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Therapeutic utility of phosphodiesterase type I inhibitors in 
neurological conditions
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Neuronal plasticity is an essential property of the brain that is impaired in different neurological 
conditions. Phosphodiesterase type 1 (PDE1) inhibitors can enhance levels of the second 
messengers cAMP/cGMP leading to the expression of neuronal plasticity-related genes, 
neurotrophic factors, and neuroprotective molecules. These neuronal plasticity enhancement 
properties make PDE1 inhibitors good candidates as therapeutic agents in many neurological 
conditions. However, the lack of specificity of the drugs currently available poses a challenge 
to the systematic evaluation of the beneficial effect of these agents. The development of more 
specific drugs may pave the way for the use of PDE1 inhibitors as therapeutic agents in cases 
of neurodevelopmental conditions such as fetal alcohol spectrum disorders and in degenerative 
disorders such as Alzheimer’s and Parkinson’s.
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bind and activate adenyl cyclase leading to conversion of AMP into 
cAMP (Brostom et al., 1975; Ferguson and Storm, 2004). However, 
once in the cytoplasm, calmodulin can activate PDE1 causing the 
conversion of cAMP into AMP and cGMP to GMP (Goraya and 
Cooper, 2005). PDE1 presents several isoforms; PDE1A1 is present 
in the lung and heart, whereas PDE1A2 and PDE1B1 in the brain 
(Kakkar et al., 1999). While PDE1A2 is highly expressed in cer-
ebral cortex and hippocampus, PDE1B1 is expressed mainly in 
dopaminergic regions such as the striatum and nucleus accumbens 
(Beavo, 1995; Kakkar et al., 1999). PDE1C is highly expressed in the 
heart, however it can also be found in the CNS, such as in olfac-
tory neuroepithelium and, in small quantities, substantia nigra and 
thalamus (Menniti et al., 2006; Lakics et al., 2010).

Here we will provide a brief overview of the mechanisms of 
action of PDE1 inhibitors and discuss the potential for the thera-
peutic use of these drugs in neurological disorders, focusing on 
neuronal plasticity improvement.

How PDE inHibition can imProvE nEuronal 
Plasticity?
Glutamatergic transmission leads to an increase of intracellular 
Ca++, and cAMP/cGMP levels triggering cascades that will ulti-
mately lead to the phosphorylation and activation of the transcrip-
tion factors cAMP responsive element binding protein (CREB) 
and serum response factor (SRF; Figure 1). Activation of CREB 
and/or SRF can lead to the expression of plasticity-related genes, 
which in turn promote the functional and morphological changes 
necessary for neuronal plasticity to occur (Frank and Greenberg, 
1994; Atkins et al., 1998; Silva et al., 1998; Josselyn and Nguyen, 
2005; Etkin et al., 2006; Pintchovski et al., 2009) such as altera-
tion of cytoskeleton protein complexes (Lavaur et al., 2008) and 
remodeling of dendritic spines (Suzuki et al., 2007). CREB is one of 
the most important molecules in neuronal plasticity processes and 
it is crucial for several paradigms such as long-term potentiation 

During the last decades several groups have been actively pursu-
ing the development of pharmacological agents that can improve 
neuronal plasticity in normal subjects or restore this function in 
different neurological conditions. Among these agents, phosphodi-
esterase type 1 (PDE1) inhibitors have been tested in animal mod-
els and humans showing promising therapeutic use (Dyke and 
Montana, 1999; Josselyn and Nguyen, 2005; Rose et al., 2005).

Neuronal plasticity is the lifelong ability of the brain to reorgan-
ize neural pathways. This property is essential during the develop-
ment when refinement of connections lead to the precise wiring 
of the brain; in recovery after lesions, and in learning and memory 
processes. Therefore, the disruption of this crucial neuronal feature 
can result in alterations in normal brain development and cog-
nitive problems (Nithianantharajah and Hannan, 2006). In fact, 
neuronal plasticity is disrupted in disorders of brain development 
such as Fetal alcohol spectrum disorders (Medina and Krahe, 
2008), Down syndrome (Siarey et al., 1997, 2005), and Angelman 
syndrome (Yashiro et al., 2009) and in Neurodegenerative disor-
ders such as Alzheimer’s (Nalbantoglu et al., 1997; Marcello et al., 
2008) and Parkinson’s disease (Morgante et al., 2006; Bagetta et al., 
2010). Therefore, because of PDE1 inhibitors are good candidates 
as plasticity enhancers, there is potential for its use as a therapeu-
tic approach in this conditions. In addition, PDE1 inhibitors have 
also been shown potential to exert a neuroprotective role (Chen 
et al., 2007), which could be particularly interesting for treatment 
of neurodegenerative conditions.

Phosphodiesterase are enzymes that catalyze the hydrolysis of 
the 3′ cyclic phosphate bonds of adenosine and/or guanosine 3′, 
5′ cyclic monophosphate (Beavo, 1995). These enzymes have been 
grouped into several families based on their regulation and sub-
strate specificity. Some PDEs such as type 4 are specific for cAMP, 
while others such PDE5, specific for cGMP (Beavo, 1995). The 
PDE1 family is activated by Ca++/calmodulin and is capable to act on 
both cAMP and cGMP. Calmodulin is activated by calcium and can 
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nEuroProtEctivE rolE of PDE1 inHibitors
The cascade showed in Figure 1 is also related to neuroprotection. 
For instance, activation of CREB can lead to the expression of many 
neuroprotective and anti-apoptotic molecules. It is well-known 
that deprivation of neurotrophic factors can induce apoptosis and 
conversely, that the expression of these molecules can counteract 
the effect of pro-apoptotic factors (Raff et al., 1993). In this regard, 
CREB phosphorylation can lead to the expression of many pro-
tective neurotrophic factors such as BDNF, FGF, and TGF (Lonze 
and Ginty, 2002). In addition of its role in regulating neurotrophic 
factors expression, CREB activation can also play a role in neuro-
protection trough more direct and effective mechanisms. One way 
is by the expression of the Bcl-2 anti-apoptotic protein (Kitagawa, 
2007). In addition, it was recently demonstrated that CREB phos-
phorylation can lead to the expression of the peroxisome prolifera-
tor activated receptor gamma coactivator 1 alpha (PGC-1α), which 
acts as a reactive oxygen species scavenger (St-Pierre et al., 2006). 
CREB can also lead to neuroprotection by mediating the expres-
sion of NR4A orphan nuclear receptors (Volakakis et al., 2010). In 
fact, animals with deletion of NR4A gene present increased oxida-
tive damage and increase of apoptosis after hippocampal insult 
(Volakakis et al., 2010).

vinPocEtinE, a classic PDE1 inHibitor
The alkaloid vinpocetine (vinpocetine – ethyl apovincaminate) is 
a classic inhibitor of PDE1 activity (Vereczkey, 1985; Nicholson, 
1990). Vinpocetine treatment has been shown to facilitate LTP 
(Molnar and Gaal, 1992; Molnar et al., 1994), enhance the struc-
tural dynamics of dendritical spines (Lendvai et al., 2003), improve 
memory retrieval (DeNoble, 1987), and enhance performance on 
cognitive tests in humans (Hindmarch et al., 1991). In a model of 
fetal alcohol spectrum disorders, vinpocetine was able to restore 
neuronal plasticity in visual cortex (Medina et al., 2006) as well 
as the functional organization of this area (Krahe et al., 2009). 
Furthermore, vinpocetine treatment was also shown to revert the 
effects of early alcohol exposure in learning performance in the 
water maze (Filgueiras et al., 2010). In rats treated with intrac-
erebroventricular streptozocin, a paradigm that mimics some 

(LTP; Barco et al., 2002; Bourtchouladze et al., 2003), learning and 
memory (Frank and Greenberg, 1994; Silva et al., 1998; Lamprecht, 
2005), ocular dominance plasticity (Mower et al., 2002), and barrel 
cortex plasticity (Glazewski et al., 1999). Recent studies have shown 
that SRF is also implicated in neuronal plasticity and is related to 
LTP (Ramanan et al., 2005), LTD (Etkin et al., 2006), and spatial 
memory formation (Tyan et al., 2008).

Another way that PDE inhibition can improve neuronal plastic-
ity is trough potentiation of glutamatergic transmission (Figure 2). 
The increase in cAMP/cGMP levels caused by PDE1 inhibition, 
can lead to the phosphorylation of AMPA receptors promoting its 
incorporation into the synapse (Serulle et al., 2007) and leading to 
facilitation of the glutamatergic transmission. AMPA receptors can 
move in and out the synaptic membrane affecting glutamatergic 
transmission by making NMDA receptors functional (Malinow and 
Malenka, 2002). At the resting membrane potential, the NMDA 
receptor is blocked by Mg++ (Mayer et al., 1984; Nowak et al., 1984). 
However, activation of AMPA receptors can depolarize the post-
synaptic membrane, releasing the Mg++ blockade and making the 
NMDA receptor functional (Mayer et al., 1984; Nowak et al., 1984). 
Therefore, NMDA receptor activation can be facilitated or reduced 
respectively by insertion/removal of AMPA receptors in/from the 
postsynaptic membrane (Malinow and Malenka, 2002; Malenka 
and Bear, 2004).

FiGure 1 | inhibition of phosphodiesterase type 1 (PDe1) lead to the 
increase of cAMP and cGMP and ultimately to the expression of 
plasticity-related genes. AC, adenyl cyclase; GC, guanylate cyclase; CREB, 
cAMP responding element binding protein; SRF, serum response factor.

FiGure 2 | inhibition of phosphodiesterase type 1 may lead to 
phosphorylation of AMPA receptors and its incorporation to the synapse. 
AC, adenyl cyclase; GC, guanylate cyclase.
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Alzheimer-like cognitive problems, a vinpocetine treatment was 
able to restore performance in the water maze and the passive avoid-
ance test (Deshmukh et al., 2009).

In addition of its potential as a plasticity enhancer, it was recently 
demonstrated that vinpocetine has a strong anti-inflammatory effect 
(Jeon et al., 2010). Vinpocetine inhibits IKK, preventing IkB degra-
dation and the consequent translocation of NF-κB to the nucleus. 
Surprisingly, this mechanism is independent of vinpocetine action on 
PDE1. This new action of vinpocetine, combined with its potential to 
enhance neuronal plasticity suggest that this drug may have beneficial 
effects in conditions such as Alzheimer’s and Parkinson’s where inflam-
mation and poor neuronal plasticity are present (Medina, 2010).

The efficacy of the use of vinpocetine in clinical trials has been 
controversial. A comparison of multiple studies evaluating vinpoce-
tine use in cases of dementia was recently conducted (Szatmari and 
Whitehouse, 2003). After excluding studies that had major flaws (such 
as lack of control groups or randomization), Szatmari and Whitehouse 
focused in three works (Fenzl et al., 1986; Blaha et al., 1989; Hindmarch 
et al., 1991). In these studies, a total of 583 patients were given vinpoce-
tine (n = 377) or placebo (n = 206). Vinpocetine doses were between 15 
and 60 mg/kg. Vinpocetine treatment (30 and 60 mg/kg doses) showed 
beneficial effects as accessed by significant changes in scores used to 
evaluate clinical improvement such as the Syndrom-Kurztest and the 
Clinical global impression scale (Szatmari and Whitehouse, 2003). Few 
adverse effects were reported. Despite of vinpocetine treated patients 
having presented statistically significant improvements in measured 
outcomes, the authors questioned the reliability of these studies due 
to lack of the details of the randomization process and the fact that 
the studies were performed before the current criteria for dementia 
were implemented (Szatmari and Whitehouse, 2003).

Another meta-analysis was done to review the effects of vin-
pocetine treatment on acute ischemic stroke (Bereczki and Fekete, 
2009). However, the efficacy of vinpocetine was inconclusive due to 
the fact that most of the studies analyzed did not use double-blinded 
approaches and randomization. The only two studies that used more 
appropriate designs did not show significant differences between 
groups and were based in small samples (Bereczki and Fekete, 2009).

The use of vinpocetine in animal models suggests that vinpoce-
tine has a role to play in restoring neuronal plasticity (learning 
and memory in particular) in different conditions. However, the 
findings from clinical trials are still controversial and more studies 
are needed. It is conceivable that one reason for this discrepancy 
is the great difference in the dosage used in basic science stud-
ies and the ones used in clinical trials. Most studies performed in 
animal models used doses between 10 and 20 mg/kg (DeNoble, 
1987; Medina et al., 2006; Krahe et al., 2008; Deshmukh et al., 2009; 
Filgueiras et al., 2010). These doses translated to humans would 
result in approximately 1,000 mg, which would be roughly a 20-fold 
increase in the current doses used in clinical trials (Szatmari and 
Whitehouse, 2003; Bereczki and Fekete, 2009).

otHEr PDE1 inHibitors
One of the biggest problems to assess the efficacy of PDE1 inhibi-
tors is the lack of specificity of currently used drugs. In fact, many 
of these drugs have been used because of other pharmacological 
properties (Table 1). Interestingly, despite these pharmacologi-
cal differences, many of these drugs showed beneficial effects on 

 learning and memory, a process that requires neuronal plasticity. It 
is possible that these beneficial results are also influenced by PDE1 
inhibition and the increase of cAMP/cGMP levels.

In Parkinson’s disease there is a alteration in cAMP/cGMP levels 
and it has been shown that the activity of PDE1B is increased in the 
6-hydroxydopamine hemi-Parkinson model (Sancesario et al., 2004). 
In fact, the application of Zaprinast (a PDE5 and PDE1 inhibitor), 
reduced the severity levodopa-induced dyskinesias in this model 
(Giorgi et al., 2008). Interestingly, some classic anti- Parkinson drugs, 
such as deprenyl (selegiline) and amantadine (Chen and Swope, 
2007) preferentially inhibit PDE1A2 (present in cortex and hippoc-
ampus) with weak or none action on PDE1B1 (present in striatum 
and nucleus accumbens; Kakkar et al., 1996, 1997).

In Alzheimer’s accumulation of the amyloid-β protein may lead 
to a reduction on CREB phosphorylation (Vitolo et al., 2002), which 
could be related to the cognitive deficits seen in this condition. 
Recently, it was demonstrated that increasing cAMP levels by PDE4 
inhibition (Vitolo et al., 2002) or cGMP levels by PDE5 inhibi-
tion (Puzzo et al., 2009) restored neuronal plasticity in models of 
Alzheimer’s. Surprisingly, in the latter study the PDE1 inhibitor 
IC354 did not show an effect. Unfortunately, little is known about 
the capacity of IC354 to raise levels of both cGMP and cAMP (as 
other PDE1 inhibitors do) and what the effect of this compound 
on the PDE1 subunits present in the brain.

Caffeine, at concentrations of 0.04 and 0.1 mM, leads to inhibition 
of 50 and 90% of adenosine receptors, respectively. However, at higher 
concentrations, it can also inhibit PDE1 (20 and 80% inhibition at 
0.1 and 1 mM respectively; Fredholm et al., 1999). Caffeine have been 
showing promising results in improving learning and memory in ani-
mal models of different conditions such as stress, diabetes-triggered 
dementia, Alzheimer’s, Parkinson’s, and sleep deprivation (see Cunha 
and Agostinho, 2010 for review). However, because of the doses used 
in these studies it is likely that the caffeine effects were due only to its 
effects on adenosine receptors, however an influence of PDE inhibi-
tion was not discarded (Cunha and Agostinho, 2010).

A recent clinical study showed that perinatal caffeine, which was 
used to improve respiratory function, was able to improve survival 
rate and ameliorate cognitive deficits resulted from prematurity 
(Schmidt et al., 2007; Stevenson, 2007). Remarkably, the effects of 
caffeine on the respiratory function were able to explain only half 
of the effect of caffeine treatment (Schmidt et al., 2007; Stevenson, 
2007). Interestingly, in this study a dose of 20 mg/kg (followed by 
a daily maintenance dose of 5 mg/kg) was used. This high initial 
dose, combined to the long half-life of caffeine in premature babies 
(over 100 h; Parsons and Neims, 1981) might be sufficient to reach 
the levels needed for PDE1 inhibition.

Table 1 | Non-specific properties of some PDe1 inhibitors.

 Other properties

Vinpocetine Na++ channel blocker; IKK inhibitor (anti-inflammatory)

Amantadine Weak NMDA antagonist, increase of dopamine release

Deprenyl MAO inhibitor

Caffeine Antagonist of adenosine receptor

Zaprinast PDE5 inhibitor

Nimodipine L-type Ca++ channel blocker
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