
Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 1

FOCUSED REVIEW
published: 23 February 2011

doi: 10.3389/fnins.2011.00009

Fitting neuron models to spike trains

Cyrille Rossant1,2, Dan F. M. Goodman1,2, Bertrand Fontaine1,2, Jonathan
Platkiewicz3, Anna K. Magnusson4,5 and Romain Brette1,2*
1 Laboratoire Psychologie de la Perception, CNRS, Université Paris Descartes, Paris, France
2 Equipe Audition, Département d’Etudes Cognitives, Ecole Normale Supérieure, Paris, France
3 Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie-Paris 06, Paris, France
4 Center for Hearing and Communication Research, Karolinska Institutet, Stockholm, Sweden
5 Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden

Computational modeling is increasingly used to understand the function of neural circuits
in systems neuroscience. These studies require models of individual neurons with realistic
input–output properties. Recently, it was found that spiking models can accurately predict the
precisely timed spike trains produced by cortical neurons in response to somatically injected
currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough
to easily test different candidate models. We present a generic solution, based on the Brian
simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary
neuron models to electrophysiological recordings. It relies on vectorization and parallel computing
techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex
and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately
predict the response of cortical neurons. Finally, we show how a complex multicompartmental
model can be reduced to a simple effective spiking model.

Keywords: python, spiking models, simulation, optimization, parallel computing

1 IntroductIon
An increasing number of studies in systems neuro-
science rely on computational modeling to under-
stand how function emerges from the interaction
of individual neurons. Although the neuron mod-
els used in these studies are usually well established
models [e.g., Hodgkin–Huxley (HH), integrate-
and-fire models, and variations], their parameters
are generally gathered from a number of meas-
urements in different neurons and preparations.
For example, the model of Rothman and Manis
(2003), an established biophysical model of neu-
rons in the cochlear nucleus (CN) of the auditory
brainstem, includes ionic channels with properties
measured in different neurons of the CN of guinea
pigs, combined with a sodium channel and an Ih
current derived from previous measurements in
mammalian neurons in other areas (including the
thalamus). This situation is hardly avoidable for

practical reasons, but it raises two questions: (1)
channel properties from heterogeneous neuron
types, species or ages may not be compatible, and
(2) there could be functionally relevant correla-
tions between parameter values within the same
neuron type (e.g., maximal conductances), which
would be missed if the information about chan-
nels came from several independent neurons.
Therefore, it seems desirable to obtain models
which are fitted for specific neurons.

If these models are to be used for network mod-
eling, then the main goal is to predict the spike
trains in response to an arbitrary input. Recently,
it was found that simple phenomenological
spiking models, such as integrate-and-fire mod-
els with adaptation, can predict the response of
cortical neurons to somatically injected currents
with surprising accuracy in spike timing (Jolivet
et al., 2004; Brette and Gerstner, 2005; Gerstner

Edited by:
Henry Markram, Ecole Polytechnique
Fédérale de Lausanne, Switzerland

Reviewed by:
Werner Van Geit, Okinawa Institute of
Science and Technology, Japan

*Correspondence:

Romain Brette obtained a PhD in
Computational Neuroscience from the
Paris VI University in France. He did
postdoctoral studies in Alain Destexhe’s
group in Gif-sur-Yvette (France) and
Wulfram Gerstner’s group in Lausanne
(Switzerland). He is now an associate
professor of computational neuroscience
at Ecole Normale Supérieure, Paris. His
group investigates spike-based neural
computation, theory, and simulation of
spiking neuron models, with a special
focus on the auditory system.
romain.brette@ens.fr

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 2

and Naud, 2009; Kobayashi et al., 2009). A number
of techniques have been used to fit specific models
to electrophysiological recordings, in particular in
the context of the recent INCF Quantitative Single-
Neuron Modeling competition (Jolivet et al., 2008),
but they are not generic, which limits their practical
applicability. This is a difficult optimization prob-
lem for two reasons. Firstly, because of the threshold
property, any matching criterion between the target
spike train and the model spike train is necessarily
discontinuous with respect to the model param-
eters (Brette, 2004), which discards many efficient
optimization algorithms. Secondly, a single evalu-
ation of the criterion for a given set of parameter
values involves the simulation of a neuron model
over a very long time. Therefore, this model fitting
problem requires an optimization technique that
is both flexible and very efficient.

We have developed a model fitting toolbox
(Rossant et al., 2010) for the spiking neural net-
work Brian (Goodman and Brette, 2009). Brian is
an open-source simulator1 written in Python that
lets the user define a model by directly providing
its equations in mathematical form. To achieve
efficiency, we used vectorization techniques and
parallel computing. In particular, optimization
can run on a graphics processing unit (GPU), an
inexpensive chip available on most modern com-
puters and containing multiple processor cores.
In this review, we start by giving an overview of
our optimization technique and we demonstrate
its use on neural recordings in the barrel cortex
and in the auditory brainstem. We also show how
a complex multicompartmental model can be
reduced to a simple effective spiking model.

2 Methods
2.1 VectorIzed optIMIzatIon
Our technique is illustrated in Figure 1. The exper-
imental data consists of current-clamp recordings,
with fluctuating currents mimicking in vivo synap-
tic activity (Figure 1A). In this example (consisting
of barrel cortex recordings from the INCF compe-
tition), the same current was injected several times
in the same neuron (A1 and A2, regular spiking
cell) and in different neurons (B1, fast spiking cell).
Figure 1B shows the Python script used to run
the optimization procedure. The spiking neuron
model is defined by its mathematical equations
(here, a simple integrate-and-fire model) and
the parameter values are to be optimized so that
the model spike trains are as close as possible to
the recorded spike trains, which is assessed by a
 criterion. We chose the gamma factor (Jolivet et al.,
2008), used in the INCF competition, which is

based on the number of coincidences between the
two spike trains, within a fixed temporal window
(δ = 4 ms in our figures). Other criteria could be
used, but in any case the criterion is a discontinu-
ous function of the model parameters, because
model spike trains are themselves discontinuous
functions of the parameters. This is a strong con-
straint: it requires us to use a global optimization
algorithm that does not directly use gradient infor-
mation, for example genetic algorithms. These are
computationally intensive, because the criterion
must be evaluated on a large number of param-
eter values, and each evaluation consists of many
operations (at least as many as the number of
recording samples in the traces). Processing each
set of parameters serially is computationally inef-
ficient because (1) in Python, each instruction has
a small fixed computational cost (the “interpreta-
tion overhead”) which adds up to a substantial cost
if each set of parameters is processed separately,
and (2) with serial computations we cannot make
use of multiple processors. To maximize efficiency
without compromising flexibility (the possibility
of easily defining any model, as shown in Figure
1B), we developed vectorization techniques, which
allows us to use the Brian simulator with minimal
interpretation overhead (Brette and Goodman,
2010), and to run the optimization algorithm in
parallel. Vectorization consists in simultaneously
simulating many neurons defined by the same
model but with different parameters, using vector
operations to update their variables (that is, using
a single Python instruction to perform the same
computation on multiple items of data).

Figure 1C illustrates one step of the optimi-
zation algorithm. In this figure, we describe the
CMA-ES algorithm (Hansen and Ostermeier,
2001), but other global optimization algorithms
can be used (for example we used the particle
swarm algorithm in Rossant et al., 2010). A large
number of neurons are simulated in a vectorized
way: they are defined by the same model but their
parameter values are different. The current state
of the optimization procedure is specified by a
(Gaussian) distribution of parameter values.
Parameter values for all the neurons to be simu-
lated are randomly drawn from this distribution.
The neural responses to the fluctuating current
are simulated and compared to the target experi-
mental spike trains. The best neurons are selected,
and their parameter values are used to update the
parameter distribution. It is straightforward to
simultaneously optimize models for different
recordings (e.g., A1, A2, and B1 in Figure 1A):
the neuron population is simply subdivided in
as many groups as target recordings. When the
number of simultaneously simulated neurons 1http://briansimulator.org

Phenomenological spiking model
An effective neuron model with
accurate input–output properties (the
output being spike trains), but where
the underlying biophysical mechanisms
are not explicitly represented (e.g.,
integrate-and-fire model), as opposed
to a biophysical model (e.g.,
Hodgkin–Huxley model).

Python
Python is a high-level programming
language. Programs can be run from a
script or interactively from a shell (as in
Matlab). It is often used for providing a
high-level-interface to low level code.
The Python community has developed
a large number of third party packages,
including NumPy and SciPy which are
commonly used for efficient numerical
and scientific computation.

Vectorization
Vectorization is a technique for
achieving computational efficiency in
high-level languages. It consists of
replacing repeated operations by single
operations on vectors (e.g., arithmetic
operations) that are implemented in a
dedicated efficient package (e.g.,
NumPy for Python).

Graphics processing units
Graphics processing units or GPUs are
specialized chips available on most
modern computers (originally for
graphics rendering), which can be used
for high-performance parallel
computing. These chips consist of up to
512 processor cores working in parallel.

Global optimization
Global optimization is the
minimization or maximization of a
function of several variables, using
algorithms such as genetic algorithms,
particle swarm optimization,
differential evolution.

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 3

worker then evaluates the performance and selects
the best neurons. The parameter values from these
local selections are sent back to the master. Again,
this is a small data transfer. The master collects
all best neurons and updates the parameter dis-
tribution, which is sent back to the workers at the
next iteration. Since the exchange of information
between processors is minimal, the work can be
efficiently distributed across several processors
in a single machine, or across multiple machines
connected over a local network or even over the
internet. We use a Python package called Playdoh to
distribute the optimization process2, which is based
on the standard Python multiprocessing package.
Performance scales approximately linearly with the
number of processors (Rossant et al., 2010).

2.3 Gpu IMpleMentatIon
Graphics processing units are specialized chips
available on most modern computers, which can
be used for high-performance parallel computing

is greater than a few thousand neurons, the
Brian simulator (which is written in Python, an
interpreted language) performs only marginally
worse than custom compiled C code (Brette and
Goodman, 2010). But this performance can be
greatly increased by distributing the optimization
over multiple processors.

2.2 dIstrIbuted coMputInG
The most computationally expensive part of the
optimization is simulating the neuron popula-
tion. Since the neurons do not communicate with
each other, it is straightforward to distribute their
simulations over several processors, as illustrated
in Figure 2. One machine acts as a “master” and
centralizes the optimization. An iteration starts
with the master sending the current parameter
distribution to all machines (“workers”). This is
a negligible data transfer because the distribution
is fully specified by the means and the covariance
matrix. The workers independently draw param-
eter values from the distribution and simulate a
population of neurons with these parameters. Each

Sampling Simulation Evaluation Selection Update

20 mV

100 ms

A B

C

0.5 nA
from brian import *
from brian.library.modelfitting import *

input, data = load_data()

eqs = Equations('''
 dv/dt=(R*I-v)/tau : 1
 I : 1
 R : 1
 tau : second ''')

params = {
'R': [1.0/nA, 1.0/nA, 5.0/nA, 10.0/nA],
'tau': [2.0*ms, 5.0*ms, 25.0*ms, 80.0*ms],
'_delays': [-5*ms, -5*ms, 5*ms, 5*ms]}

results = modelfitting(
 model=eqs, reset=0, threshold=1,
 data=data, input=input, dt=.1*ms,
 particles=10000, iterations=5,
 optalg=PSO, delta=2*ms, **params)

B
1

A
2

A
1

In
je

ct
ed

cu
rr

en
t

Figure 1 | Overview of the model fitting technique. (A) Experimental data: a
fluctuating current is injected into the neuron (top) and the responses are
recorded (only spike trains are used). The first two traces correspond to two
different trials in the same cortical neuron, the third trace is the response of
another neuron. (B) Python script to fit an integrate-and-fire model to the
experimental data: the model is defined in its mathematical form, and initial
parameter values are specified. (C) Illustration of the optimization procedure

using the CMA-ES algorithm. A large number of parameter values are drawn
from a distribution (sampling). Neurons with these parameters are
simultaneously simulated in a vectorized way (simulation). Multiple target traces
are simultaneously optimized (three traces here). The prediction error for all
neurons is estimated (evaluation), and the best ones are selected (selection).
The distribution of the best ones is then used to update the distribution of
parameters for the next iteration (update).

2http://code.google.com/p/playdoh/

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 4

Single-Neuron Modeling competition (challenge
A, first trace). In these recordings, fluctuating cur-
rents were injected into the soma and the elic-
ited spike trains were used to fit various models.
The most accurate one on the training data was
the MAT-model (Kobayashi et al., 2009), which
won the INCF competition: it predicted about
86% of reliable spikes (spikes that are repeatedly
observed in different trials) with 4 ms preci-
sion. It is essentially an integrate-and-fire model
with adaptive threshold: the threshold is a sum
of two adaptive components, which increase by
a fixed amount after each spike and relax to an
equilibrium value with different time constants.
Other sorts of integrate-and-fire models with
adaptation (either as an adaptive current or an
adaptive threshold) also performed very well
(see also Rossant et al., 2010). On the test data,
the simpler adaptive integrate-and-fire model
performed better than the MAT-model (79 vs.
66%), which indicates overfitting, but this is pre-
sumably because we had to split the competition
traces into training and test traces, resulting in
little available data for the fitting. Interestingly,
more complex models did not perform better.
In particular, the adaptive exponential integrate-
and-fire model (Brette and Gerstner, 2005; AdEx)
did not give better results although spike initia-
tion is more realistic (Fourcaud-Trocme et al.,
2003; Badel et al., 2008). This surprising result is
explained by the fact that the optimized slope fac-
tor parameter (∆

T
) was very small, in fact almost

(Owens et al., 2007). These chips consist of up to
512 processor cores which run separate threads in
parallel. Programming GPUs is rather specialized,
and in order to obtain maximal performance the
structure of the program has to be matched to the
design of the hardware. For example, GPUs are
designed for single input, multiple data (SIMD)
parallelism, meaning that the same operation is
simultaneously applied to many different items of
data. Memory access is faster when threads read or
write contiguous memory blocks. This design is
very well adapted to vectorized operations, which
we use in our optimization technique. Our model
fitting toolbox automatically takes advantage of
GPUs, as illustrated in Figure 3. The user writes
Python code providing equations as strings, as
shown in Figure 1, and the toolbox automatically
generates GPU C++ code at runtime (using the
techniques discussed in Goodman, 2010), which
is compiled and executed on the GPU using the
PyCUDA package (Klöckner et al., 2009). With
240-core GPUs, we achieved a 50–80×-speed
improvement using a single GPU (and multiple
GPUs can be installed in a single machine or over
a cluster for further speed improvements).

3 results
3.1 FIttInG Models oF cortIcal and braInsteM
neurons
Figure 4 shows the application of our procedure
to an in vitro intracellular recording of a corti-
cal pyramidal cell from the 2009 Quantitative

Master

Workers

Samples

CPUs

Simulation
Evaluation

Local
selection

Global selection
Update

Sends parameter
distribution

Figure 2 | Distributed optimization. The “master” machine sends the
distribution of parameters to the “worker” machines. Each worker simulates a
population of neurons with parameters drawn from this distribution, evaluates
their prediction performance (possibly making use of multiple CPUs on each

machine), selects the best ones, and sends them back to the master. The
master then collects the best neurons from all the workers, calculates their
distribution, and updates the parameter distribution. The updated distribution is
sent back to the workers for the next iteration.

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 5

from brian import *
from brian.library.modelfitting

input, data = load_data()

eqs = Equations('''
 dv/dt=(R*I-v)/tau : 1
 I : 1
 R : 1
 tau : second ''')

params = {
'R': [1.0/nA, 1.0/nA, 5.0/n
'tau': [2.0*ms, 5.0*ms, 25.
'_delays': [-5*ms, -5*ms, 5

results = modelfitting(

__global__ void runsim(
int Tstart, int Tend, // Start, en
// State variables
double *V_arr,
double *R_arr,
double *tau_arr,
int *I_arr_offset, // Input cur

// currents
int *spikecount, // Number of
int *num_coincidences, // Count of
int *spiketimes, // Array of

// end each
int *spiketime_indices, // Pointer i
int *spikedelay_arr, // Integer d
int onset // Time onse

)
{

const int neuron_index = blockIdx.x *
if(neuron_index>=N) return;
// Load variables at start
double V = V_arr[neuron_index];
d bl R R [i d]

User written
Python code

Automatically generated
GPU code

Grid Block

Thread Thread Thread

Threaded execution on
GPU

Figure 3 | Simulation on graphics processing unit (gPu). Model code is transformed into GPU-executable code and compiled at runtime. The GPU simulates
the neurons with one execution thread per neuron, each with a specific set of parameter values. GPU threads are organized into blocks, and blocks are organized into
grids. The division into blocks and grids controls the memory access patterns in the GPU hardware.

20 mV

100 ms
B

A 100 ms

20 mV

MAT2
86%

AIF
84%

Izhikevich
62%

Cortical
neuron

AVCN
neuron

AEIF

Figure 4 | Fitting spiking models to electrophysiological recordings. (A) The response of a cortical pyramidal cell to
a fluctuating current (from the INCF competition) is fitted to various models: MAT (Kobayashi et al., 2009), adaptive
integrate-and-fire, and Izhikevich (2003). Performance on the training data is indicated on the right as the gamma factor
(close to the proportion of predicted spikes), relative to the intrinsic gamma factor of the neuron (i.e., proportion of
common spikes between two trials). Note that the voltage units for the models are irrelevant (only spike trains are fitted).
(B) The response of an anteroventral cochlear nucleus neuron (brain slice made from a P12 mouse, see Methods in
Magnusson et al., 2008) to the same fluctuating current is fitted to an adaptive exponential integrate-and-fire [Brette and
Gerstner, 2005; note that the responses do not correspond to the same portion of the current as in (A)]. The cell was
electrophysiologically characterized as a stellate cell (Fujino and Oertel, 2001). The performance was Γ = 0.39 in this case
(trial-to-trial variability was not available for this recording).

0 mV, meaning that spike initiation was as sharp
as in a standard integrate-and-fire model. This
is consistent with the fact that spikes are sharp

at the soma (Naundorf et al., 2006; McCormick
et al., 2007), sharper than expected from the
properties of sodium channels alone, because

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 6

exponential integrate-and-fire model Brette and
Gerstner, 2005). One reason might be that neu-
rons in the CN are more specialized than corti-
cal neurons, with specific morphology (Wu and
Oertel, 1984) and strong non-linear conductances
(Golding et al., 1999), which make them very sen-
sitive to coincidences in their inputs (McGinley
and Oertel, 2006). Interestingly, the perform-
ance of a biophysical HH model of CN neurons
(Rothman and Manis, 2003) was even worse,
when we optimized the maximal conductances
of the various ionic channels. It could be that
other channel parameters should also be opti-
mized (time constants, reversal potentials, etc.),
or that spike initiation is not well reproduced in
single-compartment HH models.

3.2 reducInG coMplex bIophysIcal Models to
sIMple phenoMenoloGIcal Models
Our model fitting tools can also be used to
reduce a complex biophysical model to a sim-
pler phenomenological one, by fitting the simple
model to the spike train generated by the com-
plex model in response to a fluctuating input. We
show an example of this technique in Figure 5
where a multicompartmental model of a cortical
neuron, used in a recent study of spike initiation
(Hu et al., 2009), is reduced to an integrate-and-
fire model with adaptive threshold (Platkiewicz
and Brette, 2010). In this example, the simpler
model predicted 90% of spikes (Γ = 0.90) with
a 4-ms precision. This surprising accuracy may
be due to the fact that active backpropagation
of action potentials from the initiation site to
the soma makes spike initiation very sharp
(McCormick et al., 2007), as in an integrate-
and-fire model. Indeed, it can be seen in Figure
8 of Platkiewicz and Brette (2010), where thresh-
old properties of this multicompartmental

of the active backpropagation of spikes from the
axon initiation site (Hu et al., 2009; Platkiewicz
and Brette, 2010). The Izhikevich (2003) model,
a two-variable model with the same qualitative
properties as the AdEx model, did not perform as
well. This could be because spike initiation is not
sharp enough in this model (Fourcaud-Trocme
et al., 2003) or because it is based on the quad-
ratic model, which approximates the response of
conductance-based models to constant currents
near threshold, while the recorded neurons were
driven by current fluctuations. We also fitted the
HH model to the response of a fast spiking corti-
cal cell, by optimizing the maximal conductances
and the capacitance. The performance was much
worse than that of an integrate-and-fire model
(35 vs. 80%), even though the number of free
parameters was slightly larger. One possibility
is that the channel properties in the HH models
did not match those of the cells and should have
been optimized as well – although this increases
the number of free parameters and therefore the
quality of the optimization. But a likely possibil-
ity is that the sharpness of spikes cannot be well
reproduced by a single-compartment HH model
(Naundorf et al., 2006), even though it can by
reproduced by a more complex multicompart-
mental HH model (McCormick et al., 2007; Hu
et al., 2009). This suggests that, as a phenom-
enological model of cortical neurons, the single-
compartment HH model might be less accurate
than a simpler integrate-and-fire model.

We also applied our model fitting technique
to a recording of a neuron in the anteroventral
CN of the auditory brainstem (brain slice made
from a P12 mouse, see Methods in Magnusson
et al., 2008). In this case, it appeared that sim-
ple models were less accurate than for cortical
neurons (Figure 4B shows a fit to an adaptive

A
20 mV

100 ms

B

Figure 5 | reduction of a complex biophysical model to a phenomenological spiking model. The response of a
multicompartmental cortical neuron model (Hu et al., 2009) to a fluctuating current is simulated (A), and fitted by an
integrate-and-fire model with adaptive threshold (B), as defined in (Rossant et al., 2010). The threshold is in green and the
membrane potential in blue (note that the voltage unit for the model is arbitrary). The simpler spiking model could predict
about 90% of spikes with a 4-ms precision (Γ = 0.9).

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 7

We can speculate that the presence of a vari-
ety of ionic channels makes it possible for the
cell to tune its integrative properties through
the action of modulation or intrinsic plasticity,
which are not included in the effective descrip-
tion. Another important aspect to bear in mind
is that we only addressed the response of neurons
to somatically injected currents, while dendritic
properties are certainly very important for the
function of cortical neurons (Stuart et al., 1999).
Interestingly, simple models did not perform as
well at predicting the spike trains of neurons in
the auditory brainstem, presumably because they
express strong non-linear ionic channels, e.g.,
Ih (Rothman and Manis, 2003). Secondly, spike
initiation in integrate-and-fire models is very
sharp, unlike in HH models, and this is known to
impact the response of neuron models to fluctu-
ating inputs (Fourcaud-Trocme et al., 2003), so
it might seem surprising that integrate-and-fire
models predict the responses of cortical neurons
so well. However, in real cortical neurons, spike
initiation is in fact very sharp, unlike in single-
compartment HH models (Naundorf et al.,
2006; Badel et al., 2008). This property results
from the active backpropagation to the soma of
spikes initiated in the axon hillock (McCormick
et al., 2007). Complex multicompartmental HH
models can reproduce this property, as well as
threshold variability (Hu et al., 2009; Platkiewicz
and Brette, 2010), but single-compartment ones
cannot. This explains why integrate-and-fire
models are surprisingly effective descriptions
of spike initiation in cortical neurons – if adap-
tation is also included, in particular threshold
adaptation (Platkiewicz and Brette, 2010).

Our model fitting toolbox can be extended in
several ways. Different optimization algorithms
could be implemented, but more interestingly
different error criterions could be chosen. For
example, one could fit the intracellular volt-
age trace rather than the spike trains, or try to
predict the value of the spike threshold (Azouz
and Gray, 2000; Platkiewicz and Brette, 2010).
Finally, although our technique primarily
applies to neural responses to intracellular cur-
rent injection, it could in principle be applied
also to extracellularly recorded responses to
time-varying stimuli (e.g., auditory stimuli),
if spike timing is reproducible enough, for
example in the bushy cells of the CN (Louage
et al., 2005).

acknowledGMents
This work was supported by the European
Research Council (ERC StG 240132) and by
Vetenskapsrådet (grant no. 80326601).

model were studied, that spikes are produced
precisely when the membrane potential exceeds
the (dynamic) threshold.

4 dIscussIon
We have developed efficient parallel algorithms
for fitting arbitrary spiking neuron models to
electrophysiological data, which are now freely
available as part of the Brian simulator3. These
algorithms can take advantage of GPUs, which
are cheap pieces of hardware available on many
desktop PCs and laptops. They can also run on
the multiple computers running in a lab, with-
out specific hardware or complex configuration.
This computational tool can be used by modelers
in systems neuroscience, for example, to obtain
empirically validated models for their studies.
Because the technique requires only a few min-
utes of current-clamp recording, another inter-
esting application would be to examine diversity
in neural populations, to examine for example
the variability and correlations of parameters
(maximum conductances, time constants, and
so forth). Other model fitting techniques have
been previously described by several authors,
most of them based on maximum likelihood
(Paninski et al., 2004, 2007; Huys et al., 2006),
but these are generally model-specific whereas
our approach is generic. Besides, maximum like-
lihood techniques are designed for cases when
neuron responses are very variable between tri-
als and can only be described in a probabilistic
framework. On the contrary, the optimization
approach we chose is best suited for current-
clamp recordings in slices, in which neural
responses are precisely reproducible (Mainen
and Sejnowski, 1995).

Our results confirm that integrate-and-fire
models with adaptation are a good description
of the response of cortical neurons to somati-
cally injected currents. Complex multicompart-
mental models of cortical neurons could also be
accurately reduced to such simple models. This
is surprising for two reasons. Firstly, neurons
have many ionic channels with specific prop-
erties and it would be surprising that they are
not relevant for the input–output properties
of neurons. However, it is known that detailed
conductance-based models with widely diverse
ion channel characteristics can in fact have the
same properties at the neuron level (Goldman
et al., 2001). Our technique only produces a
phenomenological or “effective” description of
neural responses, without trying to explicitly
model all the contributing ionic mechanisms.

3http://briansimulator.org

Rossant et al. Fitting spiking neuron models

Frontiers in Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 9 | 8

Kobayashi, R., Tsubo, Y., and Shinomoto,
S. (2009). Made-to-order spiking
neuron model equipped with a mul-
ti-timescale adaptive threshold. Front.
Comput. Neurosci. 3:9. doi: 10.3389/
neuro.10.009.2009

Louage, D. H. G., van der Heijden, M.,
and Joris, P. X. (2005). Enhanced
temporal response properties of
anteroventral cochlear nucleus neu-
rons to broadband noise. J. Neurosci.
25, 1560–1570.

Magnusson, A. K., Park, T. J., Pecka,
M., Grothe, B., and Koch, U. (2008).
Retrograde GABA signaling adjusts
sound localization by balancing exci-
tation and inhibition in the brainstem.
Neuron 59, 125–137.

Mainen, Z., and Sejnowski, T. (1995).
Reliability of spike timing in neocor-
tical neurons. Science 268, 1503.

McCormick, D. A., Shu, Y., and Yu, Y.
(2007). Neurophysiology: Hodgkin
and Huxley modelstill standing?
Nature 445, E12; discussion E2–E3.

McGinley, M. J., and Oertel, D. (2006). Rate
thresholds determine the precision of
temporal integration in principal cells
of the ventral cochlear nucleus. Hear.
Res. 216–217, 52–63.

Naundorf, B., Wolf, F., and Volgushev,
M. (2006). Unique features of action
potential initiation in cortical neurons.
Nature 440, 1060–1063.

Owens, J. D., Luebke, D., Govindaraju,
N., Harris, M., Kruger, J., Lefohn, A.
E., and Purcell, T. J. (2007). A survey
of general-purpose computation on
graphics hardware. Comput. Graph.
Forum 26, 80–113.

Paninski, L., Pillow, J., and Lewi, J. (2007).
Statistical models for neural encoding,
decoding, and optimal stimulus design.
Prog. Brain Res. 165, 493–507.

Paninski, L., Pillow, J. W., and Simoncelli,
E. P. (2004). Maximum likelihood esti-
mation of a stochastic integrate-and-
fire neural encoding model. Neural.
Comput. 16, 2533–2561.

reFerences
Azouz, R., and Gray, C. (2000). Dynamic

spike threshold reveals a mechanism
for synaptic coincidence detection in
cortical neurons in vivo. Proc. Natl.
Acad. Sci. U.S.A. 97, 8110.

Badel, L., Lefort, S., Brette, R., Petersen, C.
C. H., Gerstner, W., and Richardson,
M. J. E. (2008). Dynamic I-V curves
are reliable predictors of naturalistic
pyramidal-neuron voltage traces. J.
Neurophysiol. 99, 656–666.

Brette, R. (2004). Dynamics of one-
 dimensional spiking neuron models.
J. Math. Biol. 48, 38–56.

Brette, R., and Gerstner, W. (2005).
Adaptive exponential integrate-and-
fire model as an effective description
of neuronal activity. J. Neurophysiol.
94, 3637–3642.

Brette, R., and Goodman, D. F. (2010).
Vectorised algorithms for spiking
neural network simulation. Neural.
Comput. (in press).

Fourcaud-Trocme, N., Hansel, D., van
Vreeswijk, C., and Brunel, N. (2003).
How spike generation mechanisms
determine the neuronal response to
fluctuating inputs. J. Neurosci. 23,
11628–11640.

Fujino, K., and Oertel, D. (2001).
Cholinergic modulation of stel-
late cells in the mammalian ventral
cochlear nucleus. J. Neurosci. 21,
7372–7383.

Gerstner, W., and Naud, R. (2009). How
good are neuron models? Science 326,
379–380.

Golding, N. L., Ferragamo, M. J., and
Oertel, D. (1999). Role of intrinsic
conductances underlying responses
to transients in octopus cells of the
cochlear nucleus. J. Neurosci. 19,
2897–2905.

Goldman, M. S., Golowasch, J., Marder,
E., and Abbott, L. F. (2001). Global
structure, robustness, and modula-
tion of neuronal models. J. Neurosci.
21, 5229–5238.

Platkiewicz, J., and Brette, R. (2010). A
threshold equation for action poten-
tial initiation. PLoS Comput. Biol.
6, e1000850. doi: 10.1371/journal.
pcbi.1000850

Rossant, C., Goodman, D. F. M.,
Platkiewicz, J., and Brette, R. (2010).
Automatic fitting of spiking neuron
models to electrophysiological record-
ings. Front. Neuroinformatics 4:2. doi:
10.3389/neuro.11.002.2010

Rothman, J. S., and Manis, P. B. (2003).
The roles potassium currents play in
regulating the electrical activity of
ventral cochlear nucleus neurons. J.
Neurophysiol. 89, 3097–3113.

Stuart, G., Spruston, N., and Hausser, M.
(1999). Dendrites. New York: Oxford
University Press.

Wu, S. H., and Oertel, D. (1984).
Intracellular injection with horserad-
ish peroxidase of physiologically char-
acterized stellate and bushy cells in
slices of mouse anteroventral cochlear
nucleus. J. Neurosci. 4, 1577–1588.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 29 October 2010; accepted:
13 January 2011; published online: 23
February 2011.
Citation: Rossant C, Goodman DFM,
Fontaine B, Platkiewicz J, Magnusson AK
and Brette R (2011) Fitting neuron mod-
els to spike trains. Front. Neurosci. 5:9. doi:
10.3389/fnins.2011.00009
Copyright © 2011 Rossant, Goodman,
Fontaine, Platkiewicz, Magnusson and
Brette. This is an open-access article subject
to an exclusive license agreement between
the authors and Frontiers Media SA, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

Goodman, D., and Brette, R. (2009). The
Brian simulator. Front. Neurosci. 3:2.
doi: 10.3389/neuro.01.026.2009

Goodman, D. F. M. (2010). Code gen-
eration: a strategy for neural net-
work simulators. Neuroinformatics 8,
183–196.

Hansen, N., and Ostermeier, A. (2001).
Completely derandomized self-ad-
aptation in evolution strategies. Evol.
Comput. 9, 159–195.

Hu, W., Tian, C., Li, T., Yang, M., Hou,
H., and Shu, Y. (2009). Distinct con-
tributions of na(v)1.6 and na(v)1.2
in action potential initiation and
backpropagation. Nat. Neurosci. 12,
996–1002.

Huys, Q. J. M., Ahrens, M. B., and
Paninski, L. (2006). Efficient estima-
tion of detailed single-neuron models.
J. Neurophysiol. 96, 872–890.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572.

Jolivet, R., Kobayashi, R., Rauch, A., Naud,
R., Shinomoto, S., and Gerstner, W.
(2008). A benchmark test for a quan-
titative assessment of simple neuron
models. J. Neurosci. Methods 169,
417–424.

Jolivet, R., Lewis, T. J., and Gerstner,
W. (2004). Generalized integrate-
and-fire models of neuronal activ-
ity approximate spike trains of a
detailed model to a high degree
of accuracy. J. Neurophysiol. 92,
959–976.

Jolivet, R., Schrmann, F., Berger, T. K.,
Naud, R., Gerstner, W., and Roth,
A. (2008). The quantitative single-
neuron modeling competition. Biol.
Cybern. 99, 417–426.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro,
B., Ivanov, P., Fasih, A., Sarma, A. D.,
Nanongkai, D., Pandurangan, G., and
Tetali, P. (2009). PyCUDA: GPU run-
time code generation for high-per-
formance computing. Arxiv preprint
arXiv 0911.3456.

