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Reconstructing stimuli from the spike trains of neurons is an important approach for understanding 
the neural code. One of the difficulties associated with this task is that signals which are varying 
continuously in time are encoded into sequences of discrete events or spikes. An important 
problem is to determine how much information about the continuously varying stimulus can be 
extracted from the time-points at which spikes were observed, especially if these time-points 
are subject to some sort of randomness. For the special case of spike trains generated by leaky 
integrate and fire neurons, noise can be introduced by allowing variations in the threshold every 
time a spike is released. A simple decoding algorithm previously derived for the noiseless case 
can be extended to the stochastic case, but turns out to be biased. Here, we review a solution 
to this problem, by presenting a simple yet efficient algorithm which greatly reduces the bias, 
and therefore leads to better decoding performance in the stochastic case.
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1 IntroductIon
One of the fundamental problems in systems neu-
roscience is to understand how neural popula-
tions encode sensory stimuli into spatio-temporal 
patterns of action potentials. The relationship 
between external stimuli and neural spike trains 
can be analyzed from two different perspectives. 
In the encoding view, one tries to predict the spik-
ing activity of individual neurons or populations 
in response to a stimulus. By comparing the pre-
diction performance and properties of different 
encoding models, we can gain insights into which 
models are most suitable for describing this map-
ping. Alternatively, we can also study the inverse 
mapping: Given observed spike trains, we try to 
infer the stimulus which is most likely to have 
produced this particular neural response (see 
Figure 1). In this case, we are putting ourselves 
in the position of a “sensory homunculus” (Rieke 
et al., 1997) which tries to reconstruct the sensory 

stimuli given only information about the activ-
ity of single neurons or a neural population. By 
studying what properties of the stimulus can be 
decoded successfully, we gain insight into the fea-
tures of the stimulus that are actually encoded by 
the population.

In addition to decoding external stimuli from 
spike trains, decoding other endogenous signals 
can be of interest, since, they are thought to influ-
ence spiking activity, and should thus be repre-
sented in the population activity. For example, 
Montemurro et al. (2008) and Rasch et al. (2008) 
investigated how well local-field potentials could 
be decoded from the spike trains of neurons in 
striate visual cortex.

The general problem of decoding stimuli from 
spike trains can be challenging: First, the mapping 
of stimuli to the spike trains of single neurons (the 
encoding model) might be an unknown, com-
plicated, non-linear transformation. Second, the 
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nature of the relationship may change  dynamically 
over time. However, even if we assume the encod-
ing model to be known, fixed and relatively simple, 
decoding is not a trivial problem, because the map-
ping between stimuli and spike trains is not deter-
ministic. This means that, even if the same stimulus 
was presented multiple times under identical condi-
tions, it would not result in the same spike trains. 
Neural responses are variable because variations 
in channel-openings and other cellular processes 
lead to variations in their response even to identical 
stimuli (Faisal et al., 2008). Additional variability 
arises from the population sensitivity to influences 
other than the stimulus chosen by the experimenter. 
For example, even if the same visual stimulus is 
presented to a neuron in visual cortex, its spiking 
activity can be influenced by the behavior of the 
animal or mental states such as attention.

Another complication for decoding is that 
spike trains of neurons consist of discrete events, 
whereas sensory signals (or other signals of interest 
may) change continuously in time. Therefore, the 
discreteness of neural spikes implies constraints 
on what properties of the stimulus can be suc-
cessfully reconstructed. For example, if neurons 
have low firing rates, then it may be impossible to 
resolve very high-frequency information in their 
inputs (Seydnejad and Kitney, 2001; Lazar and 
Pnevmatikakis, 2008). The discrete nature of spike 
trains requires additional assumptions about the 
properties of the stimulus, such as smoothness 
or other band-width limitations, similar to the 
Nyquist theorem.

In a recent study (Gerwinn et al., 2009), we inves-
tigated decoding schemes for spike trains generated 
by a known encoding model: The leaky integrate 
and fire neuron (Burkitt, 2006). The dynamical 
properties of this popular neuron model have been 
studied extensively (Fourcaud and Brunel, 2002). 
Importantly, it allows for precise spike timing which 
has been shown to carry  information about the 

temporal (Borst and Theunissen, 1999) as well as 
spatial aspects (Panzeri, 2001) of dynamic stimuli. 
Many previous studies on stimulus reconstruction, 
however, mainly focused on the reconstruction of 
stimuli from spike counts only. A classic example is 
the population vector method for decoding move-
ment directions (Georgopoulos et al., 1982). For 
the leaky integrate and fire neuron the encoding 
into spikes may seem to be linear, as the input is 
accumulated linearly. However, the reset when 
reaching a threshold renders the encoding non-
linear. Therefore, a linear decoder is not the optimal 
decoder for this neuron model.

Starting from the noiseless encoding of leaky 
integrate and fire neurons, we review the  non-linear 
decoding scheme presented in Seydnejad and 
Kitney (2001), Lazar and Pnevmatikakis (2008). 
With this decoding scheme, stimuli can be recon-
structed perfectly provided that sufficiently many 
spikes have been observed and that we can make 
certain assumptions about the stimulus smooth-
ness. To be more realistic, the model can be 
rendered stochastic and hence the spike timing 
precision is varied by allowing the threshold to 
be noisy rather than fixed. For this model with 
a noisy spike generation process, we also have 
to adapt the decoding model accordingly. When 
interpreted probabilistically, regularity assump-
tions such as stimulus band-width limitations 
turn into assumptions about stimulus likelihood. 
That is which stimuli are more likely than others. 
Observing spikes then leads to a reduction (or an 
increase) of the probability with which a stimulus 
has been presented according to how likely the 
observed spike train could have been produced 
by each stimulus.

The decoding algorithm for the determinis-
tic case can not simply be used in the stochastic 
case, as it suffers from a systematic bias (Pillow 
and Simoncelli, 2003). Even if infinitely many 
spikes had been observed, applying the modified 

Figure 1 | illustration of the decoding problem: A 
time varying stimulus (left side, gray) is mapped or 
encoded into a set of spikes occurring at distinct 
points in time (right side, black bars). In our study, 
these time-points are assumed to originate from 
threshold crossings of an underlying membrane 

potential (right side, gray). The decoding problem 
consists of reconstructing the stimulus on the basis of 
the spike times only. This leads to an estimate of the 
stimulus (left side, red) and, in a probabilistic setting, 
also to an uncertainty estimate (left side, red  
shaded region).

Encoding

Decoding

Decoding
the process of reconstructing the 
stimulus from the spike times of a real 
neuron or theoretical neuron model.
Encoding model
A neuron model which describes how a 
neuron will generate spikes in response 
to a given stimulus.
Nyquist theorem
Mathematical theorem which outlines 
the conditions under which a stimulus 
with limited frequency range can be 
perfectly reconstructed from discrete 
measurements.
Likelihood
A formula which specifies how likely a 
given spike train is given a stimulus. 
The likelihood depends on both the 
encoding model and the noise model.
Bias
Average difference between the true 
stimulus and the reconstructed 
stimulus. A decoder with small bias will 
usually be preferable to a decoder with 
large bias.
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also be applied to each basis function  individually. 
Superimposing these modified basis functions 
with the same weightings results in the same 
 membrane potential. In addition, we know that at 
the spike time-points, the value of the membrane 
potential equals the threshold. As the membrane 
potential is obtained by a weighted sum of the 
modified basis functions, this equality constraint 
defines a set of linear equations that we want to 
solve for the unknown coefficients of the basis 
functions (Seydnejad and Kitney, 2001; Lazar and 
Pnevmatikakis, 2008). Thus, observing as many 
interspike intervals as basis functions results in 
a perfect reconstruction of the stimulus1. Note 
that these linear constraints can only be obtained 
for the modified basis functions, not directly for 
the stimulus.

For the case of only two basis functions we 
have illustrated the constraints defined by two 
interspike intervals in Figure 3. For the first 
interspike interval the membrane potential 
has to fulfill the constraint of being at the reset 
potential at the beginning of the interval and 
at the threshold at the end of it. This restricts 
the possible stimuli to a linear subspace shown 
as a green line in the upper part of Figure 3A. 
A similar restriction results from the second 
interspike interval leading to the linear subspace 
plotted in red. The true coefficients c

*
 that were 

used to generate the stimulus, therefore have to 
be at the intersection of these two constraint 
subspaces. In the case of underdetermined, i.e., 
uncertain stimulus reconstruction, there are 
more constraints which could be exploited. As 
can be seen in Figure 3, there are some coeffi-
cients which fulfill the threshold constraint but 

decoding algorithm would lead to a different 
stimulus estimate than the one which was used 
to generate the neural response. We showed that 
under some idealized assumptions this bias can 
be calculated and hence eliminated. Although 
these assumptions are unlikely to rigorously hold, 
empirically they still lead to a substantial reduc-
tion in bias. Finally, we will discuss alternative 
decoding approaches, in particular those based 
on generalized linear models (GLMs; Plesser and 
Gerstner, 2000; Paninski et al., 2007; Cunningham 
et al., 2008).

2 noIseless encodIng and decodIng
Given an encoding model, we can aim to “invert” 
this model for decoding, and thus perform opti-
mal decoding. We assume that the encoding model 
is known, and, concretely, assume that it is a leaky 
integrate and fire neuron model (Tuckwell, 1988; 
Burkitt, 2006; see Box). This encoding model is 
illustrated on the right-hand side of Figure 2.

In addition to the encoding model, we also 
need a representation or parametrization of the 
stimulus. We assume that the stimulus can be rep-
resented by a weighted superposition of a fixed 
number of basis functions (Figure 2, upper left). 
Therefore, each stimulus is a smooth function, 
but one which can be uniquely described using 
the set of weights that were used to generate it. In 
this way, prior knowledge (or assumptions) can 
nicely be translated into prior distributions over 
coefficients. For example, if the Fourier basis is 
chosen as basis function set, a “one over f ” prior 
can easily be incorporated by a properly defined 
Gaussian distribution over coefficients, for which 
the variance of higher frequencies decreases pro-
portionally to the inverse of the frequency.

Importantly, the operations that map the 
stimulus onto the membrane potential (filter-
ing, integration, and reset at the spikes times) can 

The neuron model consists of a membrane potential Vt which evolves over time according to the 
following differential equation:

     
V I Vt t t= −( )τ ,  

where It is the input signal which is accumulated. τ is a time constant and specifies the leak term. 
Whenever Vt reaches a predefined threshold u, the potential is reset to Vreset and a spike is released. The 
solution to this equation can be found to be:

   
V t s I st st

t

= − −( )( )
−

∫τ τexp d ,

where t− is the time of the last reset (spike). Without loss of generality, we assume the reset potential 
Vreset to be zero. From this solution, we see that the stimulus It is convolved with an exponential filter 
exp (−τ) and integrated (see also Figure 2).

Leaky integrate and fire neuron

Prior
Prior assumptions or knowledge about 
the stimuli, which are encoded in a 
probability distribution over possible 
stimuli.

1Interspike intervals, not only the time of the last spike are 
needed, because the start point for the integration (last reset) 
has to be known as well.
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basis functions stimulus

Figure 2 | illustration of the encoding process. Each 
stimulus is constructed by first drawing random weights c 
from a Gaussian distribution, and then forming a weighted 
superposition of basis functions with these weights (top 
row). This generates a new smooth stimulus on each trial. 
In our neuron model, the membrane potential at any time is 
a “leaky” integral of the stimulus. Thus, the membrane 
potential can be calculated by convolving the stimulus with 

an exponential filter (first box). Whenever the resulting 
integrated signal (second box) reaches a predefined 
threshold the integration is reset (third box). Alternatively, 
one can apply the filtering, integrating and resetting at the 
given spike times to each basis function separately, and 
then do a weighted summation of these signals. Both 
constructions lead to the same membrane potential, and 
thus the same spike trains.

eq. constr. 1st ISI

A B

eq. constr. 2nd ISI

all constr. 1st ISI

all constr. 2nd ISI

thresholdthreshold

C1C1

C*C*

C
2

C
2

Figure 3 | Spikes imply linear constraints on the 
stimulus. (A) Equality constraints only: The stimulus 
(blue) consists of a superposition of two basis function 
(one sine and one cosine function). The resulting 
membrane potential is plotted in black. Whenever the 
potential reaches the threshold (gray) a spike is fired. The 
linear constraint originating from the equality constraints 
of the first interspike interval are plotted in green in the 
upper plot. A discrete set of points along this linear 
constraint are selected and the corresponding 
membrane potentials are plotted in green in the lower 

plot. The same is shown for the second interspike 
interval in red. The perfect reconstruction of the stimulus 
(coefficients) is found by the intersection of the linear 
constraints. The brightness of the background indicates 
the probability of each pair of coefficients according to 
the prior distribution. (B) Equality and inequality 
constraints: The same configuration as in (A) is plotted, 
but additionally the inequality constraints imposed by 
the period of silence between spike times are taken into 
account as well. This results in a smaller subspace of 
possible solutions as shown in the upper plot.

result in membrane potentials which cross the 
threshold between spikes. Incorporating these 
constraints into a decoding procedure is compu-

tationally more demanding, as in each time bin 
they only define an inequality constraint. Solving 
this would result in a linear program with as 
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several possibilities, to allow for a varying thresh-
old. First, one could add random fluctuations to the 
threshold, or equivalently to the membrane poten-
tial. Second, one could adapt the spike generation 
by generating a spike probabilistically according to 
the membrane potential distance to the threshold. 
We here assume that the threshold is drawn from 
a known distribution every time a spike is released. 
Reconstructing the stimulus, however, is then com-
plicated by the fact that the membrane potential 
value is not directly observed. Thus, we no longer 
have equality constraints, but rather average over 
all possible thresholds that the membrane poten-
tial possibly could have reached. A simple solution 
to circumvent this problem is to apply the same 
decoding algorithm as above but with the equality 
constraint for the fixed threshold being replaced 
by the mean threshold rather than the actual value. 
However, this procedure might be  problematic as 
the  modified basis functions are calculated based on 
spike times, which correspond to reaching thresh-
olds that differ from the mean threshold.

By varying the threshold every time a spike 
is fired, we have introduced a noise source. This 
readily leads to a probabilistic interpretation of 
the encoding task: Fixing a specific stimulus, or 
equivalently a vector of coefficients, results in a 
probability distribution over spikes times induced 
by the varying threshold. After having specified a 
prior distribution over stimuli, the distribution 
over spikes times can be inverted by Bayes rule 
to give a distribution over possible stimuli hav-
ing produced an observed set of spikes, called the 
posterior. The posterior assigns each stimulus a 
probability with which it could have produced 
the observed neural response. The substitution 
of the actual value with the mean threshold for 
the equality constraint can also be interpreted as 
a Gaussian approximation to the true distribu-
tion over stimuli (Gerwinn et al., 2009). We will 
refer to this approximation as the Gaussian fac-
tor approximation as it essentially approximates a 
likelihood factor (corresponding to a single obser-
vation) with a Gaussian factor. Unfortunately, the 
mean of this approximation does not converge 
to the true stimulus, i.e., this decoding algo-
rithm is asymptotically biased. Even if infinitely 
many spikes had been observed, the mean of the  
 estimated stimulus distribution would in general 
be different from the true one.

To analyze the situation, it is instructive to split 
the stimulus, or rather the coefficient vector which 
describes the stimulus (see Figure 2), into two 
parts: one amplitude component, which deter-
mines the “size” of the stimulus, and an angu-
lar component, which represents its direction 
in space. The difference between estimate and 

many constraints as there are time bins, which 
would be computationally infeasible in almost 
all interesting cases. For the example in Figure 3, 
we plotted the space of solutions, which addi-
tionally account for the inequality constraints in 
subplot B. Neglecting these constraints, we need 
possibly more observations, but are still able to 
reconstruct the stimulus perfectly eventually: 
The linear constraints implied by the observed 
spikes will eventually “rule out” all stimuli which 
violate one of the inequality constraints.

If fewer interspike intervals than basis func-
tions have been observed, the linear system which 
is defined by the threshold constraints is underde-
termined. This means that multiple reconstruc-
tions are consistent with the equality constraints, 
and one can freely choose an estimate within the 
solution space. One principle for choosing a sin-
gle one under all possible solutions (for exam-
ple along the green line in Figure 3, if only the 
first interspike interval had been observed) is to 
take the one with minimal norm, i.e., the one 
for which the sum of the squares of the coeffi-
cients is minimal. This construction will always 
yield a reconstruction which is consistent with 
the spike times observed, but not necessarily one 
which is also consistent with the observed silence 
periods. This particular choice of reconstruction 
also has a probabilistic interpretation: It corre-
sponds to the mean of a Gaussian distribution, 
which is obtained from constraining a Gaussian 
prior distribution (indicated by the background 
brightness in Figure 3) over coefficients to the 
subspace spanned by the linear constraints. 
However, ignoring the inequality constraints 
and just restricting the Gaussian prior to the 
space of linear system solutions might result in 
a substantial estimate offset (even on average). 
Picking the solution with minimal amplitude 
also corresponds to a least squares solution to the 
equality constraints. Therefore, it is also called 
the pseudo-inverse (Penrose, 1955) as it can be 
applied in both over- and underdetermined cases. 
Minimal amplitude, however, might not be desir-
able as it biases the solution toward zero, which 
would not be justified if the inequalities had been 
taken into account.

3 IncludIng noIse: probabIlIstIc 
treatment
In the previous section we assumed a fixed thresh-
old which must reached to fire a spike. Thus, there 
was no noise in the model, and the mapping from 
stimuli to spikes is deterministic. To make the 
model more realistic, we assume that the membrane 
potential is not fixed, but rather varies randomly 
from spike to spike (Jolivet et al., 2006). There are 

Posterior
A probability distribution which 
determines which stimuli are consistent 
with a given spike train: Stimuli which 
are consistent with the spike train have 
high posterior probability.
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threshold is known. Therefore (1) constitutes a set 
of linear systems and can be solved for c with stand-
ard methods. The Gaussian approximation corre-
sponds to replacing the threshold θ by the mean 
threshold plus additive Gaussian noise, which is 
assumed to be independent to the observation 
v ti

. The main source of the bias for the Gaussian 
approximation comes from this  independence 
assumption: We know that equation (1) has to hold 
exactly, that is, the realization of the noise shapes 
the observation v ti

 and therefore they cannot be 
independent. To calculate the resulting length bias, 
we had to assume that there is no bias for the orien-
tation. Although this is not guaranteed to be correct 
in practice, this assumption empirically reduces the 
bias substantially, see Figure 5.

4 alternatIve decodIng schemes
So far, we have used the equality constraint to 
approximate the likelihood of observing the set 
of spikes, given the stimulus. This in turn enabled 
us to construct a probability over stimuli condi-
tioned on the observations. Instead of using this 
approximation, we could have used one of the 
following alternatives:

approxImate maxImum a posterIor 
estImatIon
The Gaussian factor approximation used previ-
ously was obtained by assuming independence 
of the indirect observation of the modified basis 
functions and the threshold. Under this assump-
tion, we could replace the actual threshold value 
by its mean. If we do not assume this independ-
ence but still only use the fact that the membrane 
potential has to reach an unknown threshold 
whose distribution is known, we can derive another 

true coefficients could be due to a difference in 
amplitude or due to a difference in orientation (or 
both). If, for the moment, we assume that there 
is no difference on average for the orientation, 
we can analytically calculate the bias in the radial 
(amplitude) component. Once we know this aver-
age amplitude difference, we can correct for it by 
multiplying the estimate by its inverse.

In Figure 4 we illustrate the difference between 
the three distributions in the one- dimensional case: 
the true distribution over stimuli, the Gaussian 
approximation without any bias correction and 
the Gaussian approximation with the inverse bias 
multiplication. In the one-dimensional case, there 
is only one orientation, so our assumption of the 
orientation being correctly estimated is trivially 
true. Therefore, in the one-dimensional case, the 
bias can be completely eliminated. Note that the 
elimination of the bias only implies that the esti-
mated stimulus (mean of the distribution plotted 
in Figure 4) will eventually converge to the true 
stimulus. For a finite number of spikes and a spe-
cific stimulus (the case that is plotted in Figure 4) 
there is no guarantee that the distribution is close 
to the true posterior distribution. Nevertheless, 
we can see that the mean of the bias corrected 
version is much closer to the true mean than the 
uncorrected version.

To illustrate the Gaussian approximation, we 
analyze the equality constraint obtained from the 
spikes times in some more detail. Mathematically, 
the equality constraint is given by the equation:

  
θ = c v

ti
,
 

(1)

where θ is the threshold and v ti
 are the modified 

basis functions from Figure 2, evaluated at the cur-
rent spike t

i
. In the noiseless case, the value of the 
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Figure 4 | replacing noisy thresholds by the mean 
threshold induces a bias in the stimulus estimate. 
Three estimators in two different situations are  
plotted. (A) Corresponds to the case where 10 
interspike intervals have been observed. In (B) the 

same is shown for 40 observations. The true  
distribution is plotted in black, the Gaussian 
approximation in dashed red, and the bias corrected 
version of the Gaussian approximation is shown  
in dashed green.
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model arises primarily from the hard threshold 
used in the model. Therefore, a potential remedy 
is to approximate the model by one with a proba-
bilistic, “soft” threshold, and for which decoding 
is easier. In particular, GLMs are possible can-
didates, as inference over stimuli or parameters 
can be done efficiently. The corresponding decod-
ing algorithms are either based on the Laplace 
( saddle point) approximation (Paninski et al., 
2007; Lewi et al., 2009) or on Markov Chain 
Monte Carlo methods (Ahmadian et al., 2011; 
Pillow et al., 2011). Such approximations of the 
leaky integrate and fire model based on GLMs are 
known as escape rate approximations (Plesser and 
Gerstner, 2000). The key assumption is that the 
probability of observing a spike at a particular 
point in time depends only on the current value 
of the integrated membrane potential.

lInear decodIng
A very popular decoding algorithm which does 
not use the information about an explicit encod-
ing model is the linear decoder (Bialek et al., 1991; 
Rieke et al., 1997). A reconstruction is obtained by 
a superposition of fixed filters shifted to be centered 
at the observed spike times. The exact form of such 
a filter depends on the encoding model, and can be 
learned from stimulus–spike train pairs. There is, 
however, no guarantee that the linear decoder will 
eventually converge to the true stimulus.

5 dIscussIon
Decoding stimuli from sequences of spike-patterns 
generated by populations of neurons is an impor-

approximation of the likelihood. In this case, the 
mean stimulus cannot be calculated analytically. 
However, the most likely stimulus (maximum a 
posteriori estimate) can still be found by using gra-
dient based optimizers. This procedure results in 
an algorithm very similar to the one presented by 
Cunningham et al. (2008). In Figure 5 we show the 
(asymptotic) performance of this estimator against 
the Gaussian approximation. This decoder shows 
very similar performance to our Gaussian factor 
approximation, but requires one to solve an opti-
mization problem for each stimulus estimate.

exact probabIlIstIc decodIng
Instead of approximating the likelihood func-
tion, we could try to use the exact form, without 
neglecting any constraints imposed by the obser-
vation of spikes. For the case of a continuously 
varying threshold, which is equivalent to additive 
noise to the membrane potential, algorithms for 
evaluating the likelihood have been presented 
by Paninski et al. (2004), see also Paninski et al. 
(2008). However, the associated optimization 
routines are computationally very demanding, 
because evaluating the true likelihood requires to 
average each of the equalities and inequalities over 
all possible threshold values. For other neuron 
models, like the GLM, for which the likelihood 
is given analytically, exact, and efficient decoding 
algorithms exists, see Ahmadian et al. (2011).

escape rate approxImatIon
The difficulty in computing the likelihood of a 
spike train for the leaky integrate and fire neuron 
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Figure 5 | Our length correction substantially 
reduces the bias in decoding. Three different noise 
levels are considered here. The noise level is specified by 
the variance of the thresholds drawn at spike times. The 
larger the noise level the more prominent is the 

asymptotic bias (solid black lines) for the Gaussian 
approximation without the length bias correction (red, 
dashed). As a reference the performance of the linear 
decoder (dot-dashed blue) and the maximum a posteriori 
(MAP, dotted) are also plotted.

Linear decoding
A simple yet powerful decoding 
algorithm which reconstructs the 
stimulus as a superposition of fixed 
waveforms centered at spike times.
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