechanism (Figure 8), which also predicts a roughly flat sum up 
to approx. 100 ms before threshold crossing when the sum tends to 
start dropping (see Figure 10F). Thus, although all of the discussed 
decision mechanisms predicted virtually indistinguishable behavior, 
the predictions for the internal dynamics are quite different. These 
differences are summarized in Table 2.

Figure 11 shows the early state space trajectories for the feedback 
MSPRT model (Figure 8). Qualitatively, these trajectories are simi-
lar to the ones predicted by most of the other decision mechanism. 
The reason for showing these trajectories is to demonstrate the 
result of the automatic setting of the integration starting point by 
the feedback mechanism as has been discussed above.

Another difference between the considered decision models pertains 
to the correlation between the input signals to the integrators. This cor-
relation structure could potentially show up in spike time correlations 
between simultaneously recorded neurons representing the states of two 
different integrators (de la Rocha et al., 2007; Ostojic et al., 2009). There 
are too many unknowns (see section Discussion) to make a quantita-
tive prediction for the expected correlations, but we will discuss the 
qualitative pattern that should be seen if correlations can be observed 
at all. A hallmark of the feedforward inhibition mechanism shown in 
Figure 1A is that a sensory signal that provides excitatory input to one 
of the integrators also provides inhibitory input to the other integrators. 
Thus, pairs of integrators share an anti-correlated input component 
that could show up as a reduced likelihood of (nearly) simultaneous 
spiking of neurons belonging to different integrator populations. In 
contrast, in the feedback inhibition mechanisms shown in Figure 3 
different integrators only share inhibitory input. Thus, these positively 
correlated input components could show up as an increased likelihood 
of simultaneous spiking of neurons belonging to different integrator 
populations. In the feedback MSPRT mechanism shown in Figure 7A 
the feedback signals to the different integrators are largely independent 
and we therefore would not expect any significant correlation between 
the spike timing of neurons belonging to different integrator popula-
tions. In contrast, the integrators in the alternative implementation 
shown in Figure 7B share both an excitatory offset input as well as an 
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The conditional probabilities for the samples from the other 
two streams can be written analogously. We can thus establish a 
number of log-likelihood ratios:
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Assuming statistical independence between the samples obtained 
from the different streams, the total log-likelihood ratios for a set 
of observations (x

k
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Figure 12 | Optimality of decision mechanisms. (A) Mean sample size 
(decision time) as a function of error rate for different decision mechanisms. A 
feedforward inhibition mechanism (“FFW”, red) and a feedback inhibition 
mechanism (“FB”, green) are compared with MSPRTa (blue) and MSPRTb (black). 
The circles are the simulation results, the lines are all fits of the form mean sample 
size = α + log(β + γ error rate) (with α, β, and γ free parameters), which provided 
good empirical fits for all simulations. (B) Effect of leakiness of the integrators on 
optimality of the feedforward inhibition mechanism. The leakiness ranges from 0 
(perfect integration; blue) to very leaky (integration time constant of 10 samples; 
red). As can be seen, the optimality quickly declines with increasing leakiness. 
See (A) for an explanation of the circles and the lines. (C) Effect of leakiness of the 
integrators on optimality of the feedback inhibition mechanism. The leakiness 
ranges from slightly leaky (integration time constant of 500 samples; blue) to very 
leaky (integration time constant of two samples; red). As can be seen, over a wide 
range of time constants, the optimality is insensitive to the leakiness of the 
integrators. See (A) for an explanation of the circles and the lines.
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Following the same steps as in the case of the Poisson processes 
above, one arrives at the following final expressions:
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Thus, the same principal result holds, but the proportionality 
factor g* is now (µ µ σ+ −− )/ 2.

Given these results, what is it that the feedforward inhibition 
model (Figure 1A) computes? It calculates the integrals over
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Assuming that the outputs of the sensory pools can be 
approximated by either Poisson processes or by normal proc-
esses with roughly equal variance and ignoring imperfections 
of the integrators, the integrators then carry signals that are 
roughly proportional to the average log-likelihood ratio between 
one hypothesis and the other two hypotheses. The integration 
process stops once one of these values exceeds a threshold and 
the corresponding hypothesis is picked. This is what McMillen 
and Holmes (2006) have referred to as a max-vs-average test. 
Note that this is different from what MSPRT does. Recall that 
there are two versions of MSPRT: MSPRTa, which stops when the 
posterior probability of one hypothesis exceeds a threshold and 
picks the corresponding hypothesis, and MSPRTb, which stops 
when all of the likelihood ratios between a given hypothesis and 
all alternatives exceed a threshold and picks the corresponding 
hypothesis. This is what McMillen and Holmes have referred to 
as a max-vs-next test. What does the calculation of the posterior 
probability look like? Assuming flat priors, each posterior can be 
expressed as the corresponding likelihood multiplied by some 
factor. Since the posterior probabilities have to sum to 1 (one 
of the hypotheses has to be true and only one of them can be 
true at a time), this factor has to be 1 divided by the sum of the 
likelihoods. Thus the posteriors can be written as

Furthermore, assuming statistical independence between suc-
cessive observations, the log-likelihood ratios based on the sensory 
observations up to time index n can be written as
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This means that the log-likelihood ratio between two hypoth-
eses is proportional to the sum of the differences between the 
samples obtained from two sensory streams or, in the continu-
ous case, to the integral over the difference between two sensory 
streams. Equivalently, it is also possible to sum/integrate each 
stream independently and then calculate the difference afterward. 
The proportionality factor, which we will refer to as g*, in the case 
of Poisson processes is log /µ µ+ −( ). Thus, we see that the same 
principal result that was developed by Gold and Shadlen (2001) 
for the 2AFC case, namely that the log-likelihood ratio between 
two hypotheses is proportional to the integral of the difference 
between the activities of two pools of sensory neurons, also holds 
for multiple alternatives.

Let us now consider the case of normal processes with equal 
variance. Under these circumstances the conditional probabilities 
for observing an individual sample can be written as
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optIMalIty of the dIscussed decIsIon MechanIsMs at dIfferent 
accuracy levels
Multihypothesis sequential probability ratio test has been shown to 
be optimal in the sense of minimizing sample size or decision time 
for the asymptotic case of negligible error rates. However, when fac-
ing difficult decisions, humans or animals often do not operate in a 
regime of no or almost no errors. For example, our human subjects 
had an error rate of 20%. Our monkeys tend to be closer to a 30% 
error rate (Bollimunta and Ditterich, 2009). It is still unknown what 
the optimal multi-alternative decision algorithm in such a regime 
is. We therefore wanted to perform an empirical comparison of 
the optimality of the different decision mechanisms that are being 
discussed here for a range of biologically plausible error rates. The 
decision mechanisms had to solve the following challenging prob-
lem: From listening to three streams of random numbers they had 
to find out which of the streams had a slightly higher mean than 
the other two. All of the random processes were normal processes 
with a variance of 1. One of them had a mean of 0.1, the other two 
means were 0. The decision threshold was varied systematically to 
obtain the relationship between mean sample size and error rate 
for error rates ranging from roughly 1% to 40% for each of the 
decision mechanisms. Figure 12A shows a comparison between the 
optimality of a feedforward inhibition mechanism (“FFW”, red), a 
feedback inhibition mechanism (“FB”, green), MSPRTa (blue), and 
MSPRTb (black). FFW and FB showed identical performance. The 
same was true for the two MSPRT algorithms. For low error rates, 
the MSPRT algorithms clearly outperformed the integration-to-
threshold mechanisms based on linear combinations. However, for 
error rates of 20% and more the performance was virtually indis-
tinguishable. This indicates that an implementation based on linear 
combinations (using either feedforward or feedback inhibition) 
might no longer have a serious optimality disadvantage compared 
to MSPRT when looking at a biologically more relevant accuracy 
regime. Figure 12B shows how the optimality of the feedforward 
inhibition mechanism changes with the integration time constant. 
As can be seen, the optimality quickly declines with increasing 
leakiness of the integrators. The feedback inhibition mechanism’s 
optimality, on the other hand, is largely insensitive to changes in 
the leakiness of the integrators (Figure 12C).

dIscussIon
In this manuscript we have examined a number of different inte-
gration-to-threshold mechanisms that could potentially underlie 
perceptual decisions between multiple alternatives. These mecha-
nisms included integrators with and without leakage, competition 
mechanisms based on either feedforward or feedback inhibition, and 
both linear and non-linear mechanisms for combining signals across 
alternatives. Overall, we have seen that these mechanisms can pro-
duce virtually indistinguishable decision behavior, which can make 
it difficult to impossible to distinguish between different alternative 
implementations based on behavioral data alone, at least with the 
dataset from our perceptual decision task. On the other hand, we 
have seen that these mechanisms make quite different predictions 
for the internal dynamics during the decision process. Thus, it is 
likely that high-resolution neural recordings will be helpful in figur-
ing out which implementation is actually being used by the brain. 
Furthermore, we have discussed what kind of statistical tests are being 
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Here, “obs” stands for all sensory observations. Note that imple-
menting this algorithm would require either (N

2) integrators for N 
alternatives (leading to an explosion in the number of required 
integrators with increasing number of alternatives) if the system 
wanted to keep track of all possible differences or N integrators for 
N alternatives if each sensory signal were integrated independently, 
plus calculating exponentials.

For a thorough comparison between the LCA model and MSPRT 
please see McMillen and Holmes (2006). Briefly, the authors dem-
onstrated that, similar to our feedforward inhibition model, the 
LCA model also approximates a max-vs-average test.

Why is it that the mechanism shown in Figure 6A implements/
approximates MSPRT? The calculation looks quite different from 
the formula for the posterior probabilities shown above. We can 
rewrite the posterior probability of the first hypothesis as

P H
g s g s

g s g

1

1 2

1

1

1
|

exp exp

exp exp

obs( ) =
+ − ⋅( )⋅ ⋅( )



+ − ⋅( )⋅

∫ ∫
∫

∗ ∗

∗ ∗ ⋅⋅( )∫ s3

Multiplying both the numerator as well as the denominator by 
exp (g* · ∫s1

) yields

P H
g s

g si
i

1

1

1

3|
exp

exp

obs( ) =
⋅( )

⋅( )
∫
∫∑

=

∗

∗

Taking the logarithm yields

ln | ln expP H g s g si
i

1 1
1

3

obs( ) = ⋅ − ⋅( )



∫∑∫

=

∗ ∗

This is what the circuit shown in Figure 6A computes. It there-
fore implements MSPRTa.
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sensory evidence for the two not-maximally supported hypotheses, 
the dataset seems consistent with both max-vs-average-style as well 
as MSPRT-style mechanisms.

Overall, the observation that different multi-alternative decision 
mechanisms are difficult to differentiate on the basis of behavioral 
data alone seems consistent with a recent study by Leite and Ratcliff 
(2010), which also revealed a relatively high degree of mimicking 
when modeling data from a multi-alternative letter discrimination 
task. This does not necessarily mean that these mechanisms can 
mimic each other for any given parameter set. It might still be pos-
sible to design a clever experiment that drives these mechanisms 
into an operating range where the mimicking breaks down.

do any of the dIscussed decIsIon MechanIsMs provIde a 
better account of our behavIoral dataset than others?
We have used the strategy to fit the models on the basis of the mean 
response time (RT) data and to compare the models’ predictions for 
choice behavior and RT distributions with the actual data. Since all 
model predictions had to be simulated and since the required com-
puting time had to be limited, the results are necessarily noisy. The 
reported model parameter sets are the ones that provided the smallest 
error during the optimization procedure, but due to the simulation-
induced noise they probably deviate somewhat from the true opti-
mum. It is therefore difficult to use smaller deviations in the remaining 
error after the fit to argue in favor of or against particular models. 
This becomes obvious when looking at the slightly leaky feedforward 
inhibition model, which achieved the second smallest error during the 
fitting procedure, but ended up with the largest error after the final 
higher-resolution simulation (see Table 1). The model with the low-
est remaining error both during and after the fit was the LCA model 
with fixed variance. A visual inspection of the fits does not provide 
any major qualitative differences. All of the models tended to show a 
bigger difference in mean RT between stimuli with equal distracting 
coherences (red and green in the figures) and stimuli with unequal 
distracting coherences (magenta and cyan in the figures) than the 
dataset. Why do the models predict faster responses for unequal dis-
tracting coherences than for equal coherences (with the same mean)? 
The closer race between the two leading integrators in the unequal 
coherence case tends to cut off some slower correct responses that are 
still possible in the not so close race in the equal coherence case. This 
conditionalization effect, the integrator associated with the strongest 
motion component can only win the race if the integrator associated 
with the intermediate motion component has not crossed threshold 
yet, leads to an overall speedup of the responses. A variance of the 
sensory signals that scales with the mean tends to increase the size 
of this effect. This is potentially why the only discussed model with a 
fixed variance provided a slightly better fit to the mean RT data.

To address how well a model predicts the choice behavior I have 
decided to assess the proportion of predicted choice data points that 
are located within the 95% confidence intervals of the actual data. 
This assessment shows a slightly clearer ranking of the models than 
the quality of the mean RT fit. The feedforward inhibition models 
provided the best accuracy predictions (approx. 85%), followed 
by the feedback inhibition models (approx. 70%), and the MSPRT 
models (approx. 60%; see Table 1). The LCA model with scaling 
variance and the MSPRT models tended to predict somewhat better 
choice performance than was actually observed.

implemented or approximated by these mechanisms and we have 
seen that the optimality advantage of the MSPRT tends to disappear 
once error rates on the order of 20% are being reached. In the fol-
lowing, we will be discussing the observations that have been made 
in this study and how they relate to previous work in more detail.

sIMIlarIty of the decIsIon behavIor predIcted by dIfferent 
IntegratIon-to-threshold MechanIsMs
For perceptual decisions between two alternatives it has been shown 
previously that a balanced LCA model can mimic the choice behav-
ior of a drift-diffusion model, which is equivalent to a feedfor-
ward inhibition model (Bogacz et al., 2006). Similarly, McMillen 
and Holmes (2006) have pointed out that, in the case of decisions 
between multiple alternatives, the LCA model approximates a max-
vs-average test, which is, as demonstrated in this manuscript, the 
statistical test that is being implemented/approximated by the feed-
forward inhibition model. It is therefore perhaps not too surprising 
that feedforward and feedback inhibition models can also mimic 
each other’s decision behavior in multi-alternative perceptual deci-
sion making and that both of these mechanisms can explain our 
behavioral dataset (Niwa and Ditterich, 2008).

For choices between two alternatives I had shown previously 
that feedforward inhibition mechanisms with a wide range of inte-
gration time constants are able to account for the choice behavior 
observed in a random-dot motion discrimination task (Ditterich, 
2006). Similarly, we have seen here that the same is also true for deci-
sions between more than two alternatives. What is becoming clear 
from both of these studies and what makes intuitive sense is that, 
although a wide range of integration time constants can produce 
very similar behavior, the fidelity or signal-to-noise ratio (SNR) of 
the sensory evidence signal has to change with the leakiness. A very 
leaky (feedforward) integration mechanism requires better quality 
(less noisy) sensory evidence signals for achieving the same perform-
ance (accuracy) than perfect or only slightly leaky integrators, but 
can do so in a shorter period of time (shorter mean decision times). 
Therefore, if the SNR is known, the integration time constant can, 
in principle, be determined from the decision behavior. I have used 
this type of argument in Ditterich (2006) to make the claim that, for 
the 2AFC case, the SNR required by an integration mechanism with 
a long integration time constant was closer to the expected SNR of a 
pool of extrastriate visual neurons representing the motion informa-
tion than the SNR required by a very leaky integration mechanism. 
We currently have recordings of the sensory evidence signal from 
monkeys performing the same task as our human subjects under 
way and we expect these recordings to be helpful in addressing the 
integration time constant question for the multi-alternative case.

What is perhaps a bit more surprising is that the implementa-
tions of MSPRT that we have looked at in this study, which actu-
ally perform different statistical tests, also produced very similar 
decision behavior. Whereas, as already mentioned above, the feed-
forward inhibition mechanism and LCA approximate a max-vs-
average test, MSPRT comes in two flavors and either performs a 
max-vs-next test (MSPRTb) or evaluates the posterior probability 
of each hypothesis (MSPRTa). Although our experimental task 
was designed such that we had control over how much sensory 
evidence was provided for each of the alternatives and although 
the experimental protocol included trials with different amounts of 
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 integrators, but also by the presence of absorbing boundaries, the 
clipping of negative integrator states, and the presence of noise. 
The tendency of a very leaky integrator to approach different steady 
state levels (shown in Figures 10A,B) results from an equilibrium 
between its intrinsic leakiness and the amount of input it receives. 
Figures 10C,D show a difference in the summed activity of all inte-
grators between a feedback inhibition model with scaling variance 
and one with fixed variance. Where does this difference come from? 
An inspection of the trajectories of the individual integrators (not 
shown) indicates that the leading integrator shows a steeper rise in 
the fixed variance case than in the scaling variance case and that the 
losing integrators show a steeper fall in the scaling variance case 
than in the fixed variance case. This is because the noise associated 
with the strong input is higher in the scaling variance case than 
in the fixed variance case. At the same time the noise associated 
with the weaker inputs is lower in the scaling variance case than 
in the fixed variance case. This is because the fixed variance needs 
to resemble a variance that is associated with some intermediate 
coherence in the scaling variance case to match the overall SNR. To 
produce the same behavior the same fraction of trajectories needs 
to be absorbed by the boundary of the winning integrator in some 
specified time interval. Since the trajectories are much more vari-
able in the high noise case, the average trajectory needs to be shal-
lower to make this happen. The integration of noise in combination 
with the clipping of negative integrator states keeps the integrator at 
more positive values for higher noise, leading to a shallower fall of 
the trajectories of the losing integrators. The phenomenon shown 
in Figure 10E results from a combination of a very gradual decrease 
of the activity of the integrator associated with the intermediate 
motion strength and an accelerating increase of the activity of the 
winning integrator. The decrease in the summed activity prior to 
threshold crossing shown in Figure 10F results from accelerating 
decreases of the activities of both losing integrators as the winning 
integrator approaches the threshold.

neurophysIologIcal predIctIons based on the correlatIon 
structure of Internal sIgnals
The required information for analyzing the internal dynamics can 
be obtained from recording the firing rate of individual neurons. 
However, multi-electrode recording techniques are increasing in 
popularity and the question arises whether simultaneous record-
ings of multiple neural signals could potentially provide further 
information. The decision mechanisms that have been discussed 
in this study do not only differ in terms of the predicted dynamics 
of how integrator states should evolve over time, but also in terms 
of the correlation structure of the signals that are being integrated. 
This raises the question whether this correlation structure could 
potentially be picked up in simultaneous neural recordings. The 
general principle would be to simultaneously record from two neu-
rons that carry information about the current states of two different 
integrators. If these two integrators receive inputs that are positively 
correlated there is hope that this correlation might also show up in 
the structure of the exact spike timing as an increased likelihood of 
simultaneous spiking (de la Rocha et al., 2007; Ostojic et al., 2009). 
On the other hand, a negative correlation between input signals 
might show up as a reduced likelihood of (nearly) simultaneous 
spiking. However, there are also a number of (largely unknown) 

For quantifying the similarity of probability distributions a large 
number of potential measures have been proposed (Cha, 2007). I 
have picked two relatively simple measures that, as Vegelius et al. 
(1986) have pointed out, have a number of desirable properties: the 
“proportional similarity” (Vegelius et al., 1986) or “intersection” 
(Cha, 2007), which is simply the shared area of two compared 
histograms and therefore ranges from 0 (no overlap) to 1 (identi-
cal distributions), and the “Hellinger coefficient” (Vegelius et al., 
1986) or “fidelity” (Cha, 2007), which uses the geometric mean of 
two corresponding histogram bins rather than the minimum, but 
also ranges from 0 (for no overlap) to 1 (identical distributions). 
While there are minor differences in the results provided by these 
two measures, both agree in ranking the slightly leaky feedforward 
inhibition model as providing the best account of the RT distribu-
tion shape (roughly 85% overlap) and the LCA model with fixed 
variance as the one providing the worst account (roughly 75% 
overlap). However, the differences are certainly not major. Thus, to 
summarize the results of comparing the behavioral data with the 
predictions of different decision mechanisms, I would be hesitant 
to reject any of the considered models on the basis of the behav-
ioral data alone.

neurophysIologIcal predIctIons based on the Internal 
dynaMIcs of the decIsIon Models
Since it is apparently extremely difficult to differentiate between 
alternative decision mechanisms on the basis of behavioral data 
alone, the question arises whether other types of measurements 
could be more informative. To address this question, we have ana-
lyzed the internal dynamics of the competing mechanisms. We 
have looked at how the activity of individual integrators is expected 
to evolve over time, how the summed activity of all integrators 
is expected to evolve over time, and how the pair of activities of 
two of the integrators is expected to evolve over time (state space 
analysis). The results, summarized in Table 2, indicated that by 
taking all of these measures into account it should be much easier 
to tell the difference between various decision mechanisms. Such 
an analysis requires recordings of the activity of individual inte-
grators with high temporal resolution and therefore currently can 
only be obtained using invasive recording techniques. Previous 
non-human primate work suggests that such data can likely be 
obtained from behaving animals (Roitman and Shadlen, 2002; 
Churchland et al., 2008) and we are currently in the process of 
recording from monkeys that are performing the same task as 
our human subjects (Bollimunta and Ditterich, 2009). In a previ-
ous analysis of neural data recorded from monkeys performing 
perceptual decisions between two alternatives I had considered 
different variants of feedforward inhibition mechanisms, but no 
feedback inhibition mechanisms (Ditterich, 2006). The obser-
vation that neural data can be helpful in distinguishing models 
that cannot be distinguished on the basis of behavioral data has 
recently also been made by Purcell et al. (2010) when analyzing 
monkeys’ visual search behavior and associated neural activity in 
the frontal eye fields.

When looking at the predicted model dynamics, it is not always 
easy to come up with intuitive explanations for the observed dif-
ferences in the trajectories. This is because the trajectories are 
not only determined by the average activity of the inputs to the 
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caveats. What we have been treating as single stochastic signals in 
our models (for example, the state of an integrator or the sensory 
evidence signal for a particular direction of motion) are in reality 
distributed signals that are carried by larger populations of neu-
rons. However, we can only record the signals carried by individual 
neurons and not the total population activity. Furthermore, what 
shows up as single wires in our signal flow diagrams are in reality 
connections between two populations of neurons, which can have 
quite different connectivity patterns, ranging from very sparse to 
very dense. How likely it is that any given pair of neurons taken 
from two different populations will show a correlation pattern that 
should exist at the population level is therefore unknown. However, 
assuming that a correlation can indeed be observed, the sign of the 
correlation should provide further evidence for or against certain 
decision mechanisms. We have seen that a negative correlation 
would be consistent with a feedforward inhibition mechanism like 
the one shown in Figure 1A (shared input signals with different 
signs), whereas a positive correlation would be indicative of a shared 
feedforward or feedback signal of the same sign, like an LCA model 
or a feedback MSPRT model would predict. Such simultaneous 
recordings are currently also under way in our laboratory.

Major sources of noIse In the decIsIon process
Different opinions have been voiced about the major source of 
noise that is driving the perceptual decisions. One extreme view 
would be that the noise mainly originates at the sensory end of 
the process: random fluctuations of the neural representation of 
the sensory evidence are largely driving the system. I have made 
an argument along these lines in Ditterich (2006) for the 2AFC 
version of the random-dot discrimination task. The observation 
that the total SNR of the signals feeding into the integrators, as 
estimated from a feedforward inhibition model, were on the order 
of the expected SNR of pools of MT neurons (informed by neuro-
physiological measurements) suggested that there was not much 
room for additional noise feeding into the integrators. The other 
extreme view would be that the noise that is being contributed by 
the sensory representation is small compared to the noise that is 
being contributed by other (background) inputs to the integra-
tors. The question whether the variances of the signals feeding into 
the integrators need to change systematically with the presented 
stimulus addresses this issue to some degree, since inputs to the 
integrators that do not carry information about the sensory stimu-
lus should not change their variance when the stimulus changes. 
We had pointed out previously that a feedforward inhibition 
mechanism can only explain the observed independent changes 
in accuracy and mean RTs if the variances of the signals feeding 
into the integrators changed systematically with the stimulus (Niwa 
and Ditterich, 2008). Thus, if the behavior should turn out to be 
mediated by a feedforward inhibition mechanism, there would be 
strong evidence for sensory noise being the major noise source 
in the process. However, in this study I have demonstrated that a 
feedback inhibition mechanism can explain the observed behavior 
regardless of whether the variances scale with the stimulus or not. 
Thus, if it should turn out that the decision is being mediated by a 
feedback inhibition mechanism, the question regarding the major 
noise source would remain open. Note, however, that I have also 
shown that a feedback inhibition mechanism with scaling variance 

and a feedback inhibition mechanism with fixed variance have dif-
ferent internal dynamics. Neurophysiological data might therefore 
help with answering this question.

relatIonshIp between dIscussed decIsIon Models, decIsIon 
theory, and statIstIcal tests
For perceptual decisions between two alternatives it has previously 
been demonstrated that a feedforward inhibition mechanism is a 
good approximation of the optimal decision algorithm, the SPRT 
(Gold and Shadlen, 2001). And since a balanced LCA model can 
mimic the drift-diffusion model, which is equivalent to a feed-
forward inhibition model, it also provides a good approximation 
of SPRT (Bogacz et al., 2006). For decisions between more than 
two alternatives the optimal algorithm for any desired accuracy is 
still not known, but the MSPRT has been shown to be optimal for 
negligible error rates (Dragalin et al., 1999). LCA, when applied 
to multiple alternatives, approximates a statistical test, a max-vs-
average test, that is, different from MSPRT (McMillen and Holmes, 
2006). As demonstrated here, a max-vs-average test is also imple-
mented/approximated by the feedforward inhibition mechanism. 
We have seen that for Poisson processes and for normal processes 
with equal variance the integral over the difference between samples 
taken from two sensory streams can be directly proportional to the 
log-likelihood ratio between two hypotheses. Deviations from this 
scheme, for example, normal processes with different variances, will 
lead to some deviation from this direct proportionality. However, 
since the output of a pool of sensory neurons is likely to be relatively 
well-described by a Poisson process, we expect a neural version of 
our feedforward inhibition mechanism to provide a pretty good 
approximation of the max-vs-average test. It is therefore not too 
surprising that the feedforward inhibition mechanism and balanced 
LCA can also mimic each other in the multi-alternative case.

To summarize, I have demonstrated that a variety of integration-
to-threshold mechanisms for multi-alternative decision making can 
make very similar predictions for decision behavior. However, I have 
also shown that there is hope to be able to discriminate between 
competing mechanisms on the basis of combined behavioral and 
neurophysiological experiments because of different predictions 
of these mechanisms for the internal dynamics and potentially for 
the correlation structure of simultaneously recorded neural signals. 
Furthermore, we have seen that while the discussed decision mecha-
nisms implement or approximate different types of stochastic tests, 
the optimality advantage of the MSPRT for small error rates tends 
to disappear as error rates on the order of 20% are approached. 
Thus, a neural implementation of a max-vs-average test rather than 
MSPRT might not be a major disadvantage when operating in the 
regime of non-negligible error rates.
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appendIx
analysIs of the feedback sIgnals In a feedback 
IMpleMentatIon of Msprt
Assume that the feedback signals f

i
 in Figure 7A are initially all 0. 

(The exact value actually does not matter as long as they are all the 
same.) Thus, in the first iteration the outputs of the cortical sum-
mation nodes c

i
 (combined signals) are just going to be the first 

sensory samples s
i,1

. We can now calculate the feedback signals for 
the next iteration:
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We will now show that this term resembles lnP
i,2

 (see section 
Models Implementing or Approximating MSPRT) from the feed-
forward model shown in Figure 6A if g* is 1:
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Let us replace the term ln ,Σ j js= ( ) 1
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1  by C:
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Consequently, the next combined signals are going to be
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This will lead to a new generation of feedback signals:
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This again resembles the expression for lnP
i,3

 (see section Models 
implementing or Approximating MSPRT) in the feedforward model. 
Thus, to summarize, for a g* of 1 the feedback signal is always the 
logarithm of the posterior probability from the previous iteration.


