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On spike-timing-dependent-plasticity, memristive devices,  
and building a self-learning visual cortex
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In this paper we present a very exciting overlap between emergent nanotechnology and 
neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking 
one type of memristor nanotechnology devices to the biological synaptic update rule known as 
spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link 
allows neuromorphic engineers to develop circuit architectures that use this type of memristors 
to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to 
as voltage or flux driven memristors and focus our discussions on a behavioral macro-model 
for such devices. The implementations result in fully asynchronous architectures with neurons 
sending their action potentials not only forward but also backward. One critical aspect is to 
use neurons that generate spikes of specific shapes. We will see how by changing the shapes 
of the neuron action potential spikes we can tune and manipulate the STDP learning rules for 
both excitatory and inhibitory synapses. We will see how neurons and memristors can be 
interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative 
STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with 
similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and 
how it is capable of learning to extract orientations from visual data coming from a real artificial 
CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently 
available memristors. The results presented are based on behavioral simulations and do not take 
into account non-idealities of devices and interconnects. The aim of this paper is to present, in a 
tutorial manner, an initial framework for the possible development of fully asynchronous STDP 
learning neuromorphic architectures exploiting two or three-terminal memristive type devices. 
All files used for the simulations are made available through the journal web site1.
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of individual neurons, circuits, and overall architectures creates 
desirable computations, affects how information is represented, 
influences robustness to damage, incorporates learning and devel-
opment, and facilitates evolutionary change.

It is obvious that interdisciplinary research broadens our 
view of particular problems yielding fresh and possibly unex-
pected insights. This is the case of neuromorphic engineering, 
where technology and neuroscience cross-fertilize each other. 
One example of this is the recent impact of fabricated memris-
tor devices (Strukov et al., 2008; Borghetti et al., 2009; Jo et al., 
2009, 2010), postulated since 1971 (Chua, 1971; Chua and Kang, 
1976; Chua et al., 1987), thanks to research in nanotechnology 
electronics. Another is the mechanism known as spike-time-
dependent- plasticity (STDP; Gerstner et al., 1993, 1996; Delorme 
et al., 2001; Rao and Sejnowski, 2001; Guyonneau et al., 2004; 
Porr and Wörgötter, 2004; Masquelier and Thorpe, 2007, 2010; 
Young, 2007; Finelli et al., 2008; Masquelier et al., 2008, 2009a,b; 
Weidenbacher and Neumann, 2008; Sjöström and Gerstner, 
2010) which describes a neuronal synaptic learning mechanism 
that refines the traditional Hebbian synaptic plasticity proposed 
in 1949 (Hebb, 1949). These are very different subjects from 

1 IntroductIon
Neuromorphic engineering2 is a new interdisciplinary discipline 
that takes inspiration from biology, physics, mathematics, com-
puter science, and engineering to design artificial neural systems, 
such as vision systems, head-eye systems, auditory processors, and 
autonomous robots, the physical architecture, and design princi-
ples of which are based on those of biological nervous systems. 
The term neuromorphic was coined by Carver Mead, in the late 
1980s (Mead, 1989) to describe very-large-scale integration (VLSI) 
systems containing electronic analog circuits that mimic neuro-
biological architectures present in the nervous system. In recent 
times the term neuromorphic has been used to describe both ana-
log, digital, or mixed-mode analog/digital VLSI systems that imple-
ment models of neural systems (for perception, motor control, 
or sensory processing) and also software algorithms. A key aspect 
of neuromorphic design is understanding how the morphology 
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2 StdP
Spike-time-dependent-plasticity is a family of learning mecha-
nisms originally postulated in the context of artificial machine 
learning algorithms (or computational neuroscience), exploiting 
spike-based computations (as in brains) with great emphasis on 
the relative timings of spikes. Gerstner started to report the first-
spike-timing-dependent learning algorithms (Gerstner et al., 1993, 
1996) in 1993. STDP has been shown to be better than Hebbian 
correlation-based plasticity at explaining cortical phenomena 
(Young, 2007; Finelli et al., 2008), and has been proven successful 
in learning hidden spiking patterns (Masquelier et al., 2008) or 
performing competitive spike pattern learning (Masquelier et al., 
2009a). Astonishingly, experimental evidence of STDP has been 
reported by neuroscience groups during the past decade (Markram 
et al., 1997; Bi and Poo, 1998, 2001; Zhang et al., 1998; Feldman, 
2000; Mu and Poo, 2006; Cassenaer and Laurent, 2007; Jacob et al., 
2007), so today we can state that the physiological existence of STDP 
has been reasonably well established3.

However, the full implications of the molecular and electro-
chemical principles behind STDP are still under debate (Rubin 
et al., 2005). Before describing STDP mathematically, let us first 
explain how neurons interchange information and what the syn-
aptic connections are.

Figure 1 illustrates two neurons connected by a synapse. The 
pre-synaptic neuron is sending a pre-synaptic spike V

mem–pre
(t) 

through one of its axons to the synaptic junction. Neural spikes 
are membrane voltages from the outside of the cellular membrane 
V

pre +  with respect to the inside V
pre − . Thus V V Vmem pre pre pre− = + − − 

and V V Vmem pos pos pos− = −+ − . The “large” membrane voltages during 
a spike (in the order of a hundred mV) cause a variety of selective 
molecular membrane channels to open and close allowing many 
ionic and molecular substances to flow, or preventing them from 
flowing through the membrane. At the same time, synaptic vesicles 
inside the pre-synaptic cell containing “packages” of neurotrans-
mitters fuse with the membrane in such a way that these “pack-
ages” are released into the synaptic cleft (the inter cellular space 
between both neurons at the synaptic junction). Neurotransmitters 
are collected in part by the post-synaptic membrane, contributing 
to a change in its membrane conductivity. The cumulative effect 
of pre-synaptic spikes (coming from this or other pre-synaptic 
neurons) will eventually trigger the generation of a new spike 
at the post-synaptic neuron. Each synapse is characterized by a 
“synaptic strength” (or weight) w which determines the efficacy 
of a pre-synaptic spike in contributing to this cumulative action at 
the post-synaptic neuron. This weight w could well be interpreted 
as the size and/or number of neurotransmitter packages released 
during a pre-synaptic spike. However, for our analyses, we will 
interpret w more generally as some kind of structural parameter of 
the synapse (like the amount of one or more metabolic substances) 
that directly controls the efficacy of this synapse per spike. The 
synaptic weight w is considered to be non-volatile and analog in 
nature, but it changes in time as a function of the spiking activity of 
pre- and post-synaptic neurons. This phenomenon was originally 

relatively unrelated disciplines (nanotechnology, biology, and 
computer science), which have nevertheless recently been drawn 
together by researchers in neuromorphic engineering (Snider, 
2007, 2008; Linares-Barranco and Serrano-Gotarredona, 2009). 
STDP was originally postulated as a family of computer learn-
ing algorithms (Gerstner et al., 1993), and is being used by the 
machine intelligence and computational neuroscience commu-
nity (Delorme et al., 2001; Guyonneau et al., 2004; Masquelier and 
Thorpe, 2007, 2010; Young, 2007; Finelli et al., 2008; Masquelier 
et al., 2008, 2009a,b; Weidenbacher and Neumann, 2008). At the 
same time its biological and physiological foundations have been 
reasonably well established during the past decade (Markram 
et al., 1997; Bi and Poo, 1998, 2001; Zhang et al., 1998; Feldman, 
2000; Mu and Poo, 2006; Cassenaer and Laurent, 2007; Jacob 
et al., 2007). If memristance and STDP can be related, then (a) 
recent discoveries in nanophysics and nanoelectronic principles 
may shed new light on the intricate molecular and physiological 
mechanisms behind STDP in neuroscience, and (b) new neuro-
morphic-like computers built out of nanotechnology memristive 
devices could incorporate biological STDP mechanisms, yielding 
a new generation of self-adaptive ultra-high-dense intelligent 
machines. Here we explain how by combining memristance mod-
els with the electrical wave signals of neural impulses (spikes) 
converging from pre- and post-synaptic neurons into a synaptic 
junction, STDP behavior emerges naturally (Linares-Barranco 
and Serrano-Gotarredona, 2009). This helps us to understand 
how neural and memristance parameters modulate STDP, and 
may offer new insights to neurophysiologists searching for the 
ultimate physiological mechanisms responsible for STDP in 
biological synapses. At the same time, it also provides a direct 
means of incorporating STDP learning mechanisms into a new 
generation of nanotechnology computers employing memristors. 
Here we focus on this second aspect.

In this paper we first quickly review STDP and memristor con-
cepts. Then we explain how the memristance mechanism, and one 
particular formulation of it, can explain the experimental charac-
terization of the STDP phenomena in biological synapses. We will 
see how the shape of action potentials is a crucial component which 
influences and defines the mathematical learning of STDP, and 
how by changing action potential shapes the STDP learning rule 
can be modulated and changed. The paper then concentrates on 
proposing circuit techniques and architectures for achieving STDP 
learning neural systems using memristors as synapses. We will see 
that ideal voltage/flux driven memristors implement a particular 
type of multiplicative STDP (mSTDP) with quadratic law. We will 
show how excitatory and inhibitory learning synapses can be imple-
mented and efficiently simulated using a memristor macro-model 
with neurons described behaviorally in electric circuit simulators. 
We will also briefly extend the discussion from two-terminal passive 
memristor devices to three-terminal active field effect transistor 
(FET) devices with memristive-like adaptation mechanisms. We 
will then show how to implement a prototype V1 layer mimicking 
the early processing part of the visual cortex. We will use real data 
collected from a fabricated Spiking retina chip observing life scenes 
and use it to train this artificial simulated V1 layer. As a result, this 
artificial V1 layer learns to become orientation sensitive, like its 
biological counterpart.

3For a historical overview on how STDP research evolved independently among 
computational and experimentalist groups, please refer to the last paragraph in 
Sjöström and Gerstner (2010).
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2.1 StdP verSuS AntI-StdP
The STDP learning function ξ(∆T) as defined in Figures 3A,B is 
useful for synapses with positive weights. In these cases, weight w is 
strengthened if it is increased (∆w > 0) when ∆T > 0, and vice versa. 
However, if the weight is negative (w < 0), as in some inhibitory syn-
apse implementations, the STDP learning function in Figure 3B is 
not appropriate because an increase in weight (∆w > 0) would weaken 
the strength of the synapse, and vice versa. For negative weight syn-
apses an STDP learning function with a shape similar to that shown 
in Figure 3C (Lubenov and Siapas, 2008) is required. In this case, 
the synapse is strengthened by decreasing its weight (∆w < 0), which 
should happen for ∆T > 0. Let us call this an Anti-STDP synaptic 
update or learning function. Other more exotic shapes for ξ(∆T) are 
also possible, as we will discuss later in Sections 4.1 and 5.1.

observed and reported in 1949 by Hebb (1949), who introduced 
his Hebbian learning postulate: “When an axon of cell A is near 
enough to excite a cell B and repeatedly or persistently takes part 
in firing it, some growth process or metabolic change takes place in 
one or both cells such that A’s efficiency, as one of the cells firing B, 
is increased.” Traditionally, this has been described by computa-
tional neuroscientists and machine learning computer engineers 
as producing an increment in synaptic weight ∆w proportional 
to the product of the mean firing rates of pre- and post-synaptic 
neurons. STDP is a refinement of this 1949 rule which takes into 
account the precise relative timing of individual pre- and post-
synaptic spikes, and not their average rates over time. In STDP 
the change in synaptic weight ∆w is expressed as a function of 
the time difference between the post-synaptic spike at t

pos
 and the 

pre-synaptic spike at t
pre

 (see Figure 2). Specifically, as is shown in 
Figure 3, ∆w = ξ(∆T), with ∆T = t

pos
 − t

pre
. The shape of the STDP 

function ξ can be interpolated from experimental data from Bi 
and Poo (2001) as shown in Figure 3A. For positive ∆T (that is to 
say, the pre-synaptic spike has a highly relevant role in producing 
the post-synaptic spike) there will be a potentiation of synaptic 
weight ∆w > 0, which will be stronger as |∆T| reduces. For negative 
∆T (that is to say, the pre-synaptic spike is highly irrelevant for the 
generation of the post-synaptic spike), there will be a depression of 
synaptic weight ∆w < 0, which will be stronger as |∆T| reduces. Bi 
and Poo concluded that they had observed an asymmetric critical 
window for ∆T of about ±40–80 ms for synaptic modification to 
take place. Mathematically, this ξ(∆T) STDP learning function is 
described by computational neuroscientists as

j( )
/

/
∆

>
T

a e if T

a e if T

T

T
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+ −
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Vpos−

Vpre+
Vpre−
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neurotransmitters

A B

Figure 1 | illustration of synaptic action. (A) A synapse is where a 
pre-synaptic neuron “connects” with a post-synaptic neuron. The pre-synaptic 
neuron sends an action potential Vmem − pre traveling through one of its axons to 
the synapse. The cumulative effect of many pre-synaptic action potentials, 
generates a post-synaptic action potential at the membrane of the post-synaptic 

neuron, which propagates through all the neuron’s terminations. (B) Detail of 
synaptic junction. The cell membrane has many membrane channels of varying 
nature which open and close with changes in the membrane voltage. During a 
pre-synaptic action potential vesicles containing neurotransmitters are released 
into the synaptic cleft.
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Figure 2 | Membrane voltage waveforms. Pre- and post-synaptic 
membrane voltages for the situations of positive ∆T (A) and negative ∆T (B). 
Voltage vMR is the difference between the post-synaptic membrane voltage 
Vmem − pos and the pre-synaptic membrane voltage Vmem − pre.
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(1) voltage difference between two-terminals “v,” (2) current flow-
ing through into a device terminal “i,” (3) charge flowing through 
a device terminal or integral of current q = ∫i(t)dt, and (4) flux 
or integral of voltage φ = ∫v(t)dt. A two-terminal device is said 
to be canonical (Chua et al., 1987) if either two of the four basic 
electrical quantities are related by a static4 relationship, as shown 
in Figure 4. A resistor has a static relationship between terminal 
voltage v and device current i, as shown in Figure 4A. A capaci-
tor shows a static relationship between charge q and voltage v, as 
shown in Figure 4B. An inductor has a static relationship between 
its current i and flux v, as shown in Figure 4C. These three devices 
have been very well known since the origins of Electronics and 
Electricity. However, there are other possibilities for combining the 
four basic electrical quantities: (q, i), (v, φ), and (q, φ). Ignoring the 
combinations of a quantity with its time derivative leaves us with 
one single additional possibility: (q, φ). This reasoning led Chua 
to postulate the existence of a fourth basic two-terminal element, 
which he called the Memristor. The memristor would show a static 
relationship between charge q and flux φ, as shown in Figure 4D. 
If the q versus φ relationship is linear, the memristor degenerates 
into a linear resistor. Memristors behave as resistances in which the 
resistance changes through some of the basic electrical quantities, 
and is somehow memorized. The simple concept of memristance 
as defined in Figure 4D can be extended to refer to any device 
exhibiting resistive behavior whose resistance can change through 

2.2 AddItIve verSuS MultIPlIcAtIve StdP
Most of the present day literature on STDP presents a learning func-
tion ξ which depends on ∆T but not on the actual weight value 
w. This type of weight-independent STDP learning rule is usually 
known as “additive STDP.” Additive STDP requires the weight values 
to be bounded to an interval because weights will stabilize at one of 
their boundary values (van Rossum et al., 2000; Rubin et al., 2001).

On the other hand, in “multiplicative STDP” or mSTDP (van 
Rossum et al., 2000; Rubin et al., 2001; Gütig et al., 2003) the learn-
ing function is also a function of the actual weight value ξ

m
(w, ∆T). 

Furthermore, there usually appears a weight dependent factor 
which multiplies the original additive STDP learning function ξ

a
, 

and which may generally be different for the positive (∆T > 0) and 
negative (∆T < 0) sides

j jm aw T F w sign T T( , ) ( , ( )) ( )∆ ∆= ∆  (2)

In mSTDP weights can stabilize to intermediate values inside 
the boundary definitions. Thus, it is often not even necessary to 
enforce boundary conditions for the weight values (van Rossum 
et al., 2000). As we will see later in Section 4.2, for the particular 
type of memristive devices we are analyzing (voltage/flux driven) 
the resulting STDP learning rule will be of a multiplicative type 
with function F having a quadratic dependence with w, while the 
values of w are kept bounded.

3 MeMrIStAnce
Memristance was postulated by Chua (1971) based on circuit 
theoretical reasonings. According to circuit theoretical fundamen-
tals, there are four basic electrical quantities (Chua et al., 1987): 

i

v

i

v

qqA B C D

Figure 4 | Description of the four canonical two-terminal devices. 
(A) A resistor is defined by a static relationship between a device’s voltage 
and current. (B) A capacitor is defined by a static relationship between a 

device’s charge and voltage. (C) An inductor is defined by a static relationship 
between a device’s current and flux. (D) And a memristor is defined by a static 
relationship between a device’s charge and flux.
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Figure 3 | (A) Experimentally measured STDP function ξ(∆T) on biological synapses (data from Bi and Poo, 1998, 2001). (B) Ideal STDP update function used in 
computational models of STDP synaptic learning. (C) Anti-STDP learning function for inhibitory STDP synapses.

4By “static” we mean it is not altered by changes of the above electrical quantities, 
or by their history, integrals, derivatives, etc. These “static” curves can, however, be 
time varying if the change is caused by an external agent. For example, a motor 
driven potentiometer would have a “static” i/v curve that is time varying.

http://www.frontiersin.org/neuromorphic_engineering/
http://www.frontiersin.org/neuromorphic_engineering/archive


www.frontiersin.org March 2011 | Volume 5 | Article 26 | 5

Zamarreño-Ramos et al. STDP, memristors, self-learning visual cortex

where I
o
 and v

o
 are parameters which may or may not depend on 

w. This shape of f is shown in Figure 5B. Many other mathemati-
cal formulations can be used (Chua and Kang, 1976). In order to 
relate memristance to biological STDP, as will be done in Section 
4, we need a voltage/flux controlled memristor with thresholding 
behavior, exponential behavior beyond threshold, and bidirec-
tional behavior (i.e., to be able to increment and decrement w). 
Since a memristor has polarity, as indicated in Figure 5A, we need 
to establish a criterion to assign one of the terminals as the posi-
tive terminal. The criterion adopted to assign polarity is that if a 
sufficiently large positive voltage v

MR
 is applied to the memristor 

(i.e., larger than its positive threshold), it will increase its con-
ductance. Otherwise, if a sufficiently large negative voltage v

MR
 

is applied (i.e., increasing beyond its negative threshold), it will 
decrease its conductance.

3.1 MeMrIStor MAcro-Model for two-terMInAl devIceS
A macro-model of a device is a behavioral model made of circuit 
elements (ideal or not) that describes its behavior. Some circuit 
simulators allow a device to be defined mathematically using 
for example AHDL or Verilog-A circuit description languages. 
However, if the device can be described with a macro-model circuit, 
this will have some advantages5. (1) First, it uses already built-in 
components providing faster simulations; (2) second, as it is made 
of circuit elements it gives (analog) circuit designers a richer intui-
tive insight into how it works and performs, and how to improve 
it for specific goals; (3) it is very intuitive when adding parasitic 
components (resistors and capacitors) to aid in the convergence 
of the simulator’s internal algorithms; (4) and if care is taken to 
keep the operating voltages and currents of internal nodes to the 
levels the simulator expects from conventional circuits, simulations 
converge easier and faster.

Reported memristors (as in Strukov et al., 2008; Jo et al., 2010) 
adhere very well to the “moving wall model” (see Figure 6A), where 
the wall position w separates two different resistive regions in 

some of the four basic electrical quantities, but at the same time 
exhibiting memory for that resistance. In that case, more elaborate 
mathematical descriptions are required (Chua and Kang, 1976).

Memristance has recently been demonstrated (with extraordinary 
impact among the research community) in nanoscale two- terminal 
devices, such as certain titanium-dioxide (Strukov et al., 2008; 
Borghetti et al., 2009) and amorphous Silicon (Jo et al., 2009) cross-
point switches. However, memristive devices were reported earlier 
by other groups (Argall, 1968; Swaroop et al., 1998). Memristance 
arises naturally in nanoscale devices because small voltages can 
yield enormous electric fields that produce the motion of charged 
atomic or molecular species, changing structural properties of a 
device (such as its doping profile) while it operates. Memristors 
are asymmetric two-terminal passive devices. Consequently, their 
circuit symbol must indicate somehow their polarity. Figure 5A 
shows two possible symbols. Here we will consider one particular 
subset of memristors described by (Snider, 2007, 2008)

i g w v vMR MR MR= ( , )  (3)

w f w vMR= ( , )  (4)

where w is some physical (structural) parameter, i
MR

 is the current 
through the device, v

MR
 the voltage drop across it, and g is its (non-

linear) conductance. Since the change of structural parameter w 
is driven by voltage v

MR
, we say this memristor is voltage (or flux) 

driven. The group at the Michigan University claims to have fab-
ricated a memristor of this kind (Jo et al., 2009, 2010). If function 
f() in eq. (4) is driven by memristor current i

MR
, then we say the 

memristor is current (or charge) driven. The HP group tends to 
model their memristor as one of this type (Strukov et al., 2008; 
Borghetti et al., 2009).

In memristive nanoscale devices, function f may describe ionic 
drift under electric fields. Although this may conceivably be mod-
eled by a linear dependence of f with voltage v

MR
 (Strukov et al., 

2008), it is clear that in reality such dependence is more likely to 
grow exponentially and/or include a threshold barrier v

th
 (Jo et al., 

2010). For our discussions, let us assume the following dependence

f v I sign v e e if v vMR o MR
v v v v

MR th
MR o th o( ) ( ) | || |/ /= −  >

 
(5)

f vMR( ) = 0 otherwise  (6)

vMR

vMRf(      ) 

vth−vth
vMR

+

i    (w)
sat

w

w

wmax

min

A B C

Figure 5 | (A) Memristor asymmetric symbols. (B) Memristor non-linear weight update function with exponential growth and thresholding. (C) Memristor 
saturation function for limiting range of weight.

5Note that our aim in providing a macro-model circuit is to have a means of simu-
lating large number of memristors efficiently in a circuit simulator, and hence take 
advantage of its computational efficiency and ease of use. Our aim is not to provide 
a means of building physical circuits out of such macro-models (as Chua, 1971, did 
in the past using mutator circuits). A direct physical circuit realization of  Figure 6B 
would result, for example, in leaks of the memory value w due to unavoidable cur-
rent leak paths in parallel with the capacitor.
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Parameter k
R
 scales between the voltage domain range of w ( usually 

within a few volts, for proper simulator convergence) and the resist-
ance domain range of R which can be as high as hundreds of Mega-
ohms (Jo et al., 2009, 2010). Figure 7 shows the simulation results9 of 
a memristor connected in series with a 5-MΩ resistance stimulated 
with a 2-V sinusoid of decreasing frequency from 5 KHz to 0 Hz in 
26 cycles. Maximum and minimum memristor resistance limits were 
R

max
 = 100 MΩ and R

min
 = 100 MΩ, symmetric threshold voltages 

were |v
th
| = 1 V, the exponential f(v

MR
) was characterized by I

o
 = 10 µA, 

v
o
 = 0.1 V, v

th
 = 1 V, and the other macro-model parameters were 

w
max

 = 10 V, w
min

 = −10 V, kR
− =1 222mA, w

o
 = 12.2 V, and C

MR
 = 10 mF.

4 relAtIon between StdP And MeMrIStAnce
How can STDP be related to memristance? The key is to consider 
carefully the shape of the electric neural spikes (Linares-Barranco 
and Serrano-Gotarredona, 2009). The exact shape of neural spikes, 
usually called “action potentials” among neuroscientists, is diffi-
cult to measure precisely since the experimental setup influences 
strongly. Furthermore, different action potential shapes have been 
recorded for different types of neurons, although in general they 
all display a certain resemblance. For our discussion it suffices to 
assume a generic action potential shape with the following proper-
ties (see Figure 8A). During spike on-set, which happens during 
a time tail

+ , membrane voltage increases exponentially to a positive 
peak amplitude Amp

+ . After this, it changes quickly to a peak  negative 
amplitude − −Amp and returns smoothly to its resting potential during 
a time tail

− . A shape of the type shown in Figure 8A can be expressed 
mathematically, for example, as
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(10)

Parameters τail
+  and τail

−  control the curvature of the on-set and 
off-set sides of the action potential.

series, and moves depending on device current or voltage. A circuit 
macro-model that implements eqs. (3–6) is shown in Figure 6B. 
It comprises a controlled resistor in which resistance R is con-
trolled linearly by internal state voltage w, R(w) = k

R
 × (w + w

o
). 

Voltage w represents the “structural” parameter of the wall position, 
which is bounded to [0,L]6. Component NOTA is a non-linear 
 differential-input voltage-controlled current source (transcon-
ductor), also known as non-linear operational transconductance 
amplifier (OTA) which provides an output current i

g
(v

MR
) = f(v

MR
) 

controlled by input differential voltage v
MR

, as given in eqs. (5–6) 
and Figure 5B. Non-linear element g

sat
 is a non-linear resistor with 

a shape as shown in Figure 5C, which limits the range of the resist-
ance R(w) to [R

min
, R

max
], thus keeping w inside its natural bound-

ary [0,L]. Consequently, the macro-model circuit in Figure 6 is 
mathematically described by7,8

v R w iMR MR= ( )  (7)

R w k w wR o( ) ( )= × +  (8)

C w i v i wMR g MR sat = −( ) ( )
 

(9)

high low

w

L

resistivity resistivity gsat

ig

isat
MRC

(  )R w

BA
+

−

v

i

MR

MR NOTA

w

Figure 6 | (A) Memristor “moving wall” model. (B) Simple macro-model 
circuit for electrical simulations.

Figure 7 | Memristor simulations using the macro-model. Left, i/v curves obtained. Right, dependence of memristor time varying resistance with memristor voltage.

6For current/charge driven memristors, the boundary constraint was modeled by 
adding a multiplicative windowing function to allow for non-linear drift (Biolek 
et al., 2009; Joglekar and Wolf, 2009).
7These equations are similar to Di Ventra’s macro-model (Pershin and Di Ventra, 
2010; Pershin and Di Ventra, in press), except that we use an additive rather than 
a multiplicative term g

sat
 to constrain the interval for w. A multiplicative term may 

result in the stacking of w at one of its limits, as mentioned by Biolek et al. (2009).
8We originally reported the macro-model of Figure 6B in May 2010 (Pérez- Carrasco 
et al., 2010a). Simultaneously, a mathematically equivalent macro-model was repor-
ted by Shin et al. (2010), based on Charge-Flux Constitutive Relationships.

9Spectre netlist files for these simulations are available in folder Spectre_for_Fig7 in 
the AdditionalMaterial file, downloadable from the Journal web site.

http://www.frontiersin.org/neuromorphic_engineering/
http://www.frontiersin.org/neuromorphic_engineering/archive


www.frontiersin.org March 2011 | Volume 5 | Article 26 | 7

Zamarreño-Ramos et al. STDP, memristors, self-learning visual cortex

negative areas (below −v
th

, when ∆T < 0) result in  decrements for w 
(∆w < 0). As |∆T| approaches zero, the peak of the red area in v

MR
 is 

higher. Since this peak is amplified exponentially, the contribution 
for incrementing/decrementing w will be more pronounced as |∆T| 
is reduced. The resulting function ∆w(∆T), computed using the 
memristor model through eq. (13) is shown in Figure 3B. Actually, 
it imitates the behavior of the STDP function ξ obtained by Bi 
and Poo from physiological experiments, which was shown in 
Figure 3A. For this numerical computation we used the following 
parameters: α

pos
 = 1, α

pre
 = 0.9, v Ath mp

= =+ 1, A
mp− = 0 25. , v

o
 = 1/7, 

t
ail+ = 5 ms, t

ail − = 75 ms, t+ = 40 ms, t− = 3 ms. Making α
pos

 ≠ α
pre

 
breaks the symmetry of function j(∆T), and making them very 
different removes one of the branches in j(∆T). It is possible to 
have more freedom to achieve a desired shape for j(∆T) by setting 
α

pos
 = α

pre
 = 1, but instead shaping the spikes traveling forward and 

backward independently. Also, note that for ∆T values very close to 
zero ∆w(∆T) is approximately linear and crosses the origin. This 
is because as ∆T approaches zero, v

MR
 approaches zero for any t 

[see eq. (12)].
This result shows that a memristive type of mechanism could 

be behind the biological STDP phenomenon10.

4.1 Influence of ActIon PotentIAl ShAPe
The shape of the action potential function spk(t) strongly influences 
the shape of the resulting STDP function ξ(∆T). As an illustration, 
Figure 9 shows how for several shapes of action potentials (“spikes”) 
different STDP learning functions ξ(∆T) are obtained11. For exam-
ple, if the exponential shape degenerates into a triangular type of 
shape, then the central region of ξ(∆T) will display a smoother 
transition from the negative peak to the positive peak. Note that 
this would weaken learning for cases with small |∆T|. Making the 
positive peak of the spike smaller than the negative peak, makes the 
negative branch for ξ(∆T) stronger than the positive branch. If the 
action potential is substituted by a rectangular shape signal, then the 
central region becomes linear and a saturation effect might occur. If 
the rectangular spike is made more symmetric, then ξ(∆T) degener-
ates into a triangular type of shape, which is very different from the 
original biological STDP learning function. In general, to obtain 
a biological-like STDP learning function a narrow short positive 
pulse of large amplitude and a longer relaxing slowly decreasing 
negative tail are required. However, from a computational point 
of view, it might be more interesting to massage the shape of the 
“spikes” and tune the STDP learning function as desired.

4.2 MeMrIStorS IMPleMent A MultIPlIcAtIve tyPe of StdP
It is worth mentioning here that memristors actually implement 
a multiplicative type of STDP. The reason is because, according 
to eq. (13), the structural parameter updates ∆w(∆T) follow an 
additive type of STDP rule, independent of w. Parameter w is the 
memristor “wall” position separating the low and high resistivity 

Consider the case of pre- and post-synaptic neurons in Figure 1 
being of the same type, and thus generating the same action potential 
shape, spk(t) of eq. (10), when they fire. Axons and dendrites operate 
as transmission lines, so it is reasonable to expect some attenuation 
when the spikes arrive at the respective synapses. Let α

pre
 be the 

attenuation for the pre-synaptic spike V
mem–pos

(t) = α
pre

 spk(t − t
pre

), 
and α

pos
 for the post-synaptic spike V

mem–pos
(t) = α

pos
 spk(t − t

pos
). 

When both spikes are more or less simultaneously present at the two 
cell membranes of the synapse, then channels on both membranes 
are open. Consequently, in principle, it makes sense to assume that 
during such time there could be a path for substances in the inside of 
one cell to move directly to the inside of the other cell and vice versa. 
Furthermore, let us assume now that such motion of substances 
obeys a memristive law similar to those described by eqs. (3–6). 
This means, that we would have a two-terminal memristive device 
between the inner sides of the two cells; more specifically, between 
V

pos − and V
pre − in Figure 1B. Consequently, the memristor voltage 

would be v V VMR pre pos
= −− − . On the other hand, since the outside 

nodes of both membranes V
pos + and V

pre + are very close together, 
both voltages will be approximately equal, yielding

v t V t V t

spk t t spk

MR mem pos mem pre

pos pos pre

( ) ( ) ( )

( )

′ ≈ ′ − ′

= ′ − −
− −

α α (( )′ −t t pre  
(11)

A simple change of variables t = t′ − t
pos

 and recalling that 
∆T = t

pos
 − t

pre
, results in

v t t spk t spk t tMR pos pre( , ) ( ) ( )∆ ∆= − +α α
 

(12)

This memristor voltage v
MR

 is shown in Figure 2 for the cases of 
∆T being positive or negative. According to eqs. (5–6), memristive 
update will take place only if v

MR
 exceeds threshold v

th
, as indicated 

by the red shaded area in Figure 2. As we postulated earlier, dur-
ing this memristive update some amount of synaptic structural 
substance(s) ∆w would be interchanged between the two sides of 
the synapse. The amount of substance ∆w will ultimately affect 
the synaptic strength of this synapse. If this amount of synaptic 
structural substance interchanged between the two synaptic termi-
nations obeys a memristive law as in eqs. (3–6), then from eq. (4)

∆ ∆ ∆ ∆w T f v t T dt TMR( ) ( ( , )) ( )= =∫ j
 

(13)

which is the red area of the shaded regions in Figure 2, previously 
amplified exponentially through function f() of eqs. (5–6). Positive 
areas (above v

th
, when ∆T > 0) yield increments for w (∆w > 0), while 
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Figure 8 | (A) Details of membrane voltage action potential, as by eq. (10). 
(B) Reversed version.

10A few months after announcing our finding (Linares-Barranco and Serrano-Go-
tarredona, 2009), we became aware of a similar result (Afifi et al., 2009), which is 
a particular case of eqs. (10–12) for α

pre
 = α

pos
 = 1 and a different action potential 

shape (the one shown in Figure 9B1).
11Matlab files for generating these figures are available in folder Matlab_for_Fig9 in 
the AdditionalMaterial file, downloadable from the Journal web site.
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Note that the fact that memristors implement a multiplicative 
type of STDP derives from the fact that the wall position w is lin-
ear with resistance, and thus inversely proportional to synaptic 
strength. Consequently, we should expect mSTDP also from syn-
chronous STDP realizations, using either current or voltage-driven 
memristors, as the update would also be weight dependent. On 
the other hand, we have assumed that function f() in eqs. (5, 6, 
and 13) does not depend on w. In practice, there might exist such 
dependence, and if true, the resulting mSTDP learning function 
might deviate from the one discussed here.

5 connectIng MeMrIStorS wIth SPIkIng neuronS for 
ASynchronouS StdP leArnIng
Synchronous memristive STDP learning architectures were 
proposed by Snider (2007, 2008), assuming voltage/flux driven 
memristors, and recently demonstrated by the group at Michigan 
University (Jo et al., 2010). In that proposal each neural spike is 
mapped into a sequence of precisely spaced fixed amplitude digital 
pulses which must maintain global synchronization to separate 

regions (see Figure 6A). According to eq. (8), the memristor instan-
taneous resistance R(w) is linear with w. Consequently, the mem-
ristive STDP resistance update ∆R(∆T) = k

R
 × ∆w(∆T) = k

R
j(∆T) 

will follow an additive STDP update rule as well, independent of 
the actual value of R. However, as we will see in the next Section, 
when memristors (or resistors) are used as synapses in a neural 
circuit, the synaptic strength of such synapses is proportional to 
their conductance G = 1/R, because as conductance increases more 
current will be delivered to the post-synaptic neuron. Consequently, 
synaptic strength update is given by

∆ ∆ ∆ ∆ ∆G T
R T

R
G k TR( )

( )
( )= − = −

2
2 j

 
(14)

which is quadratically proportional to the actual conductance. 
Memristors will therefore yield larger update steps for high con-
ductances, but smaller steps for low conductances. This suggests 
that, before training, weights (conductances) should be initialized 
to rather high values, so that as learning progresses the updates 
tend to become smaller.
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Figure 9 | illustration of influence of action potential shape on the resulting STDP resistance update function ξ(∆T ). X1 is spike waveform and X2 is 
resulting STDP learning function, where X goes from (A–H).
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and through a local,  compact  digital-to-analog converter provide 
the programmed action  potential. Implementation details of such 
spike generation circuit are beyond the scope of this paper.

For the synapses, it is possible to fabricate very high density 
memristor crossbar structures (Strukov et al., 2008; Borghetti 
et al., 2009) which connect to the neural layers, as shown in 
Figure 11A. Neurons generate action potentials with a shape 
similar to those given in Figure 8. Note that the positive termi-
nals of the memristors connect to the pre-synaptic neurons. This 
way, when ∆T > 0 the memristors see a negative voltage beyond 
threshold and their resistance (inverse of synaptic strength) will 
decrease. Alternatively, the same result can be obtained by hav-
ing the neurons generate an inverted spike action potential (as in 
Figure 8B) but connecting the memristors with opposite polarity, 
as shown in Figure 11B.

In an excitatory synapse a pre-synaptic action potential spike 
should produce an increment in the neuron integral, i.e., make the 
integrator output voltage V

int
 approach V

REF
 (see Figure 10). During 

neuronal spike integration a neuron simply accumulates the contri-
butions of incoming spikes on its integrator. All synapses connected 
to its input node do not experiment any weight update and operate 
as resistances of constant value. This is guaranteed by making the 
action potential peaks lower than the threshold value v

th
 in Figure 5. 

In order to have a constant positive resistance contribute a net 
positive charge packet during each incoming pre-synaptic spike, 
the net area under the spike waveform (see Figure 8) should be 
positive. For the particular case of parameter selection that results 
in the action potential shapes in Figure 8, it turns out that the 
spike in Figure 8A presents a net negative area while the spike in 
Figure 8B presents a net positive area. Consequently, using spikes 
with the shape and parameters as in Figure 8A results in synapses 
delivering net negative charges, while using spikes with the shape 
and parameters as in Figure 8B results in synapses delivering net 
positive charges. If neurons are set such that V

REF
 > V

rest
, the incom-

ing net negative charge packets make the integrator output V
int

 
approach V

REF
. In this case synapses delivering net negative charge 

packets operate as excitatory synapses. On the contrary, if neurons 
are set such that V

REF
 < V

rest
 then synapses delivering net positive 

charge packets operate as excitatory synapses. The arrangement 
shown in Figure 11A, which uses spikes as in Figure 8A, therefore 
results in excitatory synapses delivering net negative charge packets 
if V

REF
 > V

rest
. On the other hand, for Figure 11B which uses spikes as 

in Figure 8B, synapses are excitatory, delivering net positive charge 
packets if V

REF
 < V

int
.

Interestingly, the strength of STDP learning can be modulated 
by changing the amplitudes (or shapes) of the electric spikes in 
time. This would allow the implemention of faster learning at the 
beginning of a learning process, and progressively slow learning 
down as the system stores acquired knowledge, or even turn it off 
completely after some time. This is a very desired feature for STDP 
machine learning systems (W. Maass, Private communication).

This way of interconnecting memristors with neurons as in 
Figures 10 and 11 avoids cross-coupling of spikes between rows and 
columns, because all lines are driven by (ideal) voltage sources. Using 
this arrangement with the memristor macro-model of Figure 6 we 
performed intensive behavioral simulations in Cadence-Spectre to 
test the concept on the 4 × 4 feed forward array shown in Figure 12. 
Note that the neuron used (shown in the inset) is a particular case of 

the integration phase of neural activity from the synaptic weight 
update phase. This global synchronization requirement imposes 
severe difficulties when the system scales up to very large sizes.

On the other hand, from the discussions in previous Sections, 
we present an alternative approach which is fully asynchronous 
(Linares-Barranco and Serrano-Gotarredona, 2009). Consequently, 
no global synchronizations will be required nor global separations 
into neuron-integration phases and synapse-learning phases, mak-
ing this approach attractive for scaling up to very large numbers 
of neurons and synapses.

We first need a neural circuit that integrates spikes until a 
threshold is reached. At that moment, it should provide a spike 
of the desired shape. A possible schematic diagram for a leaky 
integrate-and-fire (LIF) neuron block is shown in Figure 10. The 
neurons need to include a current summing and sinking input 
terminal so that in the absence of spike output the integral of 
input current spike signals can be computed, while maintaining 
the input node tied to a fixed voltage. This can be done by using a 
lossy integrator with a clamped voltage input. The output of this 
accumulated integral V

int
 is compared against a reference V

REF
. 

If this reference is reached, the comparator output will trigger 
a spike generation circuit, which provides the output spike of 
the neuron. During spike generation, the integration capacitor 
is charged to refractory voltage V

refr
, while the input opamp is 

configured as a voltage buffer, thus copying the spike waveform to 
the neuron input node. An attenuated version of the post-synaptic 
neural voltage α

pos
V

pos
(t) is thus made available to the synaptic 

memristors connected to this neuron input. Another attenuated 
version of the spike is fed forward to the output of the neuron 
V

pre
(t) = α

pre
spk(t). During the whole time of the spike (typically 

in the order of 20–100 ms) the neuron is not integrating (com-
putationally inactive). This time is also called “refractory time.” 
During the absence of spike output, the spike generation circuit 
provides a constant voltage V

rest
.

For the Spike Circuit in Figure 10 an analog circuit can be 
devised that generates a specific action potential shape with some 
tunable parameters (Indiveri et al., under review). However, for 
STDP experiments it is more desirable to allow for full program-
mability of arbitrarily shaped action potentials. Since all neurons 
should have the same spike shape (at least all neurons of a part 
of a whole system), one interesting option is to have a circuit 
at the chip periphery broadcasting digital samples of the action 
potentials at different phases to all neurons. The spike generation 
circuits would then capture the closest phase, delay it properly, 

αpre

Vpos

VREF

Vpre

Vint

Vrefr

αpos

current
summing
node

neuron
output

attenuator

Circuit
Spike

leaky integrator

comparator

reset

R
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Figure 10 | Proposal of LiF neuron circuit implementation for 
memristance compatible STDP fully asynchronous learning system.
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memristors can be interconnected to achieve anti-STDP learning. 
Memristors are reversed with respect to the cases in Figure 11. Note 
that now, for anti-STDP, when ∆T > 0 the memristors see a positive 
v

MR
 voltage beyond threshold (which will produce an increase in 

resistance and a decrease in synaptic strength), while for ∆T < 0 they 
see a negative voltage beyond threshold (which will produce a synap-
tic strength increment). Memristors are physically positive resistances 
(of time varying values). Whether memristors act as excitatory or 
inhibitory synapses is determined by the combination of (1) net area 
under the action potential waveform (i.e., sign of net charge sent to 
the post-synaptic neuron) and (2) whether V

REF
 is above or below 

V
rest

, as mentioned in the discussion around Figure 11.
Another twist in STDP variations is obtained by having the 

neurons send back an inverted version of the spike sent forward, 
as shown in Figure 15A13. In this case, it is possible to have the 
resulting STDP learning function show a positive learning win-
dow around ∆T = 0 with positive increments for both positive 
and negative values of ∆T close to zero. Beyond a specific value of 
|∆T| there are decrements in the weights (∆w < 0), for both positive 
and negative sides of ∆T. This is shown in Figure 15C. This type 
of learning is useful under some circumstances (W. Maass, Private 
communication).

6 AchIevIng StdP wIth MeMrIStIve fet-lIke devIceS
Most present day literature on memristors refers to two-terminal 
(nano)devices. In essence, memristors operate as resistors the 
resistance of which can be changed and maintained in a non-
volatile manner. This feature (and their compact size) is basically 
what makes them highly attractive not only for building neuro-
morphic systems, but also for memories and computing systems 
in general. However, memristance is not necessarily restricted to 
two-terminal devices. It is well known that it is possible to use three 
(or four) terminal FETs as resistors, current sources, or (volatile) 
memory elements. If the same nanoscale principles that give rise 
to memristance in two-terminal devices could be extrapolated to 
three or four terminal FETs, then the adaptive memristive circuits 
presented so far could be extrapolated to more generic FET-based 
circuits as well. FETs have more terminals and consequently will 

the one in Figure 10 with V
refr

 = V
rest

 = 0 (spike resting potential) and 
R = ∞. The results are shown in Figure 1312. Only the first two col-
umn synapses are stimulated, with 200 ms period spikes (of 45 ms 
duration) with a 25-ms relative delay between the two columns. 
As can be seen, only the synapses at the first two columns change 
their resistance, while those on the other two columns do not, 
confirming the correct operation of STDP without any crosstalk 
between columns or rows. This demonstrates that this architecture 
can be scaled up to arbitrary size, at least conceptually. Practical 
considerations that could limit maximum size are mainly fan-out 
of neurons, interconnect delays, and parasitic crosstalk. Note that 
in Figure 13 memristor resistances do not always converge to their 
extreme values R

min
 or R

max
 (as in additive STDP) but that some of 

them (R
12

, R
21

, R
31

, R
34

) have converged to intermediate values (as 
is characteristic for mSTDP).

5.1 StdP vArIAtIonS
Standard STDP aims to implement the synaptic learning functions of 
the shape shown in Figure 3B. In the case of synapses with negative 
weights anti-STDP learning functions similar to the one shown in 
Figure 3C need to be implemented. This is achieved with memristors 
by simply changing their polarity. Figure 14 shows how neurons and 

12Spectre netlist files for these simulations are available in folder Spectre_for_Fig13 
in the AdditionalMaterial file, downloadable from the Journal web site.

A B

Figure 11 | Two possible interconnection schemes between memristors and neurons for STDP learning. (A) Memristor polarities for spikes as in Figure 8A. 
(B) Memristor polarities for inverted spikes as in Figure 8B.

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

VREF

VREF VREF

Figure 12 | Small feed forward memristive array simulated behaviorally 
with Cadence-Spectre.

13Matlab files for these simulations are available in folder Matlab_for_Fig15 in the 
AdditionalMaterial file, downloadable from the Journal web site.
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Figure 16A shows a 3-terminal FET symbol, and Figure 16B illus-
trates how such a FET can be used as a very-wide-range tunable 
current source by maintaining its V

GS
 voltage constant but chang-

ing its threshold voltage.

result in less dense structures than their two-terminal counter-
parts. However, FETs can present very wide tuning ranges. For 
example, imagine a (nano)FET transistor in which the threshold 
voltage could be tuned through some memristive-like mechanism. 

Figure 13 | evolution of weights (resistances) in a 4 × 4 feed forward memristive perceptron network. The bottom trace shows the weights of memristors in 
the third and fourth column. The other traces show the evolution of weights in the two columns furthest to the left. Traces are grouped pair-wise with synapses in the 
same row, and with identical initial conditions.
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from previous layer neurons activate the FET drain terminals. The 
FET source terminals are connected to fixed voltages V

ref2
 clamped by 

the neurons’ input. The neurons’ inputs are now always clamped to a 
fixed voltage, i.e., the neuron output spike is not sent back through the 
neuron input terminal. Now, the neuron spike is sent back through 
an independent extra terminal which connects to the gates of the 
FETs in the same row. If a pre-synaptic spike (on a synapse FET drain 
terminal) is prior to a post-synaptic spike (on the same synapse FET 
gate terminal) then the FET’s gate-to-drain voltage would exceed 
positive threshold v

th
 in Figure 17B, activating the corresponding 

NOTA, increasing w. This would decrease the FET’s threshold voltage 
and shift its current versus V

GS
 curve in Figure 16B to the left, thus 

increasing its driving current for the same V
GS

 voltage. Consequently, 
this results precisely in an STDP positive update. If the pre-synaptic 
spike occurs later than the post-synaptic spike, the opposite behavior 
is obtained: a negative STDP update. The circuit in Figure 18 was 
simulated in Cadence-Spectre using the macro-model in Figure 17 
for the FETs. The simulation results are shown in Figure 1915. For 
the neuron we used a simplified version of the circuit in Figure 10 
which is not lossy and which has a refractory voltage equal to the 
resting potential. For the simulations in Figure 19 we set the range 

Some researchers are developing nanoscale FET devices in which 
the threshold voltage can be adjusted by manipulating their termi-
nal voltages above certain thresholds14 (Lai et al., 2008; Agnus et al., 
2010; Bichler et al., 2010; Jeong et al., 2010). Such behavior suggests 
a memristive (nanoscale) weight update mechanism similar to the 
one we have assumed for two-terminal memristors in the previous 
Sections. Let us assume we can change the FET threshold voltage 
up and down whenever either the gate-to-drain V

GD
 and/or gate-to-

source V
GS

 voltages exceed certain positive and negative thresholds. 
A FET macro-model for describing such behavior, inspired by the 
one in Figure 6 for memristors, is shown in Figure 17A. There, a 
fixed-threshold (memory-less) FET is used, in which the internal gate 
terminal is connected through a variable voltage source to the external 
device gate G. This voltage source is controlled by an internal weight 
w, which changes by means of a mechanism similar to that of the 
memristor weight in Figure 6. The NOTA non-linear function, shown 
in Figure 17B is identical to that in Figure 5B, and the weight satura-
tion function shown in Figure 17C is identical to that in Figure 5C.

Using such memristive FETs we can assemble a crossbar-like feed 
forward perceptron network, as shown in Figure 18. The synapses 
are now implemented using FETs of this type. Input spikes coming 

14Some other researchers have demonstrated STDP with 4-terminal FETs that 
 include a floating gate (Ramakrishnan et al., 2010).

A B

Figure 14 | Memristor connections for anti-STDP learning. (A) Using positive action potentials with negative net waveform area as in Figure 8A resulting in 
synapses delivering net negative charge packets. (B) Using inverted action potentials with positive net waveform area as in Figure 8B resulting in synapses delivering 
net positive charge packets.
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Figure 15 | Arrangement where neurons send back the inverted spike sent forward. (A) Feed forward Crossbar Example, (B) Spike shapes used, (C) and 
resulting STDP resistance update function.

15Spectre netlist files for these simulations are available in folder Spectre_for_Fig19 
in the AdditionalMaterial file, downloadable from the Journal web site.
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Mahowald, 1992). For over 10 years AER sensory systems were 
reported by only a handful of research groups, examples being 
Lazzaro et al. (1993) and Johns Hopkins University (Cauwenberghs 
et al., 1998) pioneering work on audition, or Boahen (1999, 2002) 
early developments on retinas. However, during these years some 
basic progress was made. A better understanding of asynchronous 
design (Sparsø and Furber, 2001; Martin and Nyström, 2006) lead-
ing to robust unarbitrated (Mortara et al., 1995) and arbitrated 
(Boahen, 1996, 2000) asynchronous event readout, combined 
with the availability of user-friendly FPGA external support for 
interfacing and new submicron technologies allowing complex 
pixels in reduced areas, heralded a new trend in AER bio-inspired 
Spiking Sensor developments. Since 2003 many researchers have 
embraced this trend. AER has been used fundamentally in vision 
(retina) sensors, for purposes such as simple light intensity to fre-
quency transformations (Culurciello et al., 2003; Posch et al., 2010), 
time-to-first-spike coding (Ruedi et al., 2003; Chen and Bermak, 
2007), foveated sensors (Azadmehr et al., 2005), spatial contrast 
(Costas-Santos et al., 2007; Massari et al., 2008; Ruedi et al., 2009; 
Leñero-Bardallo et al., 2010), temporal contrast (Mallik et al., 2005; 
Posch et al., 2007, 2010; Lichtsteiner et al., 2008; Leñero-Bardallo 
et al., 2011), motion sensing and computation (Boahen, 1999), and 
combined spatial and temporal contrast sensing (Zaghloul and 
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Figure 17 | (A) Memristive type weight update macro-model for a three-terminal FET device. (B) Thresholding and exponential weight update function. 
(C) Weight saturation function.
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Figure 16 | illustration of 3-terminal FeT. (A) Symbol defining the three-terminals: gate G, drain D, and source S. (B) FET drain-to-source current (in log scale) as 
function of gate-to-source voltage VGS for different threshold voltages.
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Figure 18 | Simulated memristive FeT crossbar structure and neuron 
detail.

of w as w
max

 = 10 V and w
min

 = −10 V. We can see again that some 
weights converge to the boundary values, while others stabilize at 
intermediate values, as is characteristic for mSTDP.

7 AddreSS-event-rePreSentAtIon
Address-event-representation (AER) is a well established tech-
nology among neuromorphic engineers. AER was originally pro-
posed 20 years ago in Mead’s Caltech research lab (Sivilotti, 1991; 
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But AER has also been employed for post-sensing event-driven 
processing, emulating biological cortical structures. Vernier et al. 
(1997) developed AER convolutional filters with elliptic-like kernels 
while Choi et al. (2005) reported more sophisticated Gabor-like 
filters. Serrano-Gotarredona et al. (1999) reported an AER archi-
tecture that would allow more generic kernels, although with some 

Boahen, 2004a,b). AER has also been used for auditory systems 
(Lazzaro et al., 1993; Cauwenberghs et al., 1998; Sarpeshkar et al., 
2005; Wen and Boahen, 2006; Chan et al., 2007), competition, and 
winner-takes-all networks (Chicca et al., 2007; Oster et al., 2008), 
and even for systems distributed over wireless networks (Teixeira 
et al., 2005).

Figure 19 | Simulated evolution of weights (w in Figure 17A) for the FeT network in Figure 18.
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a real artificial AER retina, and finally we will show the receptive 
fields formed through STDP learning in the artificial memristive V1 
layer with this training data. The biological V1 visual cortex layer is 
known to be sensitive to specific orientations (Hubel and Wiesel, 
1959). We will show how such orientation sensitive receptive fields 
arise naturally when building an artificial memristive V1 layer with 
STDP learning and stimulated with real spiking data obtained with 
an artificial AER motion sensitive retina.

The spontaneous formation of orientation sensitive receptive 
fields through STDP learning has already been reported by other 
researchers16 (Delorme et al., 2001; Snider, 2007). In those works 
static luminance images were used for training. Pixel intensities 
were coded into spikes through some kind of computational trans-
formation: either a stochastic rate coding scheme (Snider, 2007), 
or a rank-order coding scheme (Delorme et al., 2001). Here we 
directly use the continuous AER output stream of events produced 
by a real motion sensitive retina CMOS sensor.

8.1 toPology of v1 vISuAl cortex lAyer And PhySIcAl 
reAlIzAtIon
The simplified V1 topology we want to emulate can be explained 
with the help of Figure 21A. The retina sends spikes to the V1 
cortex layer through synaptic connections17. The V1 layer is struc-
tured in a number of “Feature Maps.” We can think of the retina 
as an array of “pixels,” each with coordinate (x, y). Let us assume 
each “Feature Map” in V1 replicates the same coordinates (x, y), 
so that each pixel in the retina has a corresponding pixel in each 
“Feature Map” with the same coordinate. Each pixel (x

c
, y

c
) in a 

“Feature Map” receives inputs not only from pixel (x
c
, y

c
) in the 

retina, but also from all neighbors within a spatial neighborhood 
(x

c
 + x

r
, y

c
 + y

r
). Alternatively, we may say that each pixel in the retina 

(x
c
, y

c
) connects to a Projection Field of pixels (x

c
 + x

r
, y

c
 + y

r
) in 

each of the Feature Maps. Thus, projection fields include a number 
of synaptic connections, so that the spikes produced by one pixel in 
the retina are sent to the pixels of the projection field in each feature 

geometric symmetry restrictions. In 2006 the same group started 
to report working AER Convolution chips with arbitrary shape 
programmable kernels of size up to 32 × 32 (Serrano-Gotarredona 
et al., 2006, 2008; Camuñas-Mesa et al., in press).

Figure 20 explains the basic idea behind a point-to-point AER 
link. An emitter chip (or module) includes an array of neurons 
generating spikes. Each neuron is assigned an address, such as its 
(x, y) coordinate within the array. Neurons generate spikes at low 
frequency (10–1000 Hz), and these are arbitrated and put on an 
inter-chip (or inter-module) high-speed asynchronous AER bus. 
The AER bus is a multi-bit (either parallel, serial, or mixed) bus 
which transmits the addresses of the emitting neurons. Typical 
delays for transmitting Address Events between AER chips range 
from about 30 ns (Costas-Santos et al., 2007) to 1 µs (Lichtsteiner 
et al., 2008) per event for parallel AER, and have been reported 
down to 24 ns per event for serial AER with potential to go as low 
as 8 ns per event (Berge and Hafliger, 2005). These addresses are 
received, read, and decoded by the receiver chip (or module) and 
sent to the corresponding destination neuron or neurons. Figure 20 
illustrates a point-to-point AER link with a single emitter and a 
single receiver. The use of AER splitters and mergers (Serrano-
Gotarredona et al., 2009) allows extension to one-to-many, many-
to-one, or many-to-many AER links. Inserting AER mappers 
(Serrano-Gotarredona et al., 2009) allows coordinate transforma-
tions (rotations, translations, etc.) to be performed while address 
events travel between modules. Current research is looking at how 
large numbers of AER convolutional modules can be combined 
through independent and multiple AER links to build high-speed 
object and texture recognition systems (Camuñas-Mesa et al., 2010; 
Pérez-Carrasco et al., 2010b).

8 buIldIng A Self-leArnIng vISuAl cortex wIth 
MeMrIStorS And StdP-reAdy Aer hArdwAre
In previous Sections we have shown how to interconnect memris-
tors with spiking neurons to achieve STDP learning systems. We 
have illustrated this with a very specific topology, a feed forward 
crossbar structure (Figures 11, 14, and 15), where all neurons in one 
layer connect to all neurons in the next layer. However, the meth-
odology is not restricted to this specific spatial topology, and can 
be extended to any generic neural network topology. In this Section 
we will apply those same concepts to a topology representing the 
first processing layer of the visual cortex, namely layer V1. We will 
first explain the V1 layer topology we will use, show how to build it 
physically, then we will describe the training data we will use from 
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Figure 21 | (A) Projection Field Topology of V1 layer in Visual Cortex. 
(B) Hybrid CMOS-memristor arrangement with CMOL style tilted lines.
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Figure 20 | illustration of Aer point-to-point communication link 
concept.

16It should be clarified, however, that the present body of experimental neuroscien-
ce literature confirms that preliminary orientation tuned receptive fields build up 
during development before eye opening. Afterward, visual experience contributes 
to the maturation and sharpening of orientation selectivity (White et al., 2001).
17Here we are ignoring the lateral geniculate nucleus (LGN) between the retina and 
V1, as in many visual system models. LGN seems to introduce a relay only, without 
performing any computation.
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map. Feature maps operate as feature extractors. Specifically, the 
feature maps in V1 detect the presence of oriented edges at specific 
orientations and scales (Hubel and Wiesel, 1959).

The physical implementation of one such Feature Map with 
AER CMOS neurons and a layer of memristor crossbar structure 
on top is shown in Figure 21B (Snider, 2008). The lower CMOS 
contains the array of neurons (or pixels) of one V1 Feature Map. 
Each neuron has coordinate (x, y), as its corresponding retina pixel. 
Address Event spikes of coordinate (x, y) coming from the retina are 
sent to pixel (x, y) in the Feature Map. This neuron then sends out 
a spike of the desired shape (for example, as in Figure 8) through 
its output node. In Figure 21B each neuron has an output node 
(green) and an input node (red). The output node connects to a 
thin line tilted slightly with respect to the CMOS tile (as in CMOL; 
Strukov and Likharev, 2005), so that it does not intersect with any 
other neuron output node in the CMOS tile. This thin line has 
many others in parallel, each connecting to one neuron output 
node. Perpendicular to all these lines there are other thin lines 
(at a different altitude), each connecting to the input node of one 
neuron. The two sets of perpendicular lines form a “sandwich” with 
a separation layer formed by memristive material. This way, at the 
intersection of each perpendicular thin line there is a memristor. 
For example, in Figure 21B neuron 1 output node connects to 
the vertical pink line, while neuron 2 input node connects to the 
horizontal pink line. The synaptic memristor connecting neuron 1 
output to neuron 2 input is at the intersection of the two lines (blue 
circle). The vertical pink line (neuron 1 output) has memristive 
intersections with all horizontal thin lines. Consequently, neuron 
1 output connects to all other neuron inputs. In the same manner, 
all neuron output nodes connect to all neuron input nodes. For 
projection field based topologies, each neuron output does not con-
nect to all other neuron inputs. Instead, connectivity is limited to 
a given spatial neighborhood. This is achieved by having lines of 
limited length (instead of one reaching over the full CMOS array). 
For square projection fields of size 10k = 1002, for example, each 
line has to be extended to 50 cells on each side.

Below we present some simulation results from training a set of 
such AER Feature Maps with real stimuli coming from a temporal 
derivative AER retina watching life scenes. First, we briefly explain 

the AER temporal derivative retina and what kind of spikes it pro-
duces. We then describe how we used this data to stimulate a set 
of AER hybrid CMOS-memristor Feature Maps and what kind of 
selectivity these Feature Maps developed.

8.2 Aer teMPorAl dIfference retInA
We will use the spiking data obtained from an AER Temporal 
Difference Retina chip (Posch et al., 2007, 2010; Lichtsteiner et al., 
2008; Leñero-Bardallo et al., 2011) to train an artificial V1 STDP 
visual cortex layer. The retina has an array of 128 × 128 pixels. Each 
pixel (x, y) has a photo sensor that provides a continuous photo 
current I

ph
(x, y) plus a circuitry that generates a signed spike every 

time its photo current changes by a given relative amount |∆I
ph

/
I

ph
| > C

th
. Figure 22A shows the output events produced by the 

retina when observing a dot rotating at 400 Hz. Blue dots represent 
positive events (going from dark to bright) and red dots represent 
negative events (going from bright to dark). The address events 
collected during 7 ms are plotted in (x, y, t) coordinates. Figure 22B 
shows the events collected during 20 ms when observing two people 
walking. White pixels correspond to positive events (∆I

ph
/I

ph
 > 0), 

while black pixels to negative events (∆I
ph

/I
ph

 < 0).

8.3 StdP trAInIng reSultS of v1 lAyer
In this Section we will analyze the learning behavior a hybrid 
CMOS-memristive V1-like system when it is trained through STDP 
using the architectural and circuital principles outlined throughout 
the paper and using real stimuli obtained from a 128 × 128 pixel 
AER temporal derivative retina. Specifically, we used a 521-s record-
ing with 20.5 million events showing scenes observed when driving 
in a car (Delbruck). We used a simplified network structure to 
simulate and see what kind of receptive fields would naturally arise. 
The network structure is shown in Figure 23. From the retina visual 
field of 128 × 128 pixels we cropped 324 non-overlapping patches 
of 7 × 7 pixels each, and concatenated all these events sequentially 
making a recording of 324 × 521 = 168804 s (47 h) with 19.6 mil-
lion events. This concatenation was used for one training epoch, 
and we required a total of five epochs to observe convergence in the 
learned weights. The events from each patch are separated into two 
additional 7 × 7 fields depending on the event sign. The activity of 

Figure 22 | illustration of Temporal Derivative retina Outputs. (A) Events produced by a rotating black disk with a white dot, represented in (x, y, t) coordinates. 
(B) Events collected during 20 ms when observing two people walking.
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Figure 24 shows the evolution of the receptive fields when using 
the dedicated event based simulator [case (2) in previous para-
graph]. We see the receptive fields of the 32 neurons, where the 
positive and negative weights are grouped together in the same 
7 × 7 square by assigning “white” to positive weights and “black” to 
negative weights. The central gray color means zero weight. As can 
be seen, there is a clear tendency for the receptive fields to become 
orientation selective.

It is worth mentioning that the type of continuous processing 
involved here differs from time-to-first-spike (or rank-order) cod-
ing schemes, where a stimulus on-set provides a reference time 

these two subfields is projected onto 32 neurons18. Consequently, 
there are 32 × 2 × 7 × 7 trainable weights. Weights are always posi-
tive. Each of the 32 neurons inhibits the other neurons through 
lateral inhibitory connections, as in reference (Masquelier et al., 
2009a). Each neuron is as shown in Figure 10, with a leak and a 
refractory voltage. Inhibitory lateral connections have fixed weights, 
while the weights of the feed forward connections follow STDP 
learning. Weights were initialized either to random values, or to 
maximum values. The STDP learning functions were such that the 
ratio of the negative side area over the positive side area was [see 
eq. (1)] a−t−/a+t+ = 1.25, meaning that STDP was biased toward 
depression. The time constant for the positive side was t+ = 13.6 ms, 
while that of the negative side was t− = 15.2 ms, and there is a 
central linear region for |∆t| < 0.5 ms. Memristor resistances were 
bounded to the interval R

min
 = 10 MΩ, R

max
 = 100 MΩ. We simu-

lated this system theoretically in several ways: (1) by solving the 
differential equations of biological integrate-and-fire neurons via 
an Euler method with a time step update of 0.1 ms, using the Brian 
simulator (Goodman and Brette, 2008) and a conventional additive 
STDP learning rule; (2) by using a dedicated event based simulator 
adapted from reference (Masquelier et al., 2009a) implementing the 
quadratic STDP learning rule of the memristors and the neuron 
dynamics corresponding to the circuit in Figure 10 with spikes 
as in Figure 819; and (3) by simulating a simplified event-driven 
matlab code with instantaneous neuron dynamics (but including a 
non-instantaneous leak) and with quadratic mSTDP20. In all cases, 
receptive fields became clearly orientation selective. The resulting 
receptive fields are biased to vertical edges, similar to the visual 
input stimuli we have used for this experiment.
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Figure 23 | Topology used for testing STDP on V1-like Network.

18Compared to the arrangement in Figure 21A, each of the 32 neurons in  Figure 23 
represents one of the Feature Maps in Figure 21A. Consequently, to implement 
the full V1 structure physically, each neuron with all its 7 × 7 input synapses in 
 Figure 23 has to be “cloned” in a 128 × 128 array.
19The corresponding Matlab and C code files for these simulations are available in 
folder STDP_V1_C_code_Fig24 in the AdditionalMaterial file, downloadable from 
the Journal web site.
20The Matlab file is available in folder STDP_V1_matlab in the AdditionalMaterial 
file, downloadable from the Journal web site.

time=844020s

time=168804s

time=84402s

time = 0s

Figure 24 | evolution of 7 × 7 pixel receptive Fields through 
unsupervised STDP training with Aer retina data observing life scenes. 
Weights are shown at different stages of training: initial random weights, after 
half a training epoch, after one training epoch, and after five training epochs.

 Figure 25 | receptive fields weight distribution of memristor 
conductances after training for one patch out of 324 of one epoch, 
obtained through spectre circuit simulations.
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STDP learning function characterized through electrical spectre 
simulations (blue dots) to match the ideal function used in the 
theoretical simulations (red circles)23.

At this point we would like to highlight an important difference 
between the memristor-based network of integrate-and-fire neu-
rons with STDP synapses presented here, and an equivalent network 
as used normally among neurocomputational researchers (see the 
integrate-and-fire neuron model in Gerstner, 1999). In this latter 
case, the evolution of membrane voltage following an input spike 
at t

spk
 is as if the spike injects a current I t t I espk spk m

t tspk spk( )
( )/> = − − τ

 
at node V

pos
 in Figure 10. Parameters I

m
 and t

spk
 defining this spike 

contribution are independent of the parameters a+, a−, t+, t− in eq. 
(1) used to characterize the STDP learning function. However, in 
case of the memristor implementation, each spike injects a  current 

(Delorme et al., 2001; Guyonneau et al., 2004; Masquelier and 
Thorpe, 2007, 2010; Weidenbacher and Neumann, 2008). It also 
differs from Phase-of-Firing coding, where the peak of a popula-
tion activity oscillation is used as a reference time (Masquelier 
et al., 2009b). Here there is no oscillation, nor stimulus on-set, 
nor any reference time, but a continuous flow of spikes, and yet 
STDP is able to pick patterns that are consistently present in the 
training data, confirming previous results (Masquelier et al., 2008). 
Future work, however, will evaluate the use of periodic resets in 
the AER retina, leading to time-to-first-spike coding with respect 
to those resets.

We also simulated the network in Spectre using the memristor 
macro-model in Section 3.1, but for 16 neurons only21. However, 
electrical circuit simulation was very slow. Simulating for just one 
of the 324 input patches (with about 154 K events) took 559 ks CPU 
time (6.5 days) running on a SUN Fire X2200 M2 Linux cluster 
with dual cores at 2.2 GHz and 4 GB RAM. In this case we could 
only verify that the initial evolution of weights was similar to those 
of the software programs, as shown in Figure 25.

For the circuit simulations we used the topology and spike 
shapes shown in22 Figure 26. There are two input memristor 
arrays, one for the positive and one for the negative subfields in 
Figure 23. The backward spikes are attenuated by α

pos
 = 0.97. The 

output neurons forward spikes are rectified and sent back through 
non-trainable fixed value resistors R

inh
 = 2 MΩ to implement the 

lateral inhibitory connections. The parameters used for the mem-
ristors are w

max
 = 10 V, w

min
 = −10 V, C

MR
 = 50 mF, R

min
 = 8 MΩ, 

R
max

 = 100 MΩ, kR
− =1 217nA, w

o
 = 11.74 V, I

o
 = 10 µA, v

o
 = 0.1 V, 

v
th

 = 1 V, and for the neuron R = 1 MΩ, C = 19.2 nF, V
refr

 = 0.625 V, 
V

REF
 = 1 V. With these memristor parameters and the spike shapes 

in Figure 26 we were able to characterize the STDP learning func-
tion of the memristors and adjust them to the learning function in 
the event based simulation [case (2) above]. Figure 27 shows the 
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h
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Figure 26 | Circuit Topology and Spike Shape used for the Spectre electrical circuit simulation of the simplified V1 network.
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Figure 27 | Spectre characterization of STDP learning function of 
memristors. Blue dots are results obtained from Spectre electrical circuit 
simulations. Red circles correspond to the theoretical target function used in 
the theoretical behavioral simulations.

21Spectre and Matlab files for these simulations are available in folder Spectre_
STDP_V1 in the AdditionalMaterial file, downloadable from the Journal web site.
22This topology and these spike shapes also correspond to the theoretical simu-
lations of case (2) and Figure 24. The only difference between the two cases is in 
the number of neurons used: 32 neurons for the theoretical simulations, and 16 
neurons for the circuit simulations.

23Spectre and Matlab files for these simulations are available in folder Tune_ Memristor_
in_Spectre in the AdditionalMaterial file, downloadable from the Journal web site.
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no longer so ideal, then there will be crosstalk between lines. For 
example, if a spike is sent to a column then the voltage on all rows 
would change slightly. The consequence of this is that part of the 
charge provided by the incoming spike will be lost through non-
desired synapses and the impact of the spike on the target neurons 
will be weaker. During learning, the situation is less severe because 
for STDP update the memristor voltage has to exceed the learning 
threshold [v

th
 in eq. (5)]. The effect of having non-ideal voltage 

sources is that the terminal voltage difference on the memristors 
needing synaptic update would be slightly less than in the ideal situ-
ation and learning would be weaker than expected ideally. However, 
having non-ideal voltage sources would not induce STDP update 
in undesired synapses. Another parasitic issue related to crosstalk 
is parasitic capacitive crosstalk between lines, which can be more 
pronounced as pitch and line distances decrease.

Also, one highly critical aspect which needs to be evaluated is 
the influence of component mismatches. Nanoscale devices suffer 
from high mismatch in general. Consequently, we should expect 
nanoscale memristors too to suffer from great parameter variations 
from one to another. It is true that they will operate as adaptive 
devices that will learn their functionality hopefully compensating 
for (some) mismatches. However, their learning and adaptation 
rules will also suffer from mismatch, making some synapses learn 
faster than others, or in slightly different fashions. In any case, the 
main sources of mismatch in memristor devices still need to be 
identified, and then their influence in the overall system learning 
behavior evaluated. However, to undertake such an initiative, we 
first need ready access to large arrays of reliable memristors fabri-
cated in a stable and repeatable manner.

In general, an important issue is precise memristor modeling. 
Throughout this paper we have assumed an idealized voltage-driven 
memristor macro-model. This is useful to devise possible system 
architectures to achieve a desired functionality, such as STDP learn-
ing. However, to estimate realistic performance figures of resulting 
systems, it will be necessary to include non-ideal effects, both of 
the memristors and companion CMOS circuits. In this paper, no 
high order effects have been modeled, such as those related to noise, 
mismatch, and other memristor non-idealities not yet reported. For 
example, we have assumed that the wall model boundary condition 
is imposed by the voltage dependent function in eqs. (5 and 6). If 
this function turns out to be dependent on w, has other non-ideal 
effects, or there are other important mechanisms involved in the 
boundary conditions, this might affect the resulting behavior of 
the STDP learning function when integrating eq. (13), questioning 
the quadratic mSTDP behavior we have assumed.

10 concluSIon
In this paper we have shown that STDP learning can be induced 
by the voltage/flux driven formulation of a memristor device. We 
have used this formulation to develop fully asynchronous circuit 
architectures capable of performing STDP, by having neurons send 
their spikes not only forward but also backward. We have seen 
that the STDP learning rule induced this way is of a multiplica-
tive, specifically quadratic type. We have shown how the shape of 
spikes is critical to achieve and modulate a specific STDP learning 
function. We have provided a memristor macro-model for simulat-
ing arrays of memristors efficiently in circuit simulators. Finally, 

at node V
pos

 in Figure 10 proportional to the spike waveform deliv-
ered by the neurons. Since this waveform also determines the shape 
of the STDP learning function, it turns out that there is now a 
strong dependency between the parameters defining the evolution 
of the membrane voltage and those defining the STDP learning 
function. They are no longer independent and it is consequently 
more difficult to adjust all true independent parameters properly 
for a desired behavior.

9 PrActIcAl lIMItAtIonS, reAlIStIc SIzeS, PItcheS, 
denSIty, croSStAlk And Power conSIderAtIonS
Nanoscale memristor technology is still quite incipient and no 
realistic large scale systems have been reported at the time of writ-
ing (as far as we know). However, we can estimate an orientative 
scale and density of what may realistically be achieved in the near 
future, and the main limitations which may be encountered in a 
real physical implementation.

Regarding the wiring density of synaptic memristors, a pitch of 
100 nm is conservatively realistic for present day technologies (Jung 
et al., 2006; Green et al., 2007), while the near future might bring 
us closer 10 nm (Jeon et al., 2010). Assuming wafer scale dies of 
100 nm pitch 2D memristor arrays capable of interfacing reliably 
with lower CMOS become available some time soon, this would 
result in a synaptic density of 1010 synapses/cm2.

In the brain, the number of synapses per neuron is about 103–104. 
If we want to maintain the 104 ratio, we would need to fabricate 
CMOS neurons with a pitch of 10 µm, resulting in 106 neurons/cm2. 
Such neuron sizes are quite realistic for present day nanometer scale 
CMOS (45 or 32 nm), given the complexity of the neurons needed.

Another problem is that of resistance value ranges of the mem-
ristors’ R

min
 (synapse ON) and R

max
 (synapse OFF). Reported mem-

ristors present resistance values from the kΩ range up to the MΩ 
range (Borghetti et al., 2009; Jo et al., 2009, 2010). The memristor 
resistance value range affects the performance, reliability, crosstalk 
and power dissipation of a full large scale system. For example, it 
affects the driving capability of the neurons and their power con-
sumption. If one neuron needs to drive 104 synapses of average 
value 1 MΩ to an average 1 V level, it has to be able to provide an 
average current of 10 mA during a spike (of say 20 ms), delivering 
10 mW per spike. If there are 106 neurons/cm2 each firing at an aver-
age of 10 Hz (which is similar to biological neurons), the synapses 
would dissipate a power of about 2 kW. The neurons would need 
at least the same power, presumably more. It is obvious that such 
a structure would melt quickly. The resistance range needs to be 
increased by a minimum factor of 100, so that minimum resistances 
are at least 100 MΩ, or even larger. As pitches are lowered, resist-
ances would need to increase quadratically with pitch decrease, to 
maintain the power limitation. Another option would be to scale 
down voltage, but there is not much range. Even our 1 V maximum 
voltage assumption is quite optimistic for available present day 
memristors, which tend to operate between 2 and 10 V (Borghetti 
et al., 2009; Jo et al., 2009, 2010). Also, we have always assumed 
so far that voltage sources driving memristor terminals behave as 
ideal voltage sources, or at least, that the output resistance of such 
voltage sources is negligible compared to the total resistance they 
have to drive. Again, this will be achieved more easily if memristors 
present rather high resistance values. If driving voltage sources are 
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we have  studied an emulation of the V1 visual cortex capable of 
self-learning how to extract orientations from spiking inputs pro-
vided by a real physical AER spiking retina fabricated in CMOS. 
At the end we have also discussed possible limitations of present 
day memristors.

The presented results are ideal extrapolations based on behav-
ioral simulations. As memristor devices are further developed and 
non-ideal effects become known, the impact of non-idealities in the 
presented architectures and methods can be further assessed. Future 
work has to evolve toward more realistic memristor models and 
improved memristor devices, specially devices with much higher 
resistivities. One critical property that memristors need to provide 
for efficient STDP and non-volatility is the central dead-zone in 
Figure 5B, which the already reported memristor from Michigan 
University (Jo et al., 2009) seems to present. Another issue relates 
to the quadratic type of mSTDP followed by the presented devices 
and architectures. This is a quite unusual form of STDP, which 
needs to be further investigated from a theoretical point of view. 
In general, there might be stability issues with generic STDP when 
used in complex biological models (Izhikevich and Desai, 2003; 
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