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Calcium and neurogenesis in Alzheimer’s disease
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It was evidenced that impairment of calcium homeostasis is a potential mechanism in the 
development of Alzheimer’s disease (AD). It remains, however, unclear how the calcium 
signaling are associated with in AD progression. Here we review recent studies to discuss the 
relationship among the signaling of intracellular calcium concentration, neurogenic activity, and 
AD progression. Analyzing these findings may provide new ideas to improve the neurogenic 
status in pathological processes in the aging brain.
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micro-environment and will increase the speed of losing neurons 
(Wang et al., 2007, 2010). Therefore, the decrease of generation of 
new neurons may be the major causal factor.

Most AD is sporadic and the causal factors have not been clearly 
identified. Some complex interactions among different genetic vari-
ants and environmental factors are believed to modulate the risk for 
the vast majority of late-onset AD cases (McDonald et al., 2010). 
For example, the individuals carrying the ε4 allele (a point muta-
tion generated amino acid substitution from Cysteine to Arginine 
at position 158) of Apolipoprotein E (APOE) on chromosome 
19 have an increased risk for developing sporadic AD. However, 
epidemiological studies indicate that the presence of the APOE 
ε4 allele cannot explain the overall heritability of AD, implying 
that a significant proportion of AD cases is attributable to addi-
tional genetic risk factors (Bickeboller et al., 1997; LaFerla et al., 
1997). Recently identified polymorphism P86L in calcium home-
ostasis modulator 1, which increases Aβ levels by interfering with 
calcium homeostasis modulator 1-mediated Ca2+ permeability, is 
an example (Dreses-Werringloer et al., 2008; Marambaud et al., 
2009). Although a detailed investigation to study the contribution 
of APOE ε4 allele and CALHM1 P86L in a population who carrying 
both point mutations is still missing, combined evidence suggests 
that sustained disruption of intracellular Ca2+ signaling may play 
an early proximal and perhaps central role in AD pathogenesis 
(Smith et al., 2005; Gandy et al., 2006; Tu et al., 2006; Green and 
LaFerla, 2008). Interestingly, accumulated data indicated that tran-
sient increase of intracellular calcium concentration ([Ca2+]

i
) may 

facilitate the neurogenesis (Dayanithi and Tapia-Arancibia, 1996; 
Wang and Brinton, 2008). These data suggest calcium homeostasis 
plays pivotal role on AD progression.

Numerous efforts have been made develop therapeutic strategies 
to delay or reverse the progression of neurodegenerative diseases, 
including AD. Two recently published reviews have summarized 
the potential cellular targets for developing drugs to regulate the 
progression of neurodegenerative diseases (Aguzzi and Rajendran, 

IntroductIon
Alzheimer’s disease (AD) is the most common form of dementia 
involving slowly developing, ultimately fatal neurodegeneration 
with massive brain atrophy especially in the medial temporal 
lobe, including the hippocampus (Hardy, 2006; Haass and Selkoe, 
2007; Wang et al., 2007). AD is pathologically characterized by 
the presence of cerebral senile plaques containing extracellular 
deposits of β-amyloid peptide (Aβ) from the amyloid precursor 
protein (APP), the accumulation of intraneuronal neurofibril-
lary tangles (NFTs) containing hyperphosphorylated tau protein, 
dysfunction of synapses, and loss of neurons (Mattson, 2004; 
Hardy, 2006).

In the 1990s, studies indicated that the most significant cor-
relation to the severity of the cognitive impairment in AD was the 
loss of synapses in the frontal cortex and limbic system. Several 
years later, evidence supports the contention that neuronal cell 
death might occur later than the progression of neurodegenera-
tion, and damage to the synapto-dendritic apparatus might be 
one of the earliest pathological alterations (Scheff and Price, 2003; 
Scheff et al., 2006). This is accompanied by the abnormal accu-
mulation of Aβ intraneuronally and extracellularly (e.g., plaques) 
or in intracellular compartments (e.g., tangles). Abnormal accu-
mulation and misfolding (toxic conversion) of these synaptic and 
cytoskeletal proteins are being explored as key pathogenic events 
leading to neurodegeneration (Billings et al., 2005; McKee et al., 
2008; Oakley et al., 2006).

We (Wang et al., 2010) and other group (Demars et al., 2010) 
recently identified that neurogenesis is compromised prior to any 
overt signs of AD-like pathology in a triple-transgenic mouse model 
of the disease. We propose that the neuronal loss in brain affected by 
AD may be due not only to the high death rate of neurons in affected 
brain regions, but also due to the reduced rate of the generation of 
new neurons. The reduction of generation of new neurons results 
in the limiting to replace the old, damaged, and dying neurons. In 
addition, the lower amount of new cells will further worsen the local 
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Numerous findings have also suggested that perturbation of 
[Ca2+]

i
 signaling contributes to many age related neurodegenerative 

disorders, including: Parkinson’s disease (PD), Huntington’s disease 
(HD), ischemic stroke, and AD. Therefore, selective enhancement of 
the transient calcium increases may provide a promising strategy for 
developing anti-neurodegenerative diseases, neurogenic agents.

neurogenesIs In Ad brAIn
It is well known that the rostral subventricular zone (SVZ) and the 
subgranular zone (SGZ) of the hippocampal dentate gyrus have the 
capacity of generating neurons into adulthood (Gage et al., 1998). 
Some studies provide evidence for a disruption of NPC in an amy-
loidogenic environment and support findings that neurogenesis is 
differentially affected among various transgenic mouse models of 
AD, probably due to variations in promoter cell type specificity, 
expression levels, and other factors. A more comprehensive analysis 
of neurogenesis in APP transgenic mice showed that while in the 
molecular layer of the dentate gyrus there is an increased number 
of NPC, in the SGZ, markers of neurogenesis are decreased, indicat-
ing that in APP animals there is altered migration and increased 
apoptosis of NPC that contributes to the deficits in neurogenesis 
(Donovan et al., 2006).

Indeed, during aging, there is an age-related decline of adult neu-
rogenesis and this decline is mostly related to decreased proliferation, 
associated with decreased stimulation to proliferate in aging brains. 
In the mouse model of AD, there is also evidence for decreased neu-
rogenesis that accompanies the neuronal loss characteristic of the 
disease (Rao et al., 2005). Studies from primates further demonstrate 
that there is a positive correlation between learning performance and 
the level of neurogenesis (Aizawa et al., 2009, 2011). Interestingly, 
studies of human brains and transgenic animal models have dem-
onstrated significant alterations in the process of adult neurogenesis 
in the hippocampus in AD (Donovan et al., 2006). The decline of 
neurogenesis in the SGZ of the dentate gyrus of different transgenic 
mouse of AD have been consistently reported with an decrease of 
the numbers of bromodeoxyuridine, Ki-67, and doublecortin posi-
tive cells (Haughey et al., 2002; Dong et al., 2004; Wen et al., 2004; 
Rockenstein et al., 2007; Zhang et al., 2007; Rodriguez et al., 2008; 
Wang et al., 2010). One important finding common to several of 
these APP transgenic models is that there is no obvious neuronal 
dropout in the early stages of pathogenesis (Dickson, 2004). In fact, 
the earliest neuronal pathology before amyloid deposition is the 
neurogenic deficits in SGZ in hippocampus and SVZ of cerebral 
cortex (Demars et al., 2010; Wang et al., 2010). These are accom-
panied by and cognitive deficits in learning and memory (Wang 
et al., 2010). All these data suggest that the reduction of generation 
of new neurons might be a major causal factor for eventually a less 
number of neurons observed in brain affected by AD. Therefore, 
attenuation the neurogenic decline in subjects potentially suffered 
by AD may help Alzheimer’s patients significantly.

strAtegy to IncreAse hIppocAmpAl 
neurogenesIs In Ad
These above findings open prospects for new strategies that can 
increase neurogenesis in normal or pathological processes in the 
aging brain of AD, and hence decrease memory deficits. The first 
strategy is exogenous delivery of neural stem cells into the affected 

2009; Rajendran et al., 2010). The current review specifically focuses 
on the potential targets involved in regulating the [Ca2+]

i
 and subse-

quently mediated neurogenesis in neurodegenerative condition.

trAnsIent And sustAIned cA2+ IncreAses
Ca2+ is a ubiquitous second messenger that has been implicated in 
the regulation of a variety of events in developing neurons, includ-
ing proliferation, migration, differentiation, and circuit formation 
(Gomez and Spitzer, 2000; Spitzer, 2008). Cells commence to divide 
by crossing from G1 to S phase and initiating DNA amplification, 
a transition that is often environmentally regulated and associated 
with [Ca2+]

i 
transient increases (Spitzer et al., 1995; Spitzer, 2008). It 

have been reported that transient [Ca2+]
i 
increases within the neural 

progenitor cells (NPC) is triggered by a neurosteroid, allopregna-
nolone, which is a GABA

A
 receptor modulator, and is mediated by 

a voltage-gated calcium channel. In addition, contact-dependent 
signals and short-range diffusible factors such as neurotrophins 
may also influence [Ca2+]

i
. Many growth factors, including bFGF, 

act via tyrosine kinase receptors that in turn can lead to release 
of Ca2+ from intracellular stores (Chao et al., 1992; Reddy, 1994; 
Berridge, 1995; Gomez-Lechon et al., 1996). Transient increases 
in [Ca2+]

i
 have been associated with the onset of cytokinesis and 

with the activation of actomyosin filaments that serve to separate 
daughter cells at the end of telophase (Ratan et al., 1988). The [Ca2+]

i
 increases observed in doublets could be associated with these cell 
cycle events (Ratan et al., 1988). Both Ca2+ influx and release of 
Ca2+ from intracellular stores contribute to the [Ca2+]

i
 fluctuation 

associated with granule cell migration (Komuro and Rakic, 1996) 
and dendritic spine growth cone formation (Spitzer et al., 1995; 
Obrietan and van den Pol, 1996). All these data indicate that tran-
sient [Ca2+]

i
 increase enhances neurogenesis, from proliferation, 

migration and the growth of neurorites.
In addition to the effects on proliferation, the APα-induced 

transient increase of [Ca2+]
i
 also contributes to the release of oxy-

tocin from supraoptic nucleus of those very young rats, but not 
old rats (Viero et al., 2006). Further study confirmed that neuroac-
tive steroids on [Ca2+]

i
 transients is mediated by GABA

A
 receptor 

activation and suggested an involvement of voltage-activated Ca2+ 
channels in cultured dorsal root ganglia neurons at embryonic 
stage E13 (Viero et al., 2006).

In contrast to the transient calcium increases which lead to the 
cell proliferation and neuropeptide release, sustained increases of 
[Ca2+]

i
 is a basic molecular mechanism for the increased sensitivity 

of cell response to toxicity and may eventually lead to cell death. 
For example, exposure of cultured PC12 cells to staurosporine, a 
broad spectrum protein kinase inhibitor, has been used to induce 
cell death in a wide range of cell types, resulted in prolonged (1–6 h) 
elevation of [Ca2+]

i
 and cell apopotosis (Kruman et al., 1998; Seo 

and Seo, 2009). In many cell types, alteration of [Ca2+]
i
 plays a piv-

otal role in initiating apoptosis. Analysis of brain tissue from AD 
patient showed that a sustained [Ca2+]

i
 increase is associated with 

the neurofibrillary tangle-bearing neurons (Murray et al., 1992). In 
addition, Aβ impaired the proliferation and neuronal differentia-
tion of cultured human and rodent NPC, and promoted apoptosis 
of neuron-restricted NPC by a mechanism involving dysregulation 
of cellular calcium homeostasis and the activation of calpains and 
caspases (Haughey et al., 2002; Nimmrich et al., 2008).
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to the levels similar to that in the age and gender matched non-
 transgenic control mice (Wang et al., 2007, 2010). In addition, there 
is no significant effect on neural progenitor cell proliferation has 
been observed in non-transgenic control mice (Chen et al., 2009; 
Wang et al., 2010). These results indicated that APα only reverses 
the neurogenic deficits in brain of mice carrying human familial 
AD mutations, which have been consistently observed by different 
groups (Haughey et al., 2002; Dong et al., 2004; Wen et al., 2004; 
Zhang et al., 2007; Rodriguez et al., 2008).

APα increased expression of genes that promote transition 
through the cell cycle and proliferation, such as cyclins and CDKs 
including cell division control protein 2 (CDC2), cyclin B and pro-
liferating cell nuclear antigen (PCNA) (Wang et al., 2005). APα 
not only regulated the expression of cell cycle proteins and DNA 
amplification but also drove a complete mitosis of the rodent NPC 
(Wang et al., 2005). APα is a metabolite of progesterone and a 
GABA

A
 receptors modulator. It is now well established that the 

neurotransmitter GABA is excitatory at the embryonic stage. This 
excitatory action could play a trophic role promoting synapse for-
mation (Ben-Ari, 2002). It appears that GABA signaling is essential 
during neural development and proliferation, particularly when 
interacting with neurosteroids (Gago et al., 2004). GABA

A
 recep-

tor is an ion channel that allows either influx or efflux of chloride 
ions (Cl−), depending upon the prevailing transmembrane [Cl−] 
gradient. In mature neurons, APα can bind to a specific site within 
the GABA

A
 receptor at physiological concentrations (6–35 nM) 

(Ben-Ari et al., 2007; Wang et al., 2008a) to increase chloride influx, 
thereby hyperpolarizing the neuronal membrane potential, and 
decreasing neuron excitability (Belelli et al., 2006). Because of the 
high intracellular chloride content in immature neurons, APα 
provokes an efflux of chloride currents by the binding of GABA-
agonists to the GABA

A
 receptors, depolarization of the membrane, 

opening the threshold of voltage-activated sodium channels and 
voltage activated calcium channels. The resulting Na+ and Ca2+ cur-
rents in turn activate high-voltage activated calcium channels. This 
sequence of events is illustrated by experiments using inhibition 
by TTX and Ni2+/Cd2+ (action potentials blocker). APα affects the 
GABA

A
-induced [Ca2+]

i
 transients in a rapid and non-genomic 

manner (Wang and Brinton, 2008).
Recent analyses by Hosie et al. (2006) indicate that APα can 

bind to two sites on the GABA
A
 receptor, one that potentiates, and 

one that directly activates the GABA
A
 receptor. The potentiating 

binding site of APα resides in a cavity formed by the α-subunit 
transmembrane domains. The direct activating binding site of APα 
located among interfacial residues between α and β subunits and is 
enhanced by steroid binding to the potentiation site (Hosie et al., 
2006). Data presented demonstrate that the APα-induced [Ca2+]

i
 rise can be abolished by two GABA

A
 receptor blockers, namely 

bicuculline and picrotoxin (Wang and Brinton, 2008), strongly sup-
porting the notion that the APα-induced [Ca2+]

i
 rise is a GABA

A
 

receptor-mediated process and most likely through the direct acti-
vating binding site.

Interestingly, cultured hippocampal neurons respond APα 
with high, low magnitudes and some has no response (Wang and 
Brinton, 2008). Given that the culture is a mixture of different devel-
oping stage of neuronal cells, these differential responses on [Ca2+]

i 

to APα exposure, most likely, reflect the heterogeneity of the GABA
A
 

brain. Studies using this strategy were less successful due to the 
complexity of brain region delivery, difficulty of survival, migra-
tion, differentiation, and integration of the exogenous cells in an 
already demolished brain, as well as the complexity from immune 
rejection and ethics issues. To overcome these limitations, the pro-
motion of the proliferation of neural stem cells within the brain 
is crucial. Moreover, a successful promotion of the endogenous 
neurogenesis will also improve the local brain microenviroment 
to a condition which is suitable for generation and survival of new 
cells (Wang et al., 2007).

Multiple analyses have documented that dentate neurogenesis is 
regulated by fibroblast growth factor 2 (FGF-2), insulin-like growth 
factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) 
(Shetty et al., 2005). While the mechanism of age-associated decline 
in neurogenesis remains to be fully determined, loss in growth 
factors, FGF-2, IGF-1, and VEGF, in the microenvironment of the 
SGZ is a prime contributor to the reduced neurogenic potential of 
SGZ (Zhang et al., 2003; Wang et al., 2008c). Some results suggest 
that the dramatic decline in dentate neurogenesis observed as early 
as middle age could be linked to reduced concentrations of FGF-2, 
IGF-1, and VEGF in the hippocampus, as each of these factors can 
individually influence the proliferation of stem/progenitor cells in 
the SGZ of the dentate gyrus (Rao et al., 2005).

Thus, several growth factors have been investigated for pro-
motion of neurogenesis in different AD models. Although this a 
one step further than the direct implant of exogenous neural stem 
cells into brain, one of the major challenges of this approach is the 
delivery of peptide growth factors to the brain. Large molecular 
weight growth factors do not readily cross the blood brain barrier 
and thus require direct infusion into the brain via acute or chronic 
indwelling catheters in the brain.

In contrast, small lipophilic molecules that penetrate the blood 
brain barrier and which induce a controlled targeted proliferation 
of neural stem or progenitor cells are promising therapeutic strate-
gies (Brinton and Wang, 2006; Wang et al., 2008b). According to 
the definition of “neuroactive steroids,” they include all steroids 
which are active on neural tissue whether or not they are syn-
thesized locally. Besides their classical genomic effects, neuroac-
tive steroids can affect neural tissue through a rapid non-genomic 
effect involving direct binding to the GABA

A
 receptor (Belelli and 

Lambert, 2005).
Studies over the past two decades has demonstrated that the neu-

rosteroid allopregnanolone (APα; 3α-hydroxy-5α- hydroxy-pregnan-
20-one; also known as tetrahydroprogesterone; progesterone’s 
primary metabolite) is a potent and stereoisomer specific allosteric 
modulator of the GABA chloride channel complex to increase 
conductance through the channel which can be protective against 
seizure activity (Brinton, 1994). Moreover, APα can induce neurite 
regression of hippocampal neurons in culture (Brinton, 1994). Some 
results indicated that APα is a potent, stereoisomer specific promoter 
of neurogenesis of both rat hippocampal NPC and human corti-
cal neural stem cells. APα induced neurogenesis ranged from 20 to 
30% in the rodent NPC to 37–49% in the human neural stem cells 
(Wang et al., 2005).

Our study demonstrated that APα not only increases prolif-
eration of NPC of SGZ, but also increases neural progenitor cell 
proliferation in SVZ in triple transgenic mouse model for AD 
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