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and Boettiger, 1965; Leston et al., 1965; Ellington, 
1984; Tu and Dickinson, 1994, 1996; Ellington 
et al., 1996; Dickinson and Tu, 1997; Dickinson 
et al., 1999, 2000; Josephson et al., 2000a,b) engi-
neers are starting to build tiny, sub-gram scale, 
flying robots.

Building very small flyers which can fly well 
in real environments is a difficult task, however, 
hampered not just by knowledge of insect flight, 
but current technological limitations. A housefly 
is about 8 mm long and weighs 1 g; its wings beat 
approximately 200 times a second; during each 
stroke, tiny muscles make subtle adjustments to 
the trajectory of the wings to generate the forces 
required to move it where it wants to go (Tu and 
Dickinson, 1994, 1996; Dickinson and Tu, 1997; 
Dickinson et al., 1999, 2000). As it does this, it 
integrates data from a variety of sensors on its 
body which provide airflow information, gyro-
scopic information, and visual flow information; 
it computes and then compensates for the hori-
zon, for incoming obstacles, and for constantly 
changing wind gusts and does this so efficiently, 
that it can fly for hours a day and could fly a 
mile or two in single stretch if really had to. By 
comparison, the Delfly Micro (de Croon et al., 
2009), arguably one of the smallest untethered, 
instrumented air vehicles, weighs 3 g and has a 
10 cm wingspan, can fly for 3 min on a battery 
which constitutes 1/3 of its weight and requires 

IntroductIon
Insects exhibit some amazing modes of locomo-
tion. They float, swim, crawl, jump, run (even 
bipedally), and fly. They do this with such effi-
ciency, sophistication, and elegance of function 
across a vast size range (the smallest insect is 
1/5 of a millimeter across, the largest insects can 
weigh 100 g and be over 20 cm long) that they 
have mastered locomotion on almost every ter-
rain on Earth.

The adaptations which enable insects to do 
these things have inspired human art, science, and 
engineering for centuries (e.g., Tipton, 1976). On 
the ground, the science of insect locomotion has 
informed several generations of legged robots 
(e.g., Full and Koditschek, 1999; Delcomyn, 
2004; Lehmann, 2004; Riztman et al., 2004), from 
the crawling machines of the 1980s (like MIT’s 
Ghengis; Brooks, 1991) to the more modern Rhex 
capable of successfully traversing complex terrain 
(Altendorfer et al., 2001). In the air, a great deal of 
research spanning decades is beginning to tease 
out the complex interplay between aerodynam-
ics, mechanical construction, and neurophysiol-
ogy that enables something as small as a fruitfly 
to fly so incredibly well. Enabled by advances in 
microfabrication techniques (Tanaka and Wood, 
2010) and considerable progress in our under-
standing of insect flight (Pringle, 1957; Machin 
and Pringle, 1959, 1960; Machin et al., 1962; Ikeda 
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dual  channel telemetry backpack to  measure and 
compare EMG’s from a pair of flight muscles of 
a male hawkmoth, Agrius convolvuli, during phe-
romone-triggered zigzag flight (Kuwana et al., 
1999; Ando et al., 2002; Ando and Kanzaki, 2004; 
Wang et al., 2008).

To our best knowledge, three different groups 
have recently developed wireless systems that 
can both transmit and receive data from free-
flying insects flight control (Figures 1–3). Flight 
control requiring multiple-channel stimula-
tion, during complex, long-duration control-
led flight requires on-board digital processing, 
memory, and programmability in addition to 
efficient radio systems. Each group developed 
systems with different trade-off choices in terms 
of functionality, weight, and complexity. Sato 
et al. describe an 8-channel system built around 
the Texas Instruments CC2431 microcontroller 
with built-in transceiver; careful programming 
of the microcontroller allows for half hour of 
flight time and approximately 24 h of battery 
life in sleep mode (Figure 1, Sato et al., 2009a,b; 
Maharbiz and Sato, 2010). The use of surface 
mount ceramic antennas results in a very small 
package in terms of size, mass, and inertial effect 
on the flying insect (Figure 1B). Bozkurt et al. 
(2009b) developed a custom-built, 2 channel 
AM receiver which used pulse-position mod-
ulation via a super-regenerative architecture 
which was fed into a PIC12F615 microcontrol-
ler (Figure 2). Daly et al. (2009, 2010) devel-
oped a custom silicon system-on-chip receiver 
operating at 3–5 GHz on the 802.15.4a wireless 
standard which interfaced with an on-board 
Texas Instruments MP430 microcontroller; the 
receiver was remarkable for its extremely low-
power operation (2.5 mW, 1.4 nJ/bit) for a data 
rate of 16 Mb/s (Figure 3). Driven primarily by 
technological developments in ultra-low power 
distributed sensor networks, low power micro-
controllers equipped with internal radios are 
now very accessible.

StImulatIon protocolS
Flight control of insects ideally requires the trig-
gering of flight initiation and cessation as well as 
the free-flight adjustment of orientation with 3 
degrees of freedom (Dudley, 2000; Taylor, 2001). 
It is important to note that all published attempts 
at free flight control rely on the insect to “fly itself” 
while periodically introducing extraneous input 
to bias the free flight trajectory. A sufficiently 
sophisticated system is, in effect, wrapping a syn-
thetic control loop around the existing biologi-
cal one; the idea of interfering with a biological 
control loop using an extraneous, synthetic loop 

a human operator to perform all flight func-
tions. To the authors’ knowledge, the smallest, 
non-autonomous flying machine is the micro-
robotic fly built at the Harvard Microrobotics 
Laboratory, weighing in at 60 mg (Wood, 2008). 
While these systems are rapidly evolving, they 
are currently hampered by the energy and power 
density of existing fuel sources and the difficulty 
in replicating the flight dynamics and mechani-
cal efficiencies of very small flyers. Insects have 
flight performance (as measured by distance and 
speed vs. payload and maneuverability) as-yet 
unmatched by man-made craft of similar size. 
Very recently, several groups have attempted to 
circumvent such problems by merging synthetic 
control and communication systems into living 
insects with the aim to control free flight.

technology
WIreleSS telemetry and control
The development of wireless telemetry systems 
for small, free-flying, and walking insects began 
in the early 1990s with applications ranging from 
neuromuscular recording (Kutsch et al., 1993, 
2003; Kuwana et al., 1995, 1999; Fischer et al., 
1996; Holzer and Shimoyama, 1997; Fischer 
and Ebert, 1999; Fischer and Kutsch, 1999; 
Ando et al., 2002; Kutsch, 2002; Ando and 
Kanzaki, 2004; Colot et al., 2004; Cooke et al., 
2004; Takeuchi and Shimoyama, 2004; Mohseni 
et al., 2005; Lemmerhirt et al., 2006; Wang et al., 
2008) to using radio transmitters to study the 
long-range movements of insects (Hedin and 
Ranius, 2002; Sword et al., 2005; Holland, 2006; 
Wikelski et al., 2006, 2010; Pasquet et al., 2008). 
Table 1 shows the wireless systems used for neu-
romuscular recording and stimulation of free-
flying insects. All of the early devices employed 
custom-made radios hand-assembled from sur-
face mount electronics components and lacked 
digital processing, on-board memory or pro-
grammability. Detection of emitted signals was 
usually carried out using complimentary radio 
receivers or spectrum analyzers (and the rel-
evant biological information was de-convolved 
from the analog radio signals). Kutsch et al. 
(1993) developed a 0.42 g telemetry backpack 
(including battery) for a locust (Schistocerca 
gregaria, 3.0–3.5 g, payload capacity 0.5 g). The 
backpack had a single channel transmitter to 
wirelessly acquire electromyograms (EMG) of 
a single flight muscle of interest. Their modified 
backpack had a dual channel transmitter and it 
allowed the researchers to tease out the function 
of the locust’s proprioceptors (Fischer and Ebert, 
1999), a feat difficult or impossible to do with 
tethered insects. Ando et al. developed a 0.23 g 

Telemetry
The science and technology of 
measuring, transmitting, and storing 
signals of interest remotely. An 
instrument to measure and transduce 
the phenomenon of interest into 
electrical signals is attached on a target 
and the electrical signals are modulated 
and transmitted to the users’ receiver, 
which demodulates the electrical 
signals.
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Table 1 | Representative systems used for neuromuscular recording and/or stimulation of free-flying insects.

Year Purpose Insect, 

order

Species Insect 

mass (g)

System 

mass (g)

Lifetime Radio Radio 

range (m)

References

1993 EMG Locust, 

Orthoptera

Schistocerca 

gregaria

3.5 0.42 – 1 ch T 25 Kutsch et al. 

(1993)

1996 EMG Locust, 

Orthoptera

Schistocerca 

gregaria

3.5 0.55 – 2 ch T 20 Fischer et al. 

(1996)

1999 EMG Moth, 

Lepidoptera

Agrius 

convolvuli

0.4 30 min 2 ch T 1 Kuwana et al. 

(1999)

1999 EMG Locust, 

Orthoptera

Schistocerca 

gregaria

3.5 0.3 – 1 ch T – Fischer and 

Ebert (1999)

1999 EMG Locust, 

Orthoptera

Schistocerca 

gregaria

3.5 0.3 – 1 ch T – Fischer and 

Kutsch (1999)

2001 EMG Moth, 

Lepidoptera

Manduca 

sexta

0.74 3 h 2 ch T 2 Mohseni et al. 

(2001)

2002 EMG Moth, 

Lepidoptera

Agrius 

convolvuli

0.25 30 min 2 ch T 5 Ando et al. 

(2002)

2003 EMG Locust, 

Orthoptera

Schistocerca 

gregaria

3.5 0.2 – 1 ch T – Kutsch et al. 

(2003)

2004 EMG Moth, 

Lepidoptera

Agrius 

convolvuli

0.25 – 2 ch T – Ando and 

Kanzaki (2004)

2008 EMG Moth, 

Lepidoptera

Agrius 

convolvuli

0.23 – 2 ch T 3 Wang et al. 

(2008)

2009, 

2010

Flight 

control

Beetle, 

Coleoptera

Mecynorhina 

torquata

10 1.33 30 min 

active/24 h 

sleep mode

8 ch 

T–R

20 Sato et al. 

(2009a,b), 

Maharbiz and 

Sato (2010)

2009† Flight 

control

Moth, 

Lepidoptera

Manduca 

sexta

2.5 0.65 – 3 ch R – Bozkurt et al. 

(2009b)

2009, 

2010

Flight 

control

Moth, 

Lepidoptera

Manduca 

sexta

2.5 1 – 4 ch R Daly et al. 

(2009, 2010)

EMG, electromyogram; T, transmitter; R, receiver.
†The system used helium balloons to provide additional lift for the insect.

has a long history. In insects, the motif has been 
used repeatedly in studies of motor control and 
biomechanics (Nishikawa et al., 2007).

To date, wireless flight control of insects has 
relied on either neuromuscular or neuronal stim-
ulation. In either case, the chosen interface and 
complimentary stimulation protocol (i.e., elec-
trode geometry, electrode implantation method, 
stimulus conditions) must generate reproducible, 
quantifiable alterations to insect flight in a way 
that is robust to the harsh conditions before, dur-
ing and after free flight. Free-flying insects rou-
tinely impact objects (shocks and hard impact are 
observed not just in flight or during accidents, 
but very often while landing); the vibrations 

of the center of mass can be substantial and at 
frequencies (50–200 Hz) which can resonantly 
couple to extraneous mechanical components 
(i.e., 3 cm dipole antennas); and the legs or wings 
 themselves can interfere with operation during 
normal flight. All of these conditions invariably 
lead to mechanical drift of the implanted elec-
trodes over the lifetime of the insects. Successful, 
robust stimulation schemes in free flight have thus 
focused on combinations of the following three 
motifs: (a) the direct stimulation of a large, eas-
ily accessible muscle in the insect (Bozkurt et al., 
2008a, 2009a,b; Sato et al., 2008a,b, 2009a,b; 
Maharbiz and Sato, 2010), (b) the direct stimu-
lation of a relatively large  ensemble of neurons in 
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steer in free flight (Movie S1 in Supplementary 
Material, Figure 4A, Sato et al., 2008b, 2009a,b; 
Maharbiz and Sato, 2010). Ten insects initiated 
flight in response to stimulation, with the median 
number of stimulation waveforms required to 
initiate flight being 19 (range 1–59). One stimu-
lation waveform was a pair of biphasic square 
pulses (1 ms per each pulse, 4 ms pitch). The 
median response time from the first stimulation 
to flight initiation being 0.5 s (range 0.2–1.4 s). 
Median flight duration in response to stimulation 
was 46 s (range 33–2292 s). Stimulation voltage 
between 2 and 4 V did not affect the number 
of stimuli required to initiate flight, response 
time from stimulation to flight, or flight dura-
tion in Mecynorhina torquata (Mann–Whitney 
U-tests, P = 0.13, 0.46, 0.35, respectively). Data 
on stimulated flight bouts in individual beetles 
are summarized in Sato et al. (2009b). Once 

a  ganglion (Sato et al., 2008a,b, 2009a,b; Bozkurt 
et al., 2009b), (c) the targeted stimulation of 
nerves in a nerve cord (Tsang et al., 2008, 2010a,b; 
Daly et al., 2009, 2010).

FlIght InItIatIon and ceSSatIon
In adult Mecynorhina ugandensis beetles, the 
abrupt darkening of the environment during 
untethered free flight led to the almost immedi-
ate cessation of flight. This led us to hypothesize 
that light levels and corresponding changes in 
neural activity at the optic lobes might strongly 
modulate flight initiation and cessation. In fact, 
potential pulses applied between two electrodes 
implanted near the base of the left and right 
optic lobes could elicit flight initiation and ces-
sation with very high success rates. Implantation 
into the optic lobe yielded a much higher suc-
cess rate and did not affect the beetle’s ability to 

100 µm

prptridomg tip
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2 mm

DC
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E
500 µm

FSE

FSE

nerve cord

tissue

B

FIguRe 3 | A moth hybrid system. (A) Image of the flexible split-ring electrode (FSE) with color-coded wire connections; 
(B) close-up image of the FSE at the split-ring region; (C) image of a pupa with inserted FSE; (D) enclosed adult moth 
with FSE inserted at the pupal stage; (e) image of dissected adult moth showing the growth of connective tissue around 
the FSE. Reproduced from Tsang et al. (2010a).

Optic lobe
The part of the protocerebrum  
(one of the three major regions of 
insect brain) that extends to the retina 
of the visual receptors including 
compound eye and ocelli). Neural 
signals induced at the visual receptors 
descend to the optic lobe. The optic 
lobe consists of three large neuropils: 
lamina, medulla, and lobuli.
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given insects, flight bout duration was correlated 
with neither beetle mass nor stimulus amplitude. 
Furthermore, the beetle adopted a normal flight 
posture and continued flying in the air after the 
stimulus was turned off, indicating that the tonic 
neural signals required for flight maintenance 
continued after stimulus.

A relatively long duration pulse applied 
between optic lobes, which effectively clamps 
the voltage between the lobes, stopped flight for 
Mecynorhina torquata. Ten insects were tested in 

flight was initiated by our  stimulation, the flight 
tended to persist without additional stimula-
tion whether the beetle was either in the teth-
ered or in free flight condition. During normal 
flight, the beetle nervous system produces a 
pulse train with approximately 50 ms period to 
the basalar muscles (Josephson et al., 2000a,b). 
Artificially induced flight lasted far longer than 
50 ms: median flight durations were 2.5 s (range 
0.2–1793.1 s) for Cotinis texana, and 45.5 s (range 
0.7–2292.1 s) for Mecynorhina torquata. Between 
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Figure 4 | remote radio control of beetle flight by electrical stimulation. (A) Initiation and cessation control. 
Alternating positive and negative potential pulses at 100 Hz applied between left and right optic lobes initiated wing 
oscillations while a single pulse ceased wing oscillations; (top) audio recording of tethered beetle, (bottom) applied potential 
to the one side optic lobe regarding the other side optic lobe. The sharp rise of audio amplitude at the beginning of oscillation 
is attributed to friction between elytra and wings when the wings came out from the underneath of elytra. The whole audio 
amplitudes were normalized by mean absolute value calculated for the middle period of the flight time (2.5–3.7 s).  
(B) Elevation control of a free-flying beetle: temporal height change of a flying beetle (10 flight paths). Alternating positive and 
negative potential pulse trains at 100 Hz and 2.0 V amplitude to the brain caused the beetle to fly downward. The median 
height change was 60 cm (the range was 33–129 cm). (C,D) Turn control of free-flying Mecynorhina torquata beetle. Pulse 
trains at 100 Hz and 1.3 V positive potential to the left or right basalar muscle triggered turns. Ten flight paths elicited by  
(A) right or (B) left basalar muscle stimulus for 0.5 s. Each flight path is obtained after the three-dimensional digitized flight 
path is projected on the XY plane (see Sato et al. 2009b). Different colored and shaped plots show individual beetle flight 
paths. See Movies S1–S4 in Supplementary Material for the initiation and cessation in free flight (Movie S1), elevation 
(Movie S2: tethered, Movie S3: free flight) and turn controls (Movie S4). Reproduced from Sato et  al. (2009b).

Basalar muscle
One of the flight muscles in insects. In 
beetles (Coleoptera), the basalar muscle 
is directly connected to the wing base 
via the apodema cap. The basalar 
muscle is a well-developed fibrillar 
muscle composed of approximately 90 
fibers in C. texana (Josephson et al., 
2000b). The contraction of the basalar 
muscle produces the downstroke of 
wing oscillation. See Figure 1 for the 
location and structure of the basalar 
muscle of Coleoptera.
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strong motions of the head. In fact, the contrac-
tion of flight muscles is usually preceded by the 
rotation of the head toward the aimed direction 
(Berthoz et al., 1992). Exploiting this, Bozkurt 
et al. (2009b) stimulated neck muscles to induce 
turning in flying moths. An electrical stimulus 
delivered to the neck muscles via thin wire elec-
trodes implanted in the Manduca sexta elicited 
yawing in balloon-assisted flight (Figure 5). In 
contrast to attempts at direct stimulation of the 
wing muscles, neck-muscle stimulation avoids 
damage to the complex linkages and muscles of 
the wing. For insects whose small size or wing 
muscle complexity makes direct wing muscle 
stimulation prohibitive (i.e., bees, flies), this 
method has decided advantages.

Tsang et al. (2008, 2010a,b) developed a micro-
fabricated polyimide multi-site flexible split-
ring electrode (FSE) which could be implanted 
around the insect’s ventral nerve cord just below 
the fourth abdominal segment during stage-16 
of pupation (2 days prior to emergence). This 
approach was informed by the fact that changes 
in an insect’s center of gravity can be used to 
adjust flight orientation and trajectory (Ellington, 
1984). In moths, stimulation of the ventral cord 
with tungsten wires elicited abdominal motions, 
“presumably by activating motoneurons or inter-
ganglionic interneurons” (Tsang et al., 2008, 
2010a,b). Each FSE contained six independently 
addressable electrodes; potential pulse trains were 
applied between pairs of electrodes on the FSE 
(for a total of 15 possible stimulation pairs). The 
application of 1–500 ms, 1–5 V potential pulses 
with frequencies varying between 50 and 333 Hz, 
elicited directional contraction of the abdo-
men depending on the electrode pair chosen. 
Interestingly, the direction of contraction for a 
given electrode pair not only varied from animal 
to animal but between the pupal and adult stages 
of the same animal, implying not only “movement 
of the FSE but probably also … developmental 
differences in the location and identity of axons 
in the nerve cord and changes in the mechanical 
articulation of the abdomen.” By adjusting volt-
age levels and frequency, the abdominal response 
could be graded, an important consideration for 
future studies of free flight control. Abdominal 
contractions in loosely tethered moths elicited by 
the FSE were shown to correspond to changes in 
flight path (Figure 6, Tsang et al., 2010a).

Asymmetric stimulation of the muscles that 
actuate insect’s wings can be used to generate turns. 
In beetles, for instance, turns could be elicited by 
stimulus of the left and right basalar muscles with 
positive potential pulse trains. In C. texana, the 
basalar muscles normally contract and extend at 

tethered condition and each test was repeated for 
10 times, i.e., 100 tests in total. Data on cessation 
of flight in individual insects are summarized in 
Sato et al. (2009b). All 10 insects tested were forced 
to stop flying by amplitude of 6.0 V or less. The 
majority (77%) stopped with a 2–3 V amplitude. 
The median amplitude was 3.0 V (range 2–6 V). 
The majority (87%) showed quite short response 
time <100 ms. In Manduca sexta, Bozkurt et al. 
(2009b) showed that stimulation of the anten-
nal lobes with 20 Hz, 3.5 V

peak-to-peak
 pulses elic-

ited flight while stimulation of the same site with 
50 Hz, 3.5 V

peak-to-peak
 pulses ceased flight.

throttlIng the oScIllator
During flight, the frequency and stroke amplitude 
of wing oscillation could be manipulated with the 
neural stimulator in beetles (Sato et al., 2008a, 
2009b; Maharbiz and Sato, 2010). For C. texana, 
it was observed that progressively shortening the 
time between positive and negative potential 
pulses delivered to the area of the brain between 
the optic lobes led to the “throttling” of flight 
where the beetle’s normal 76 Hz wing oscillation 
was strongly modulated by the 0.1–10 Hz applied 
stimulus (Sato et al., 2008a, 2009b). A repeating 
program of 3 s, 10 Hz, 3.0 V pulse trains followed 
by a 3 s pause (no stimulus) resulted in alter-
nating periods of higher and lower pitch flight 
(Sato et al., 2008a, 2009a). In a similar fashion, 
Mecynorhina torquata, brain stimulus at 100 Hz 
led to depression of flight (Figure 4B, tethered 
flight: Movie S2 in Supplementary Material, free 
flight: Movie S3 in Supplementary Material). 
Set on a custom pitching gimbal, Mecynorhina 
torquata could be repeatedly made to lower angle 
to horizon when stimulated. The change in the 
length of envelope of the blurry region around 
the wing suggests that the wing stroke ampli-
tude was clearly reduced (see the tethered flight: 
Movie S2 in Supplementary Material). Ten of 11 
tested beetles showed the tendency (Sato et al., 
2008b, 2009a,b; Maharbiz and Sato, 2010).

controlled turnIng
One of the classical methods for studying flight 
control in tethered animals is through the use of 
changing visual cues within the insect’s field of 
view. Employing arrays of light emitting diodes 
(LED’s) or digital projection on a screen, visual 
features such as scrolling stripes, moving shapes, 
and changing horizons elicit very strong maneu-
vering responses from many insects (e.g., Bothoz 
et al., 1992, Tu and Dickinson, 1996, Sato et al., 
2008a). Given that most insect compound eyes 
cannot move to track targets, visual cues which 
induce locomotion responses often also elicit 

Gimbal
A structure consisting of a frame  
which can rotate about a pivot point, 
constraining the rotation of the frame 
and anything attached to it to a single 
axis. Nesting more than one pivoted 
frame allows for rotation about 
multiple axes. For the custom gimbal 
discussed here, the frame was a plastic 
ring attached to a support ring using 
elastomeric material (which formed a 
pivot point). The inner ring had a 
magnetic attachment point where a 
flying insect was localized; when the 
insect was stimulated the amount of 
rotation about a single axis could be 
measured (e.g., pitch angle).
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 directions. Undoubtedly, one of the outstanding 
issues is determining to what extent sophisticated, 
synthetic control can bias complex flight in natu-
ral environments; this is an old topic in the insect 
neurophysiology community but one which 
may deserve re-evaluation given rapid advances 
in interface technology and the extreme mini-
aturization of computation. How much control 
effort (and, thus, energy) must be expended to 
direct an insect along a given trajectory in envi-
ronments which present extraneous stimuli? Are 
there inherent limits? To what extent can these 
neural and neuromuscular responses and their 
resultant trajectory changes be reliably graded? 
Put differently, can a reliable servo description 
for these interfaces be encoded as a pre- requisite 
for attempting control via local (on-board) 
algorithms?

Beyond the issue of control, insects which 
undergo complete metamorphosis may present 
a unique system with which to study synthetic-
organic interfaces; an idea recently posited in 
Paul et al. (2006). Several groups have begun to 
explore the advantages, in mechanical, electrical 
or surgical contexts, of interfaces implanted in 
insects during pupation, i.e., prior to emergence 
as adults (Paul et al., 2006; Bozkurt et al., 2007, 
2008a,b, 2009a,b; Tsang et al., 2008, 2010a,b; Sato 
et al., 2008b; Chung and Erickson, 2009). Given 
the extensive re-working of the insect physiology 

76 Hz when they are stimulated by approximately 
8 Hz neural impulses from the beetle nervous 
system (Josephson et al., 2000a,b). It has been 
reported that the flight muscles in Cotinis pro-
duce maximum power when they are stimulated 
directly by electrical pulses at 100 Hz (Josephson 
et al., 2000b). During flight of tethered C. texana, 
a turn could be elicited by applying 2.0 V, 100 Hz 
positive potential pulse trains to the basalar muscle 
opposite to the intended turn direction (Sato et al., 
2008a,b, 2009a,b; Maharbiz and Sato, 2010). A right 
turn, for example, was triggered by stimulating the 
left basalar muscle. In free-flying Mecynorhina 
torquata, turning was elicited when either of the 
left or right basalar muscles was stimulated in the 
same manner as C. texana but 1.3 V (Movie S4 in 
Supplementary Material, Figures 4C,D, Sato et al., 
2009a,b; Maharbiz and Sato, 2010). The success 
rates for left and right turn were 78% (N = 42) and 
66% (N = 68), respectively. One second of left- and 
right-stimulation of free-flying beetles resulted in a 
1.7 and −9.0 median roll to the ground and a 20.0 
and 32.4 median rotations parallel to the ground, 
respectively (see, Sato et al., 2009b for data on stim-
ulus turns in free-flying Mecynorhina torquata).

ongoIng Work and applIcatIonS
From an engineering perspective, the latest push 
toward remotely controlled free-flying insects 
is providing impetus for several new research 
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FIguRe 5 | Digitized flight track of the balloon assisting moth hybrid system as in Figure 2 as a result of 
applied stimulation pulses. Reproduced from Bozkurt et al. (2009b).

Complete metamorphosis
One of the two major types of 
metamorphosis (the other is incomplete 
metamorphosis). Metamorphosis is the 
biological process that insects undergo 
in the development from larva (or 
nymph) to adult (or imago). In 
metamorphosis, the insect’s body 
structure, habitat, and behavior often 
distinctly change. Insects which 
undergo complete metamorphosis pass 
through three different structural and 
habitudinal stages including larva, 
pupa, and adult. Insects which undergo 
incomplete metamorphosis 
progressively enlarge via ecdysis 
(molting or the shedding of the 
exoskeleton) but keep similar structure 
and habit from larva to adult.
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of insect communication, pollination and mating 
behavior and flight energetics, and for studying 
the foraging behavior of insect predators such 
as birds, as has been done with terrestrial robots 
(Michelsen et al., 1989). The technology may also 
enable new types of experiments relevant to neu-
roscience as it relates to insect flight. Remote stim-
ulation and recording systems, coupled with flight 
arenas equipped with real-time motion-capture 
systems, can trigger motor responses decoupled 
from the insect’s sensory inputs while tracking the 
resultant changes in flight behavior and recovery. 
This can be done while simultaneously recording 
neural or neuromuscular signals from the insect. 
This is an area of interest in our lab, specifically as 
it informs or improves the ability to elicit control-
led reactions from flying insects. Moreover, the 
ability to take real-time motion data allows for the 
timing of control signals referenced to a specific 
state of the insect in flight (e.g., stimulation is 
applied only at specific orientations, velocities, 
rotations, etc.) which may help tease out the con-
trol circuits at work in the insect. In engineering, 

during pupation, it is tempting to hypothesize 
that interfaces inserted during this period could 
somehow co-opt the developmental processes for 
an engineering advantage; this has not yet been 
conclusively shown. The process does provide 
engineering advantages, however. For example, 
both the authors and others have found that inser-
tion of foreign objects trans-cutaneously in the 
pupal stages often results in mechanically robust 
implants as the shell hardens around the struc-
ture post-emergence (Paul et al., 2006; Sato et al., 
2008b). Complex surgeries, as for that required 
in Tsang et al. (2008, 2010a,b), are easier in pupa 
than adults. Moreover, for insects with large inter-
stitial areas (such as horned beetles), a significant 
mass of material can be introduced into the pupa 
which becomes incorporated in the insect (pro-
vided neither nerves, gut, nor muscle was severed 
in the insertion, Bozkurt et al., 2008b).

The ability to control the flight of insects and 
receive information from on-board sensors would 
have many applications. In biology, the ability to 
control insect flight would be useful for studies 
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Stim. OFF

Stim. OFF

Stim. ON
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FIguRe 6 | Images showing the loosely tethered moth as in Figure 3. (A) left and (B) right turns. Reproduced from 
Tsang et al. (2010a).
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electronically controllable insects could be useful 
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Nano Air Vehicles) (Wu et al., 2003; Schenato 
et al., 2004; Deng et al., 2006a,b; Wood, 2008). 
Furthermore, tetherless, electrically controllable 
insects themselves could be used as M/NAV’s and 
serve as couriers to locations not easily accessible 
to humans or terrestrial robots.

In engineering, electronically controllable 
insects could be useful models for insect-mim-
icking M/NAV’s (Wu et al., 2003; Schenato et al., 
2004; Wood, 2008). Furthermore, tetherless, 
electrically controllable insects themselves could 
be used as M/NAV’s and serve as couriers to 
locations not easily accessible to humans or ter-
restrial robots. Lastly, and perhaps most impor-
tantly, these systems provide a readily accessible 
platform with which to study the integration 
between man-made interfaces and multicellu-
lar organisms engaged in complex tasks. This 
endeavor will certainly not replace the pursuit of 
building synthetic flying robots (since humans 
often build better machines than nature does), 
but computation and communication technology 

scales faster rate than power supply energy density 
or mechanical actuation. As smaller and lower 
power microcontrollers and radios continue to 
appear on the market, researchers will be able to 
add an increasing amount of synthetic control 
into organic systems enabling new classes of pro-
grammable machines.
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Micro/nano air vehicles
A class of small-sized remote-controlled 
unmanned aerial vehicles (UAV). In a 
restricted definition, micro air vehicles 
(MAV) and nano air vehicles (NAV) are 
less than 150 and 75 mm in maximum 
length, respectively. In many cases, the 
design, mechanics and aerodynamics of 
M/NAV’s has been inspired by bird and 
insect flight (Wu et al., 2003; Deng 
et al., 2006a,b; Wood, 2008; de Croon 
et al., 2009).
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MoVIe S3 | This movie shows remote elevation control of 
a free-flying Mecynorhina torquata. An RF receiver for 
wireless communication was mounted on the beetle. 
Wireless commands instructed the microcontroller to apply 
stimuli to the brain (Sato et al., 2009a,b), which caused the 
beetle to lose altitude. Once the command was removed, the 
beetle returns to normal flight and regains altitude. A blue LED 
blinked whenever the microcontroller received a command 
sent by remote operator. Reproduced from Sato et al. (2009b).
MoVIe S4 | This movie shows remote turn control of 
free-flying Mecynorhina torquata. An RF receiver for 
wireless communication was mounted on the beetle. After 
the RF receiver accepted a command to apply stimulus 
pulse trains to either left or right basalar muscle, the beetle 
turned. Red, green and yellow LED indicators were placed 
on the ground to show when the remote operator 
commanded the optic lobe (flight initiation), right basalar 
(left turn) and left basalar (right turn) muscle stimulations, 
respectively. Reproduced from Sato et al. (2009b).

Supplementary materIal

MoVIe S1 | This movie shows a series of initiation and 
cessation rounds of an unconstrained Mecynorhina 
torquata beetle equipped with an RF receiver for 
wireless communication. The initiation stimulus made the 
beetle take off into the air. The beetle then stopped flying 
when a single pulse was sent to the region between the 
optic lobes. A red LED indicator mounted on the RF receiver 
showed when stimulation was commanded by remote 
operator. Reproduced from Sato et al. (2009b).
MoVIe S2 | This movie shows elevation control of flying 
Mecynorrhina torquata on a pitching gimbal. The beetle 
decreased its climbing rate whenever stimulus pulse trains 
were applied to the brain (the pulse trains appeared on 
oscilloscope monitor). It returned to normal flight when 
un-stimulated (the pulse trains disappeared from the 
oscilloscope monitor). Reproduced from Sato et al. (2009b).




