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There is a fundamental gap in understanding how brain structural and functional network 
connectivity are interrelated, how they change with age, and how such changes contribute to 
older adults’ sensorimotor deficits. Recent neuroimaging approaches including resting state 
functional connectivity MRI (fcMRI) and diffusion tensor imaging (DTI) have been used to assess 
brain functional (fcMRI) and structural (DTI) network connectivity, allowing for more integrative 
assessments of distributed neural systems than in the past. Declines in corpus callosum size 
and microstructure with advancing age have been well documented, but their contributions 
to age deficits in unimanual and bimanual function are not well defined. Our recent work 
implicates age-related declines in callosal size and integrity as a key contributor to unimanual 
and bimanual control deficits. Moreover, our data provide evidence for a fundamental shift in the 
balance of excitatory and inhibitory interhemispheric processes that occurs with age, resulting 
in age differences in the relationship between functional and structural network connectivity. 
Training studies suggest that the balance of interhemispheric interactions can be shifted with 
experience, making this a viable target for future interventions.
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The brain is organized with certain specialized 
functions lateralized to each hemisphere. For 
example, the left hemisphere is preferentially 
involved in verbal processing (Ivry and Robertson, 
1998) and motor control (Serrien et al., 2006), 
while the right hemisphere plays a stronger role 
in spatial cognition (Ivry and Robertson, 1998). 
Interhemispheric transfer via the corpus callosum 
plays a key role in the production of coherently 
integrated behavior, assuring a complex balance 
of excitatory and inhibitory processes. For specific 

motor behaviors, interhemispheric inhibition is 
required to prevent interference of control proc-
esses between the two hemispheres. Consider 
tying your shoes – each hand moves independ-
ently to accomplish a unified goal. While each 
primary motor cortex has dense projections to 
the muscles of the contralateral hand, the two 
are also highly interconnected via the corpus 
callosum, allowing for interhemispheric trans-
fer of information (Figure 1). It is known that 
individuals with callosal damage or those who 
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have undergone callosal section to alleviate severe 
epilepsy have particular difficulty with coordi-
nating the two hands when each follows its own 
independent spatio-temporal path (Mark and 
Sperry, 1968; Kennerley et al., 2002), likely due 
to reduced interhemispheric inhibition. Indeed 
it has been shown using transcranial magnetic 
stimulation (TMS) that interhemispheric inhibi-
tion levels increase during bimanual tasks when 
the two hands move out of phase with each other 
(Giovannelli et al., 2009). This is thought to help 
alleviate interference that arises due to “motor 
overflow,” or interhemispheric excitation result-
ing in too much sharing of information between 
the two motor cortices.

Here, we review the literature addressing 
the behavioral relevance of interhemispheric 
interactions between the sensorimotor cortices, 
including consideration of the changes that occur 
with advanced age. We advance the hypothesis 

that there is a fundamental shift with age in the 
relationships between callosal structure, cal-
losal neurophysiological function, and motor 
performance. Numerous studies have identified 
age differences in brain structure, function, and 
biochemistry that are associated with deficits in 
motor and cognitive performance (for review see 
Seidler et al., 2010). For example, the corpus cal-
losum undergoes significant degeneration with 
age both in terms of white matter quantity and 
quality (Fling et al., 2010; Sullivan et al., 2010). 
Additionally, work from our lab has documented 
age deficits in both unimanual (Seidler et al., 2002; 
Langan et al., 2010) and bimanual (Bangert et al., 
2010; Fling et al., 2010) control. Recent research 
approaches using techniques to measure brain 
structural and functional network connectivity 
have begun to elucidate the detailed mechanisms 
by which corpus callosum pathways contribute 
to unimanual and bimanual motor behavior, as 
well as the functional consequences of age-related 
degeneration of interhemispheric connections. 
Investigating brain functional and structural net-
work integrity has the potential to make a signifi-
cant impact on the field of neuromotor control 
because it allows for assessment of distributed 
brain networks as opposed to focusing on indi-
vidual brain structures. Indeed, the use of these 
techniques allows for evaluation of Geschwind’s 
theory that white matter disruptions can be as 
detrimental to function as gray matter damage 
(Geschwind, 1965a,b).

Age differences in brAin ActivAtion 
pAtterns
The hemispheric asymmetry reduction in older 
adults (HAROLD) model, describing the finding 
that older adults (65+ years of age) demonstrate 
increased bilateral prefrontal cortex recruitment 
across different memory and cognitive tasks, 
was originally proposed by Cabeza (2001) a 
decade ago. In the interim, the effects of age on 
brain activation patterns and their relation to 
cognitive function have been studied extensively 
(cf. Li et al., 2001; Raz et al., 2007; Park and 
Reuter-Lorenz, 2009). Initial reports have sug-
gested that over-recruitment patterns in older 
adults are reflective of either (i) compensatory 
activation where additional brain recruitment 
is positively associated with task performance 
(Cabeza, 2002; Reuter-Lorenz and Lustig, 2005; 
Heuninckx et al., 2008) or (ii) dedifferentiation 
suggesting that brain structure-function rela-
tionships become less distinctive with age and 
thus the increased brain activity has either no or 
negative behavioral consequences (Logan et al., 
2002; Park et al., 2004; Langan et al., 2010). A 

Figure 1 | The brain’s white matter is 
conceptualized as yarn in this diagram. The 
descending strands represent corticospinal control of 
each hand by its respective contralateral motor cortex. 
The callosal strands represent the capacity for 
interhemispheric interactions. In an asynchronous 
bimanual task such as shoe tying, interhemispheric 
inhibition is relied upon to prevent interference 
between control processes for the two hands. At the 
same time, interhemispheric facilitation may be relied 
upon to integrate actions of the two hands, allowing 
them to achieve a single unified goal.

Interhemispheric inhibition
Suppression of the activity of a brain 
region by its contralateral homolog, 
transmitted via the corpus callosum.

Motor overflow
The term typically refers to involuntary 
movements which may accompany the 
production of voluntary movements. 
Here we use the term to refer to 
inadvertent activation of a motor 
structure but at a level that is 
insufficient to result in movement.

Interhemispheric excitation
Facilitation of the activity of a brain 
region by its contralateral homolog, 
transmitted via the corpus callosum.
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recent model from Reuter-Lorenz and Cappell 
(2008), the compensation-related utilization 
of neural circuits hypothesis (CRUNCH) pre-
dicts that the distinctiveness of neural repre-
sentations should be increased in older adults 
(relative to young adults) at low levels of task 
demand but reduced at high levels of demand. 
Consistent with the CRUNCH model, recent 
work from Carp et al. (2010) demonstrates both 
dedifferentiation- and compensation-like brain 
activation patterns in the same participants 
for the same task, arguing that comprehen-
sive theories of cognitive aging must incorpo-
rate both interpretations of over-activation to 
fully explain complex patterns of age-related 
neuro-cognitive change.

While the literature on age-related differences 
in the neural control of movement has not devel-
oped as quickly, numerous studies have begun 
to elucidate the neural underpinnings associ-
ated with healthy aging and motor control (cf. 
Seidler et al., 2010). As proposed in the HAROLD 
model, older adults exhibit cortical over-activa-
tion relative to young adults when performing 
motor tasks. More symmetrical activation of 
the motor system (i.e., bilateral engagement of 
the motor cortices) in older adults is predomi-
nantly associated with increased engagement of 
the motor cortex ipsilateral to the moving hand 
(Calautti et al., 2001; Mattay et al., 2002; Ward 
and Frackowiak, 2003; Heuninckx et al., 2005, 
2008; Langan et al., 2010). In our recent work, we 
reported that increased ipsilateral motor cortex 
activity was associated with poorer unimanual 
motor performance in older adults (Langan 
et al., 2010) indicating that the cognitive and 
motor systems may demonstrate distinct pat-
terns of age-related change. Additional recent 
studies have provided insight into the role of 
interhemispheric interactions in the produc-
tion of bilateral motor cortical activation in 
older adults.

Age differences in resting stAte 
interhemispheric functionAl 
connectivity
Resting state functional connectivity (fcMRI) 
studies have shown that remote but function-
ally related gray matter regions with known ana-
tomical connections exhibit strong correlations in 
the low frequency (<0.1 Hz) blood oxygen level 
dependent (BOLD) signal when individuals are 
at rest (Biswal et al., 1995; Fox and Raichle, 2007; 
Rogers et al., 2007; Vincent et al., 2007). These 
correlations are highly spatially structured fol-
lowing anatomical networks and are therefore 
thought to reflect functional connectivity of the 

human brain. It is important to note, however, 
that fcMRI can provide insight beyond that of 
known anatomical connections. For example, a 
recent case study in an individual with a complete 
section of the corpus callosum revealed a strik-
ing loss of interhemispheric BOLD correlations, 
with the possible exception of the somatomotor 
system, hippocampal formation, and the thala-
mus (Johnston et al., 2008). Likewise Uddin et al. 
(2008) reported normal functional connectivity 
between interhemispheric middle occipital and 
cingulate gyri in an individual with complete 
commissurotomy. Because functional correla-
tions can arise from multisynaptic pathways, 
fcMRI networks are not necessarily restricted to 
occur between structures with direct anatomical 
connections.

Three networks of relevance for motor con-
trol have been identified with fcMRI: (i) motor 
cortical, including interhemispheric primary 
motor, premotor, parietal, and supplementary 
motor cortex connectivity (Biswal et al., 1995; 
Peltier et al., 2005; Langan et al., 2010); (ii) stri-
atal thalamo-cortical (Di Martino et al., 2008; 
Kelly et al., 2009; Kwak et al., 2010); and (iii) cer-
ebellar thalamo-cortical (Krienen and Buckner, 
2009). Along with others, we have made signifi-
cant inroads into identifying the spatial structure 
and functional relevance of these networks in 
healthy young adults (Peltier et al., 2005; Biswal 
et al., 2010), older adults (Langan et al., 2010), 
and disease-affected individuals (Jelsone-Swain 
et al., 2010; Kwak et al., 2010).

Resting state functional network correlations 
have behavioral relevance. For example, default 
mode network connectivity is altered following 
visual (Lewis et al., 2009) or motor (Albert et al., 
2009) learning. Additionally, medication-related 
changes in the frequency content of resting state 
striatal seed regions correlates with cognitive 
function in patients with Parkinson’s disease 
(Kwak et al., 2010). Moreover, greater resting 
state motor interhemispheric connectivity in 
older adults is correlated with recruitment of 
the ipsilateral motor cortex during a unimanual 
task (motor overflow, Langan et al., 2010). In 
other words, while most patient groups exhibit 
 disrupted (reduced) functional network con-
nectivity, our recent data provide compelling 
evidence that older adults demonstrate increased 
connectivity of interhemispheric motor cortical 
networks compared to young adults (Langan 
et al., 2010). We propose that this reflects a release 
from the normally predominantly inhibitory 
interhemispheric projections, shifting the overall 
balance of interhemispheric interactions toward 
excitatory processes.

Resting state functional connectivity
Correlations in the low frequency blood 
oxygen dependent fMRI signal between 
brain regions. Typically, remote but 
functionally related gray matter regions 
with known anatomical connections 
exhibit strong correlations when 
individuals are at rest.
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the cortex (Chen et al., 2003). Multiple lines of 
research indicate that interhemispheric connec-
tions between the sensorimotor cortical regions 
have primarily inhibitory effects (Netz, 1999; De 
Gennaro et al., 2004; Lenzi et al., 2007). This 
interhemispheric inhibition is presumably to 
prevent interference from the opposite hemi-
sphere, or motor overflow (cf. Hoy et al., 2004). 
This is thought to allow for simultaneous but 
independent control of the two hands, such 
as required for shoe tying. Intriguingly, we 
have recently reported that young adults with 
increased microstructural quality of callosal 
regions connecting sensorimotor cortical areas 
perform with more variability on unimanual 
and asynchronous bimanual motor tasks (Fling 
et al., 2010). Conversely, larger size and better 
microstructure of these same callosal regions 
was associated with better performance in older 
adults. Moreover, we recently reported that older 
adults exhibit greater recruitment of  ipsilateral 
primary motor cortex during unimanual motor 
task performance, which was associated with 
longer reaction times (Langan et al., 2010). 
Additionally, greater recruitment of ipsilateral 
primary motor cortex in older adults was corre-
lated with reduced resting state interhemispheric 
connectivity and a larger corpus callosum. We 
posit that reduced interhemispheric motor 
connectivity may be associated with a loss of 
the ability to inhibit the ipsilateral hemisphere 
during unimanual motor task performance 
for older adults, which has a negative impact 
on response time. These data provide evidence 
for a link between callosal structural and physi-
ological changes with age, lending credence to 
the dedifferentiation hypothesis. Specifically, 
interhemispheric interactions require a balance 
between excitatory and inhibitory processes; 
taken together the aforementioned studies sug-
gest that this overall balance is likely shifted in 
the aging brain.

evidence for Age differences in 
interhemispheric neurophysiologicAl 
function
Experiments conducted with individuals with 
callosal pathology (e.g., partial callosotomy 
or multiple sclerosis) demonstrate that while 
the total number of callosal fibers connecting 
the two primary motor cortices is relatively 
few in number, communication between these 
homologous areas has the capability to strongly 
influence motor behavior (Eliassen et al., 1999, 
2000; Kennerley et al., 2002; Lenzi et al., 2007; 
Bonzano et al., 2008). The fiber tracts that 
comprise the corpus callosum are integral for 

Age differences in corpus cAllosum 
mAcro- And microstructure
Age differences in brain activation patterns are 
often posited to be the result of changes in brain 
structure. Transcallosal fibers connect largely 
homologous cortical regions of the right and left 
hemispheres; thus, the corpus callosum mediates 
the transfer and integration of lateralized cog-
nitive, motor, and sensory information between 
cortices (Aboitiz, 1992). Structural magnetic 
resonance imaging (MRI) has demonstrated 
that there is substantial interindividual vari-
ability in callosal size and morphology for both 
young and older adults (Stancak et al., 2003; Fling 
et al., 2010; Raz et al., 2010;  Sullivan et al., 2010). 
Interestingly, less lateralized task processing dur-
ing both cognitive (Muller-Oehring et al., 2007) 
and motor (Langan et al., 2010) tasks has been 
shown to be associated with reductions in callosal 
cross-sectional area in older adults. Therefore, 
structural differences of the corpus callosum 
appear to impact cortical activity both at rest 
and during task performance, with significant 
implications for behavior.

An emerging body of literature indicates that 
not only is the quantity of white matter reduced 
in older adults, but the quality of remaining 
white matter is compromised as well (reviewed 
in Seidler et al., 2010). The use of conventional 
MRI allows for measurements of regional brain 
volume, while diffusion tensor imaging (DTI) 
allows assessment of white matter microstructure. 
Thus, DTI may be more sensitive to subtler age-
related white matter changes than conventional 
volumetric MRI. For example, some MRI inves-
tigations suggest that the corpus callosum does 
not undergo extensive volumetric declines with 
age (Raz et al., 2001), whereas several studies have 
shown declining callosal microstructure with age 
(Fling et al., 2010; Sullivan et al., 2010). Numerous 
studies have identified associations between cal-
losal macrostructure or microstructure and 
behavior (Stancak et al., 2003; Fling et al., 2010; 
Sullivan et al., 2010). Furthermore, recent stud-
ies utilizing fiber tractography have demonstrated 
relationships between interhemispheric motor 
fiber tract microstructure and task performance 
in both healthy participants (Johansen-Berg et al., 
2007) and in those with white matter dysfunc-
tion (Bartels et al., 2008; Bonzano et al., 2008; 
Kern et al., 2010). While individual differences 
in callosal quantity and quality have shown to 
be behaviorally relevant in both young and older 
adults, it appears there may be a fundamental shift 
with age in these relationships.

Interhemispheric communication can have 
either net facilitatory or inhibitory effects on 

Diffusion tensor imaging
Neuroimaging technique that uses the 
diffusion of water molecules to provide 
information about brain 
microstructure. This technique is 
particularly beneficial for investigating 
white matter due to the dense axonal 
organization found within large fiber 
bundles such as the corpus callosum.
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2001). Task-related increases in LIHI also dimin-
ish with advancing age and are correlated with 
the degree of ipsilateral primary motor cortex 
recruitment during unimanual motor tasks 
(Talelli et al., 2008a,b). In agreement with Talelli 
and colleagues, Fujiyama et al. (2009) found that 
older adults have a reduced ability to modulate 
inhibitory function in a task-dependent manner 
in comparison to young adults. Specifically, older 
adults exhibited a reduced ability to increase 
inhibition during coordination of the arm and 
leg on the same side of the body. These age-
related declines in interhemispheric inhibition 
and in the ability to modulate inhibitory func-
tion to meet task demands may be associated 
with the bimanual movement deficits observed 
in older adults.

Considering that the unimanual and biman-
ual motor tasks included in Fling et al. (2010) 
and Langan et al. (2010) rely heavily on timing, 
some insight may be provided from research 
in expert musicians, individuals with exqui-
site temporal control. Surprisingly, both inter- 
and intra-hemispheric inhibition are reduced 
in  musicians (Ridding et al., 2000; Nordstrom 
and Butler, 2002). It is interesting that cortical 
inhibition is less effective in musicians, who 
have extraordinary control of independent fin-
ger movements. However, it is unclear whether 
these effects represent an adaptive change related 
to exceptional control of finger movements or a 
maladaptive change brought about by overuse 
of the hand from extensive training (Nordstrom 
and Butler, 2002).

Training experiments may shed some light 
on the counterintuitive finding that musicians 
with superior bimanual control and larger 
callosal size have reduced interhemispheric 
inhibition. Shim et al. (2005) were the first to 
investigate the effects of practice on callosal 
physiology; following just 2 days of practice of 
a novel bimanual force production task, partici-
pants demonstrated task-selective reductions in 
interhemispheric inhibition. In accord with this 
finding, Hortobagyi et al. (2010) reported a sig-
nificant decrease in interhemispheric inhibition 
and a concomitant increase in ipsilateral primary 
motor cortex excitability following 20 sessions of 
unimanual submaximal force production. These 
studies, taken together with those in trained musi-
cians, suggest that interhemispheric inhibitory 
projections can show plastic changes that favor 
the execution of a practiced task, likely through 
a cooperative action of the two hemispheres 
(Shim et al., 2005). In other words, although 
 interhemispheric  inhibition is integral for the 
performance of  coordinated bimanual tasks, it 

inhibiting the ipsilateral motor cortex during 
both unimanual and bimanual control (Netz, 
1999; Perez and Cohen, 2008; Vercauteren et al., 
2008). Monosynaptic connections between pri-
mary motor cortices (Porter and Lemon, 1993), 
along with densely transcallosally connected sec-
ondary motor areas, have been shown to signifi-
cantly influence interhemispheric inhibition and 
neuromotor control. Although full characteriza-
tion of the transcallosal inhibitory sensorimo-
tor network is still lacking, neuroimaging data 
suggest that it includes the supplementary and 
pre-supplementary motor areas (Serrien et al., 
2002; Grefkes et al., 2008), the dorsal premotor 
cortices (Giovannelli et al., 2006; van den Berg 
et al., 2010), and the somatosensory cortices (Ni 
et al., 2009).

Callosally mediated interhemispheric inhibi-
tion is a complex process that has traditionally 
been measured in humans using paired-pulse 
TMS to each primary motor cortex at an inter-
stimulus interval of (i) 8–12 ms (short-interval 
interhemispheric inhibition, SIHI) or (ii) ∼40 ms 
(long-interval interhemispheric inhibition, 
LIHI; cf. Chen, 2004). Paired-pulse TMS utilizes 
two magnetic stimulators to investigate the effect 
of a supra-threshold conditioning stimulus over 
one primary motor cortex (M1) on the size of a 
test motor evoked potential elicited by stimula-
tion of the opposite M1. Although both SIHI 
and LIHI are reflective of transcallosal inhibi-
tion, they do not appear to represent the same 
phenomenon, nor are the two values correlated 
with each other across individuals (Chen et al., 
2003). Although both measures reflect inhibition 
of synchronized activation of the corticospinal 
system induced by the conditioning stimulus 
(the first stimulus applied), a pharmacological 
experiment suggests that LIHI is likely mediated 
by postsynaptic gamma-aminobutyric acid type 
B (GABA)B

 receptors, whereas SIHI is poten-
tially mediated by GABA

A
 receptors, although 

this remains to be fully elucidated (Irlbacher 
et al., 2007).

In line with our hypothesis of reductions 
in interhemispheric inhibitory interactions 
with age, accumulating evidence demonstrates 
reduced inhibition within the nervous system 
of older adults, both at the cortical (Talelli et al., 
2008a,b) and spinal levels (Kido et al., 2004). A 
discussion of age-related changes in inhibition at 
the spinal level is beyond the scope of the current 
review, and thus we will focus on cortical inhi-
bition. Paired-pulse TMS studies have shown 
that healthy older adults display decreased excit-
ability of intracortical inhibitory circuits within 
the motor cortex while at rest (Peinemann et al., 
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upon our recent findings (Fling et al., 2010; 
Langan et al., 2010), we suggest that in young 
adults, increased interhemispheric inhibi-
tory function is associated with larger callosal 
size and increased fiber tract microstructure, 
whereas the inverse relationship is true in older 
adults. Furthermore, a parsimonious and test-
able hypothesis that builds upon our recent 
findings is that performance on bimanual tasks 
falls along a continuum which demonstrates a 
shared optimal region of callosal microstruc-
ture and interhemispheric inhibition for young 
and older adults. That is, young and older adults 
exhibit maximal performance for a compa-
rable range of callosal microstructure and 
 interhemispheric inhibition values. However, 
structure-physiological function-performance 
relationships differentially diverge from this 
range for the two age groups.
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does not appear that high levels of inhibition are 
beneficial to task performance.

synthesis And future directions
If decreased interhemispheric inhibition favors 
the performance of bimanual tasks, how can 
we reconcile decreased interhemispheric inhi-
bition in older adults and decreased bimanual 
task performance? Recent work suggests that 
the microstructure of transcallosal motor fib-
ers, assessed with DTI, reflects the capacity for 
interhemispheric inhibition between the pri-
mary motor cortices. Wahl et al. (2007) report 
a positive relationship between microstructural 
integrity of transcallosal motor fibers and 
strength of SIHI in young adults. No data is 
currently available regarding the nature of this 
relationship in older adults. Based upon our 
recent findings (Fling et al., 2010; Langan et al., 
2010) it seems likely that there is a fundamental 
shift in the relationship between callosal size, 
microstructure, and interhemispheric physi-
ologic function from young to older adults. 
Figure 2 presents a graphic representation of 
our hypothesis. This figure portrays the rela-
tionship between these neural measures of 
the callosum and performance of motor tasks 
requiring interhemispheric interactions for 
older and younger adults (see Figure 2). Based 
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Figure 2 | This diagram provides a graphic 
representation of our hypothesis that performance 
on bimanual tasks falls along a continuum which 
demonstrates a shared optimal region of callosal 
microstructure and interhemispheric inhibition for 
young and older adults (darker gray central zone). 
Structure-physiological function-performance relationships 
differentially diverge from this range for the two age 

groups, with greater interhemispheric inhibition and 
reduced callosal structure associated with poorer 
performance in older adults and greater interhemispheric 
inhibition and greater callosal structure associated with 
poorer performance in young adults. The black square data 
point at x, y = 0 indicates that there is no capacity for 
interhemispheric inhibition in the complete absence of the 
corpus callosum.
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