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Adjusting our behavior to the changing 
demands of the environment requires flex-
ible decision mechanisms. In an analysis of 
more than 91,000 chess games, an original 
research effort now suggests that perform-
ance is correlated with a player’s ability 
to adjust its decision criteria to meet the 
varying degrees of complexity observed 
throughout a match (Sigman et al., 2010).

Chess has always captivated not only 
to those who play it, but also mathema-
ticians and computer scientists who are 
often drawn to the challenge of designing 
artificial intelligence algorithms capable 
of matching or even surpassing human 
cognition (Shannon, 1950; Turing, 1950). 
Traditionally, those trying to understand 
the cognitive processes related to chess have 
brought players within laboratory settings 
that allow studying such things as eye move-
ments and pattern recognition abilities 
(Chase and Simon, 1973; Charness et al., 
2001). A new approach, however, has taken 
the study of chess and decision making to 
new level by realizing that the enormous 
databases generated by storing the thou-
sands of games played online every day can 
help uncover subtle but insightful statistical 
trends (Blasius and Tönjes, 2009).

Sigman and colleagues analyzed how 
response time (RT) changed according 
to the number of moves played into the 
game. The resulting mean RT profile clearly 
showed that openings and endgames are 
played much faster than the middle game, a 
pattern that most chessists know from expe-
rience (see also Hyatt, 1984). This general 
trend was present among all contestants, but 
a revealing result emerged when the authors 
compared time usage of low (<1400) and 
high-rated (>1900) players: strong players 
spend even less time on the openings and 

endings, and invest significantly more time 
reflecting on middle game moves. The wider 
RT range of high-rated players suggested a 
more flexible policy of time management. 
Supporting this view, Sigman and collabo-
rators found that, not only mean RT showed 
larger modulations throughout a match, but 
also the spread of the RT distributions for 
each move number was wider among strong 
players.

But, what is the main factor shaping the 
general trend of slow moves at the middle, 
and fast ones at the opening and endgame? 
One possibility is that the time invested on 
a given move is determined by the complex-
ity of the board position. Players intuitively 
know that position complexity grows as the 
match progresses from the opening into the 
middle game. To estimate how complexity 
changed as games unfolded, the authors 
came up with a clever trick. Instead of calcu-
lating just the total number of legal moves, 
certainly a raw measure of board complex-
ity, they weighted each possible move by a 
factor reflecting how often it appeared in 
a database of more than 650,000 games. 
Results show that for the first 20 moves the 
weighted number of options, which can 
be thought of as the board entropy, grow 
linearly with the number of played moves. 
The increase in board complexity thus offers 
a plausible explanation for the increasing 
decision times observed as matches advance 
from the opening into the middle game.

But the entropy calculations revealed 
something unexpected: board complex-
ity remained high also throughout the 
endgame, while players progressively sped 
up their decisions. Board complexity was 
clearly not the only factor determining RT at 
the second half of the match. The decrease 
in decision time probably reflected a new 
setting on the speed–accuracy tradeoff 
inherent to every decision (Ratcliff, 1978; 
Luce, 1986; Palmer et al., 2005). As remain-
ing time ticked away, players increasingly 
favored fast over precise but slower moves.

For decisions that must be reached 
within a limited time frame, as most of 
them are, a tight correlation exists between 

accuracy and the time invested deciding. 
Increasing precision is always possible, at 
the expense of longer deliberation times. 
To estimate the accuracy of chess decisions, 
the authors used open-source software that 
calculated how position score changed after 
every move. This score, positive if board 
position is favorable to white, accounted 
not only for material advantage, but also 
for board subtleties such as open files and 
piece mobility.

Gaining full advantage of their large 
database, the authors calculated how score 
and remaining time combined to determine 
a player’s winning likelihood. This analysis 
showed that the main factor determining 
the match outcome shifts from material 
advantage to time advantage as remaining 
time decreases. In 3 min games, for example, 
when remaining time is between 20 and 30 s, 
an 8 s advantage on the clock is equivalent 
to having an extra knight on the board. It 
was clear from these results that under time 
pressure fast moves become more effective 
than good moves requiring extra time.

But what is the mechanism allowing 
a chess player to modulate the speed– 
accuracy tradeoff and hence decision time? 
The authors did not propose a particular 
model, but we can think of a chess deci-
sion as the process of finding out whether 
a given move is good enough or not. To do 
this, a player could assign a subjective value 
to each possible response movement. But to 
refine its initial assessment of choices the 
player must calculate how this value would 
change after the most likely response from 
the opponent (Figure 1). Repeating the 
evaluation process for long sequences of 
moves would assure a deeper assessment 
of choices, but would also consume more 
time. The evaluation process has to stop at 
some point if a player is not to spend its 
allotted time on a single move. This could be 
achieved by setting an acceptance criterion 
on the accumulated value, and selecting the 
sequence to first hit this bound.

According to this decision model, lower-
ing the acceptance criterion would generate 
faster RTs, at the expense of a less profound 
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constantly adjust the decision criteria to 
meet the changing demands of accuracy, 
complexity, and remaining time.
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the middle games, an assumption that might 
not hold for those players able to play “by 
the book,” i.e., relying on proven sequences 
of moves. In its simplest form, however, this 
decision model could potentially account 
for some of the uncovered statistical trends, 
namely, the linear relation of RT mean and 
standard deviation, as well as the long tails 
of RT distributions.

Chess expertise likely depends on a 
number of cognitive skills such as fast pat-
tern recognition to quickly grasp the geist 
of a position, or the capacity to hold long 
sequences of moves in working memory 
(Simon and Chase, 1973). The results of 
Sigman and colleagues now indicate that a 
hallmark of strong chess players, and suc-
cessful decision making, is the ability to 

evaluation of the choices. Ideally, the deci-
sion bound should be adjusted according to 
board complexity and remaining time. It is 
known, in fact, that the criterion value must 
be raised in relation to the number of choices 
in order to maintain a constant level of per-
formance (Usher et al., 2002). This would 
explain why players make slower decision 
as the entropy of board increases. Several 
simplifying assumptions of this decision 
algorithm need rigorous testing. To spare 
an extra mechanism for determining evalu-
ation order, move sequences are assumed to 
be calculated in parallel. Additionally, only 
the height of the decision criterion deter-
mines RT, so the model assumes no bound 
on the number of evaluated moves. As it is, 
openings would be analyzed the same way as 

Figure 1 | A decision mechanism in chess. After an opponent’s move (d5), a player evaluates his choices 
by assigning a goodness value (subjective score) to each possible response. He must then calculate how 
the score will change after a sequence of moves involving the most likely opponent’s responses. When 
accumulated score, that is, the summed value of each move within a sequence, reaches an acceptance 
criterion, the move initiating the sequence is played on the board. Deeper calculations, at the expense of 
longer response times, could be achieved by elevating the acceptance criterion. How the human brain 
assigns values to chess moves is still largely unknown, but in addition to raw piece value, its evaluation 
function likely incorporates variables such as elapsed time (Churchland et al., 2008), long term plans, and 
the opponent’s estimated strength.


