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Although it ranks among the oldest tools in neuroscientific research, electroencephalography 
(EEG) still forms the method of choice in a wide variety of clinical and research applications. In 
the context of brain–computer interfacing (BCI), EEG recently has become a tool to enhance 
human–machine interaction. EEG could be employed in a wider range of environments, 
especially for the use of BCI systems in a clinical context or at the homes of patients. However, 
the application of EEG in these contexts is impeded by the cumbersome preparation of the 
electrodes with conductive gel that is necessary to lower the impedance between electrodes 
and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications 
outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological 
exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode 
EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental 
paradigms were used: first, event-related potentials (ERP) were investigated with a variant of 
the oddball paradigm. Second, features of the frequency domain were compared by a paradigm 
inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification 
accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features 
in the frequency domain did not differ significantly between the EEG systems. BCI classification 
accuracies were equally high in both systems when the frequency domain was considered. 
With respect to the oddball classification accuracy, there were slight differences between the 
wet and dry electrode systems. We conclude that the tested dry electrodes were capable to 
detect EEG signals with good quality and that these signals can be used for research or BCI 
applications. Easy to handle electrodes may help to foster the use of EEG among a wider range 
of potential users.
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technology for persons with physical disabilities rather than as a 
research tool (Wolpaw et al., 2002; Dornhege et al., 2007). Recently, 
features of the EEG are used as input to model user’s states to adapt 
human–machine interaction (HMI, Krepki et al., 2007; Cutrell and 
Tan, 2008; Müller et al., 2008; Zander et al., 2008, 2010; Williamson 
et al., 2009; Blankertz et al., 2010a; Zander and Kothe, 2011).

Several studies have shown the feasibility of BCIs as alterna-
tives to augmented communication in severely paralyzed and 
even locked-in patients (Birbaumer et al., 1999; Vaughan et al., 
2006; Hoffmann et al., 2008; Nijboer et al., 2008). However, these 
promising results remain in the scientific drawers of academics 
and do not reach the market. One reason for this is the unpractical 
usage of BCIs at home. A major concern is the long preparation 
time of conventional EEG systems and the use of electrode gel 
necessary for lowering the impedance between the electrodes and 
the participants’ scalp. We will refer to these electrodes as “wet” 
electrodes. Depending on the number of channels used, the prepa-
ration time to apply wet electrodes can vary between 20 and 60 or 
even more minutes. Moreover, participants can suffer from skin 

IntroductIon
To address the issues that arise with our aging society and its related 
health problems it is likely that we will need technologies to aid 
persons in their daily work and life (assistive technology, human–
computer interaction), to help persons stay physically and mentally 
fit as long as possible (primary prevention) and have early detection 
of diseases or disorders. Chatterjee and Price (2009) argue that these 
technologies will need to be persuasive in order for users to adhere 
to their use. They predict that more user-aware, ambient-aware, and 
context-aware smart technologies can be expected that will increase 
persuasion. One of the traditional tools to assess user states and 
users’ intentions is the use of electroencephalography (EEG) as 
one of the oldest imaging techniques used in clinical diagnosis and 
cognitive neuroscience. First described in the 1920s (Berger, 1929), 
a large share of neurophysiogical studies still use EEG as method 
of choice, because recording is non-invasive and has a high tem-
poral resolution superior to other non-invasive methods. With the 
emergence of the new research field of brain–computer interfaces 
(BCIs), the EEG was applied as an input channel to control assistive 
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positions PO7, Oz, and PO8 of the standard 10–20-system. There 
is no need for conductive gel; hence preparation time is reduced 
to roughly 5 min and it is not required to wash the hair after use. 
The system does not pose any health risk for the user.

The aim of the current study is to evaluate the signal quality 
of the dry electrode system for EEG analysis and for BCI applica-
tions. The performance of the dry electrodes was compared to a 
conventional wet electrode cap (actiCap, Brain Products) contain-
ing three electrodes at comparable positions, ensuring simulta-
neous signal acquisition of both systems. Two experiments were 
conducted employing neuroscientific standard paradigms, elicit-
ing event-related potentials (ERP) and spontaneous EEG. A vari-
ant of the oddball paradigm was used to investigate ERP features 
(Holroyd, 2004). P300 ERPs have already been successfully used 
in BCI applications, e.g., the P300-speller (Farwell and Donchin, 
1988; Sellers et al., 2003; Piccione et al., 2006; Sellers and Donchin, 
2006; Hoffmann et al., 2008; Nijboer et al., 2008). Spontaneous EEG 
features were investigated by an experimental task inducing con-
centration (cognitive engagement) and relaxation in alternation, 
thus causing different levels of band power in the α-band (7–13 Hz) 
over occipital electrode sites (e.g., Birbaumer and Schmidt, 2005). 
Like ERPs, these variations of frequency power can be used in BCI 
applications, e.g., in the context of gaming (Nijholt et al., 2008). The 
averaged signals of both experiments were analyzed with standard 
EEG analysis. In addition, they were analyzed and classified offline 
on single-trial basis to evaluate their possible applicability in the 
field of BCI.

dry electrode system
The dry electrode system used in this study is essentially a modi-
fied version of the Brain Products actiCAP system with electrodes 
adapted in such a way as to establish a direct contact with the skin 
without relying on conductive gel. For this, electrodes are manufac-
tured as a comb-like structure with a diameter of 10 mm featuring 
12 small pins of 4 mm length and 2 mm diameter. For the frontal 
electrodes applied to the forehead, cup electrodes of 10 mm diam-
eter are used (see Figure 1).

For signal processing both digital and analog methods are 
employed. Digital signal processing is responsible for impedance 
matching and LED control, while signal transmission from the 

irritation due to long-term usage. Furthermore, when BCIs are 
tested with or developed for persons with severe motor paralysis, 
EEG is often measured while the person is sitting in a wheelchair 
with the head leaning against the head support. In some cases 
the person is even lying in bed resting the head on a pillow. Even 
though these patients may opt to accept the long preparation time 
of “wet” electrodes in return for reliable communication, they may 
not have the ability to wash their hair independently to remove 
electrode gel after BCI use. Caregivers and/or family members 
can wash the hair, but since this procedure can take up to an hour 
in a locked-in patient, current BCIs are not usable (Broermann 
and Nijboer, 2010). In addition, more recent BCI research aims at 
integrating BCI applications into human–machine systems (HMS) 
for healthy people (Müller et al., 2008; Zander et al., 2010, 2011). 
Especially in this context, EEG systems need to become easier to 
use with a reduced configuration phase. The application of dry 
electrodes could lower preparation time to only a few minutes, 
since the use of electrode gel is omitted. This would be the first 
step toward a wearable electrode system. These systems would 
also be beneficial for other aspects of EEG research, as described 
in the following section.

Casson et al. (2010) stated that the development of wearable 
electrodes would lead to new approaches to application of EEG 
in clinical practice. They suggest that wearable electrodes may be 
very important in long-term inpatient monitoring for example 
to diagnose epilepsy or sleep disorders. The authors held a survey 
among 21 neurologists. Eighteen neurologists agreed that there 
is a clinical need for wearable electrodes and 16 would consider 
it a major improvement in their EEG practice if wearable EEG 
devices were available. They believe that wearable EEG would allow 
a more natural sleep in sleep studies. Moreover, 10 neurologists 
could imagine using EEG for non-medical applications such as 
control of computer games or receiving feedback based upon a 
person’s current awareness level.

To the authors’ knowledge, there are three prototypes of such dry 
electrode systems: first of all, Popescu et al. (2007) designed an array 
of specially coated contacts comprising six electrode channels. The 
system was evaluated in an online BCI experiment where participants 
had to accomplish a motor imagination task to control a computer 
cursor. Performance of the dry system was compared to a traditional 
wet one with 64 electrodes, resulting in a degradation of the bit 
rate by 30%. Oehler et al. (2008) developed a capacitive EEG system 
with 28 channels. In a BCI experiment using steady state visually 
evoked potentials (SSVEPs), they compared their electrode system 
to a conventional one. Transferring the same information took three 
times longer with the capacitive system. A third system using multi-
walled carbon nanotube arrays was introduced in 2007 by Ruffini 
et al. (2007). The system was evaluated comparing it to a wet system 
in a standard EEG paradigm, however, only in a few trials with one 
human participant. Therefore, general conclusions about the system’s 
performance could not be made so far. Consequently, none of these 
three dry electrode systems can ensure an EEG measurement that is 
comparable to standard EEG measurements, which is a necessity for 
an application of dry electrode systems in a wider context.

Here, we will now introduce a dry electrode system developed 
by Brain Products (Gilching, Germany). This system contains three 
electrodes that can be placed over the occipital lobe at the electrode 

FiGurE 1 | Sketch of the prototype dry electrode cap. The three comb-like 
electrodes are placed inside in the back of the cap. Ground and reference are 
placed laterally in the front. Moreover, there is a wheel to tighten the cap to 
the participants’ head.
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four blocks, each of 2-min duration. In each block the stimulus 
had a different starting position. After each block, participants were 
instructed to name the number of deviants that occurred.

Paradigm
The experimental task was similar to classical oddball paradigms, 
presenting rare stimuli (deviants) in a sequence of frequent stimuli 
(standards; Schall, 2001). Oddball paradigms are widely used in 
neuroscientific research to investigate an ERP referred to as the 
N200 P300 complex (Polich and Kok, 1995; Linden, 2005). An EEG 
pattern reflecting quite similar brain mechanisms (detecting rare 
targets among frequent stimuli) is utilized for a certain class of 
BCI paradigms, as the P300 speller (Farwell and Donchin, 1988).

At the beginning of a trial a circle divided by lines into 30° 
angles appeared on the screen (similar to the marks on a clock, 
see Figure 2). The standard stimulus was a bar appearing at one 
of four possible starting positions (3, 6, 9, or 12 o’clock) rotating 
90° (standard condition). This frequent stimulus was interrupted 
by a rare rotation (deviant condition), performing a snap move-
ment. The bar rotated in a 60° angle, followed by a snap movement 
back to the 45° position after 100 ms. Odd rotations occurred with 
a probability of p = 0.1. Rotation of the bar was instantaneous; 
the inter-stimulus interval (ISI) between two starting figures was 
1000 ms. Hence, this paradigm resulted in a 2 (tasks) × 2 (electrode 
system) × 3 (channels) factorial design.

Each of the four experimental blocks consisted of 100 trials, 90 
trials of standard stimuli and 10 trials of deviant stimuli respec-
tively, summing up to 360 trials for the standard condition and 40 
deviant trials for the deviant condition over the whole experimental 
session.

EEG recording
Electroencephalography was recorded with two different electrode 
types:

recording site to the amplifier is realized by analog methods. An 
optional noise suppressor is available (however, this option was 
not used in this study). The two frontal electrodes of the system 
are used as reference and ground. Signal electrodes can be variably 
placed on the adjustable headband. When attaching the headband, 
reference and ground electrodes exert a slight pressure on the fore-
head thus forming contact with the skin. For the signal electrodes, 
a conductive connection to the scalp is realized via the electrode 
pins that penetrates through the participants’ hair.

The current electrode locations are restricted to parietal and 
occipital areas. These locations are not typical in many BCI para-
digms that rely on data from areas over the motor cortex or frontal 
midline. But, if the signals recorded at parietal areas are comparable 
with data from wet electrodes, it indicates that this will also be 
possible at other areas of the cortex. The follow up version of the 
prototype tested here, which is currently under development at 
Brain Products will also be applicable to other standard positions 
of the international 10/20-system, including C3, C4, Pz, Fz, and Cz 
electrode positions, widely used in neuroscientific and BCI research.

experIment 1 – oddball
methods
Participants
Twelve students of the Berlin Institute of Technology (aged 
20–28 years, seven female) took part in the experiment. All of them 
were neurologically healthy and reported normal or corrected-to-
normal vision. They were paid 10 Euros and gave written consent 
to participate.

Procedure
Participants were seated comfortably in front of a monitor, wear-
ing the two different electrode caps simultaneously. The task was 
explained to participants by written instructions on the screen. 
A simplified version of the oddball paradigm was used including 

FiGurE 2 | Example trials for the experimental task of the Oddball paradigm showing the standard and deviant condition.
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ERPs and difference curves (deviant-minus-standard) were calcu-
lated for dry and wet electrode EEG data, to obtain time windows 
for oddball related potentials.

According to the grand average ERPs (see Figure 3), the time 
window for the negativity was defined as 250–400 ms after stimulus 
onset; for the positivity a time window of 450–600 ms was chosen. 
Difference curves were calculated and plotted for each participant 
individually. ERP peak amplitude and latency of the difference 
curves were determined for each participant by choosing the 
minimum amplitude value for the negativity in the expected time 
window (250–400 ms) and the maximum amplitude value for the 
expected time window of the positivity (450–600 ms). Difference 
peak latencies were calculated for each participant, subtracting 
mean peak latency of the negativity by the mean peak latency of the 
positivity. The open source toolbox EEGLAB (Delorme and Makeig, 
2004) and MATLAB (The Mathworks, Natick, USA) were utilized 
for pre-processing, ERP analysis, and visualization of ERP data.

BCI analysis
The BCI single-trial analysis was conducted by calculating the 
offline classification error using a 10 × 5-fold cross-validation 
(Bishop, 2006; Blankertz et al., 2007; Zander et al., 2011) to esti-
mate BCI classification accuracy. This procedure implies a rand-
omized 10-fold cross-validation, which is repeated five times and 
the average of these results is taken as an estimation of classification 
accuracy. This results in less random fluctuation of the classifica-
tion accuracy estimation. EEG data were downsampled to 100 Hz, 
epochs were generated from 0 to 800 ms relative to stimulus onset 
and a 0.1–15 Hz FFT band pass filter was applied. For classification 
a modified version of the pattern matching method (Blankertz 
et al., 2002, 2010b; Zander et al., 2011) was utilized. Trials were 
partitioned into sixtime windows of 50 ms length according to the 
shape of the ERP. Calculating the mean of each time window and 
single trial for the three channels resulted in an 18-dimensional 
feature space (3 channels × 6 time windows). As a classifier, regular-
ized linear discriminant analysis (rLDA) was used. BCI analysis was 
conducted with the PhyPA BCI toolbox (Zander et al., 2008, 2011).

Statistical analysis
Differences of negative and positive peak amplitudes between dry 
and wet electrode data were tested for significance by conducting 
a 2 (electrode type) × 3 (channels) repeated-measures ANOVA, 

On the one hand, an actiCap (Brain Products) with three stand-
ard active electrodes at occipital positions (PO7, Oz, PO8), an 
active ground and reference electrode at frontal positions (Fp1, 
Fp2) was used. On the other hand, we used the dry electrode sys-
tem described above (equipped with three dry active electrodes 
at the same occipital positions, plus a dry active ground and ref-
erence electrode at the same frontal positions). Electrodes were 
placed at positions PO7, PO8, and Oz, according to the standard 
10–20 system. Since both electrode caps were used simultaneously 
for EEG recording, one cap was placed at standard positions and 
the other cap approximately 1.5 cm above these positions. Upper 
and lower positions of the electrode sets were counterbalanced 
across participants. EEG was recorded at a sample rate of 500 Hz. 
Impedances of all electrodes were kept below 20 kΩ which is a 
standard calibration according to the specifications of the actiCap. 
The standard actiCap electrodes were connected to a 32-channel-
amplifier BrainAmp DC by Brain Products. For the dry electrodes 
the 8-channel-amplifier V-Amp (Brain Products) was used. Both 
amplifiers share the same level of input noise (≤1 μVpp), hence, 
using two different amplifiers should not have an impact on the 
results of this study.

Pre-processing
To obtain ERP measures EEG was visually inspected for arti-
facts. EEG data containing muscle artifacts or eye blinks were 
excluded from further analysis. Artifact removal was performed 
on wet electrode data and then transferred automatically to the 
dry electrode data. We decided for this conservative approach 
to retain a standardized methodology for ERP analyses and to 
ensure validity of a positive assessment of dry electrodes. With 
defining artifact periods from the baseline of the wet electrode 
data, artifacts additionally generated by the usage of the dry elec-
trode technology will be reflected in our results. A band pass filter 
of 0.1–15 Hz was applied. Epochs of 1000 ms length, stimulus-
locked to standard stimulus rotation or deviant (odd) stimulus 
rotation, were extracted. A 200-ms pre-stimulus interval was used 
for baseline correction.

ERP measures
An ERP analysis was conducted on the data of the oddball paradigm 
in order to compare standard ERP measures as peak amplitude and 
peak latency between dry and wet electrode data. Grand average 

FiGurE 3 | Grand average ErPs (12 subjects) for deviant (A) and standard (B) trials are shown for channel PO8. ERPs for dry (red) and wet (blue) electrode 
data are plotted together with a difference curve (black) for different data (dry-minus-wet). Dotted lines show the SDs for the grand average ERPs.
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BCI analysis
Classification results are shown in Table 2, mean classification 
accuracy was 77.8% for the wet and 72.1% for the dry electrode 
data. Classification results for all participants are shown in Table 2. 
Differences in classification accuracy between wet and dry electrode 
data [t(11) = −2.64, p < 0.05] were significant. The accuracy differ-
ence was approximately 6%.

dIscussIon
The grand average ERP morphology for dry and wet electrode data 
is almost identical except for a higher SD for dry electrode data in 
the standard condition. This reveals that the signal-to-noise ratio 
for the dry electrode EEG data is not as good as for the wet electrode 
EEG data, still showing only slight differences in the grand average. 
Statistical analysis of standard ERP measures revealed no significant 
differences between wet and dry electrode EEG data with respect 
to peak amplitudes. In addition, mean difference peak latencies 
(positivity minus negativity) showed a high significant correlation 
between wet and dry electrode data across subjects. This indicates 
that there is no time lag induced by the dry electrode system. It can 
be assumed that the dry electrodes are suitable for standard ERP 
analysis, with respect to ERP measures investigated here.

Statistical analysis of the results of the BCI classification accuracy 
revealed significant differences between dry and wet electrode data. 
Regarding BCI single-trial analysis, the results of the dry electrode 
data were deteriorated by approximately 6% classification accuracy 
with a mean of 72.1% (dry) compared to 77.8% (wet) classification 
accuracy. The used paradigm was a rotating stimulus inducing an 
oddball ERP with a delayed timing and different morphology com-
pared to standard oddball paradigms. Nonetheless, all measures, 
standard ERP peak amplitude and latency as well as BCI classifica-
tion accuracy revealed that both EEG systems lead to comparable 
analysis results in the ERP domain.

experIment 2 – alpha paradIgm
methods
Participants
Like in Experiment 1, 12 students (some of them had already partic-
ipated in the first experiment) of the Berlin Institute of Technology 
(age: 20–28 years, eight female) took part in the experiment. All 
of them were neurologically healthy and reported normal or cor-
rected-to-normal vision. They were paid 10 Euros and gave written 
consent to participate.

with two within-subject factors. An ANOVA was calculated for 
each dependent measure: the peak amplitude of the negativity and 
positivity of the according difference curve. Greenhouse–Geisser 
corrected degrees of freedom and significant values were used when 
the assumption of sphericity was not met. Since the goal was to 
fulfill the null hypothesis, i.e., to show that there are no differences 
in ERP measures between dry and wet EEG data, the alpha signifi-
cance level was set to p > 0.1 to control for the beta error (Bortz, 
2005). Correlations between dry and wet difference latencies were 
obtained by calculating bivariate correlations (Pearson correlation), 
which were tested for significance by a one sample t-test against 
zero. The probability of getting a correlation as large as the resulting 
one by chance, if true correlation was zero, was evaluated against a 
significance level of 0.05. Classification accuracies were tested for 
significant differences between wet and dry electrode data by using 
a paired sample t-test.

results
ERP measures
Figure 2 shows grand average ERPs for wet and dry electrode data 
for standard and deviant trials at electrode PO8. The respective 
difference curves are plotted to show differences in ERP shape 
for the two electrode systems. The morphology of the dry vs. 
wet mean ERPs is almost identical except for some differences 
in SD revealing a higher SD for the dry electrode data in the 
standard condition.

For the peak amplitude measure, analysis of variances revealed 
that neither the main factor of electrode type [dry vs. wet electrode 
system; negativity: F(11) = 0.2, p > 0.1, positivity: F(11) = 0.15, 
p > 0.1], nor the factor channel [PO7, Oz, PO8; negativity: 
F(11) = 1.54, p > 0.1, positivity: F(11) = 1.87, p > 0.1] had sig-
nificant effects on the peak amplitude. Accordingly, there were no 
significant differences between wet and dry electrode data or chan-
nels. Table 1 shows mean values and SD for the respective peak 
amplitude values and difference peak latencies.

The mean difference peak latency (positive minus negative 
peak latency) was 171.33 ms for dry vs. 177.50 ms for wet elec-
trode data at channel PO7, 158.33 ms (dry) vs. 178.83 ms (wet) 
at channel Oz and 174.17 ms (dry) vs. 182.50 ms (wet) at channel 
PO8. Bivariate correlations for difference peak latencies between 
dry and wet electrode data were high and significant for all elec-
trodes (PO7: r = 0.64, p < 0.05; Oz: r = 0.65, p < 0.05; PO8: 
r = 0.65, p < 0.05).

Table 1 | Event-related potential results. Mean values and SD for peak amplitudes and latency differences for the negativity and positivity.

Amplitude

 Negativity (300–400 ms) Positivity (500–600 ms) Latency difference 

   (positivity − negativity)

 Mean in μV SD in μV Mean in μV SD in μV Mean in ms SD in ms

Dry: PO7 −8.53 8.47 5.98 7.43 171.33 47.82

Wet: PO7 −9.30 5.36 5.87 9.00 177.50 39.69

Dry: Oz −7.46 8.61 3.53 8.32 158.33 52.56

Wet: Oz −8.04 7.91 5.55 12.20 178.83 41.42

Dry: PO8 −8.28 7.35 6.88 5.79 174.17 35.78

Wet: PO8 −9.34 5.21 7.46 8.25 182.50 35.28
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screen, indicated by “Do you recognize the word?”. These letters 
were successively shown on a dynamic background with different 
gray-scaled shades in a 6-s period. Shades were changing shape 
and color which made letter detection difficult and strenuous. In 
addition, letters had to be memorized until a word was recognized 
putting load on working memory during this condition in contrast 
to the “relaxed” condition. In the end of each trial, participants 
were instructed to name the recognized word. In sum, participants 
performed 52 trials of the “relaxed” condition and 52 trials of the 
“engaged” condition randomly distributed across the four experi-
mental blocks. This paradigm reflects a common strategy used 
in psychophysiological experiments and induces an event-related 
desynchronization (ERD) of the alpha rhythm recorded at pari-
etal areas. As ERD is a common feature used in BCI paradigms 
(Pfurtscheller et al., 1997), the results from this paradigm are a 
good indicator whether the tested electrodes will be applicable in 
frequency based BCI applications.

EEG recording
Electroencephalography recording was conducted in the same way 
as in Experiment 1.

Pre-processing
Artifact removal was identical to Experiment 1. Epochs extracted 
lasted 6 s from beginning of the task to the end of this period.

EEG frequency analysis
In order to determine whether the frequency characteristics of the 
dry electrode data are comparable to the wet electrode data, three 
different measures were used. First power spectral densities of dry 
and wet electrode data were compared. For this, spectral densi-
ties in the range of 0.1–40 Hz were computed using the EEGLAB 
function “spectopo.” This was done separately for each electrode 

Procedure
Participants performed four blocks of the alpha paradigm described 
below, with a duration of 5 min each, including short breaks 
between blocks.

Paradigm
The experimental paradigm included two conditions (“relaxed” vs. 
“engaged”). In the “relaxed” condition participants were instructed 
to relax and close their eyes for 6 s, indicated by the phrase “Please 
relax now.” appearing on the screen (see Figure 4). The starting 
point for this period was cued by a high tone, the end by a lower 
tone. The task of the “engaged” condition was to find a word by 
concatenating letters appearing shortly at random locations on 

Table 2 | results of BCi analysis. Shown is the offline classification 

accuracy, calculated by cross-validation for each participant for dry and wet 

electrode data.

Participants Wet Dry

 1 73.0 69.6

 2 76.8 68.2

 3 79.6 83.9

 4 72.8 73.8

 5 77.9 83.2

 6 79.4 69.1

 7 72.5 64.5

 8 80.4 72.6

 9 79.0 73.3

10 79.5 78.2

11 80.7 66.5

12 82.4 62.4

Mean 77.8 72.1

FiGurE 4 | Example trials for the experimental task of the paradigm to induce alpha activity. In the “engaged” condition, participants had to recognize a word 
in a sequence of letters presented on noisy background. In the “relaxed” condition, participants had to close their eyes and relax indicated by a high tone.
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for the grand average mean. For these individual and grand average 
correlations, one sample t-tests against zero were performed for 
each electrode, again at a significance level of p < 0.05.

Mean difference band power values were tested for significant 
differences across participants between wet and dry electrode data 
using paired sample t-tests. The alpha significance level was again 
set to p > 0.1 to control for the beta error. For band power time 
courses in the alpha band, bivariate correlations between wet and 
dry electrode data were calculated for each condition, channel, and 
participant. Classification accuracies of dry and wet electrode data 
were compared with a paired sample t-test. The significance level 
was raised again to p = 0.1 to control for the beta error.

results
Frequency spectra
The mean of individual correlations (subjects × channels) between 
dry and wet electrode power spectral densities was r = 0.97 
(SD = 0.03) with all individual correlation values above r > 0.86. 
For the grand average power spectral densities, the respective cor-
relation coefficients were above r > 0.98 (mean: 0.99, SD: 0.01) for 
all three channels. All correlations reached a significant value of 
p < 0.05. Figure 5 shows two examples for grand average power 
spectral density plots for both conditions.

The grand average band power difference between conditions 
“relaxed” and “engaged” was bp

rel-eng 
= 2.68 (SD = 1.20) for dry 

electrode data and bp
rel-eng

 = 2.54 (SD: 0.82) for wet electrode data. 
The t-test for individual mean bp differences between conditions 
yielded no significant differences between wet and dry electrode 
data [t(11) = 0.34, p > 0.1].

For alpha band power time courses, mean correlation across 
participants and channels for the relaxed condition was r = 0.74 
(PO7: r = 0.72, Oz: r = 0.73, PO8: r = 0.76). These correlations 
were significant for all participants (all p values < 0.05). For the 
“engaged” condition the mean band power correlation was r = 0.63 
(PO7: r = 0.63, Oz: r = 0.66, PO8: r = 0.61). For two subjects, the 
correlation was not significant at PO7 and for one of these not 
significant at Oz. For all other participants and channels, correla-
tions were significant. Figure 6 shows the time course of the alpha 
band power of a participant with high correlations between the 
two EEG systems (participant 8).

and experimental condition (“relaxed,” “engaged”), both for the 
spectral densities of individual subjects as well as for the densities 
averaged across all participants (grand average).

Second, the mean band power in the alpha band (7–13 Hz), 
which was expected to be pronounced in the “relaxed” condition, 
was investigated more closely. Mean band power for each single 
trial of the “relaxed” and “engaged” condition was determined 
for each channel and participant. The resulting single-trial band 
power values were normalized for each condition and partici-
pant by the band power mean of the corresponding data set. 
Normalized single-trial band power values were averaged across 
trials and channels for each condition. Mean difference values 
between conditions were calculated (“relaxed” minus “engaged”) 
resulting in one normalized mean difference band power value 
per participant.

As a third dependent measure, the time course of the band power 
in the alpha band range was examined. For each trial, a sliding 
window of 100 data points length was shifted over the signal with 
a window overlap of 99 data points for two successive shifts. The 
signal in each window was transformed by multiplying it with a 
Gaussian window of the same length to avoid leakage effects. Then, 
the normalized band power of the transformed signal was calcu-
lated. The resulting band power time courses were averaged across 
trials, yielding 12 vectors (3 channels × 2 conditions × 2 electrode 
sets) for each participant containing the time course information 
of the band power in the alpha band.

BCI analysis
To assess the potential of the dry electrodes for BCI applications, 
classification accuracies between dry and wet electrode data were 
compared. For this, logarithmic band power values (Solis-Escalante 
et al., 2010; Zander et al., 2011) were used for feature extraction. 
Based on these features, classification was performed using a rLDA. 
Classification accuracies were estimated using 10 × 10-fold cross-
validation (Bishop, 2006; Blankertz et al., 2007; Zander et al., 2011).

Statistical Analysis
For power spectral densities in the range of 0.1–40 Hz, bivariate 
correlations (Pearson Correlation) between dry and wet electrode 
data were calculated for each participant and electrode as well as 

FiGurE 5 | Grand average power spectral densities at PO7. Data are averaged across subjects during relaxation (A) and during mental engagement (B).
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Oehler et al., 2008), we report here results on common EEG analyzes 
and the abstract measure of classification accuracy. To summarize, 
we found that the presented system indeed is capable of recording 
reliable EEG signals. The recorded signals show only slight dif-
ferences to the data recorded with standard wet EEG electrodes.

In two experiments considering ERPs as well as spontaneous 
EEG, we were able to show that the Brain Products dry electrode 
set is capable of recording EEG signals for psychophysiological 
research and signals used in BCIs. Compared to a set of standard 
wet electrodes consisting of the same number of channels, there was 
almost no difference in standard ERP and frequency measures. ERP 
peak latency measures revealed that there is no time lag induced 
by the dry electrode system. In addition, there was no significant 
performance degradation for the BCI classification with respect to 
the frequency domain. The slightly degraded classification results 
of the oddball paradigm for the dry electrode set remain to be 
investigated. It might be possible that the paradigm is not suitable 
for single-trial analysis at occipital sites. Moreover, it could be due 
to the small number of trials. The chosen approach of conservative 
artifact removal only based on time periods taken from the baseline 
data of wet electrodes ensures the validity of our results.

BCI analysis
Table 3 lists the classification accuracies of individual participants 
for the different electrode sets. Mean classification accuracy for 
dry electrode data was 90.7 and 94.0% for wet electrode data. 
Comparing classification accuracies between wet and dry electrode 
condition no significant differences were found between the two 
electrode systems [t(11) = 0.67, p > 0.1].

dIscussIon
The consistently high correlations between the frequency spectra of 
the dry and wet electrode data suggest that both electrode sets are 
equally capable of measuring spontaneous EEG. This is also sup-
ported by the band power analysis of the alpha band. Band power 
differences between “relaxed” and “engaged” condition do not differ 
significantly from each other. With respect to the time course of the 
alpha band power, it was evident that there were significant cor-
relations across all participants for the “relaxed” condition and pre-
dominantly significant correlations in the “engaged” condition. One 
possible explanation for the sporadic not significant correlations in 
the “engaged” condition, respecting two participants, could be the 
fact that the dry data was not preprocessed individually for artifacts. 
Artifact removal was performed by visual inspection on the wet 
electrode data. These rejection time windows were automatically 
transferred to the dry electrode data to make a comparison of both 
electrode systems possible and to rule out possible influences of 
manual artifact removal on the dry electrode data quality. Hence, 
artifacts occurring only in the dry electrode system, e.g., due to 
sweat or movement of individual electrodes remained in the data 
and thereby could have contaminated experimental trials.

Mean classification accuracies were above 90% for the data of 
both electrode sets and the distributions did not differ significantly 
from each other. However, for some participants, there were larger 
differences varying in both directions.

general dIscussIon
In this paper we aimed to investigate the data quality of dry elec-
trodes for recording EEG patterns which are commonly used in 
EEG analyses and which are similar to those patterns used in com-
mon BCI paradigms. In contrast to other studies on dry electrode 
systems, which focus on BCIs transfer rates (Popescu et al., 2007; 

FiGurE 6 | Time course of alpha band power. Examples (participant 8) for the time course of the alpha band power for the experimental conditions “engaged” (A) 
and “relaxed” (B).

Table 3 | Brain–computer interface results of the alpha paradigm. 

Classification results for all participants.

Participants Wet Dry

 1 97.1 99.0

 2 100.0 96.3

 3 99.0 100.0

 4 99.0 98.1

 5 97.1 72.2

 6 98.1 97.1

 7 100.0 98.1

 8 100.0 98.1

 9 81.7 90.4

10 58.8 61.3

11 98.1 90.4

12 99.1 87.4

Mean 94.0 90.7
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In sum, the dry electrode system investigated here showed in 
most cases no performance degradation in EEG and BCI measures. 
But still, as we were only able to record data from parietal areas 
due to the setup of the used prototype of the headset, we could 
only investigate patterns similar to those commonly used in BCI 
applications. Hence, the presented results are only the first step 
toward the usage of dry electrodes for BCI. Next steps should be 
the development of systems with more electrodes which possibly 
could be placed at any site of the international 10/20-system. With 
that, these new electrodes could open new opportunities to apply 
BCI in the context of HMI, e.g., as gadget in the gaming context, 
thus moving it out of the clinical context. Moreover, patients with 
severe motor impairment could benefit from this new technology 
because handling of the dry electrode system overcomes many of 
the restrictions of conventional EEG systems. Dry electrodes may 
also reduce the time needed for a neurological exam, thereby reduc-
ing costs for the health care system.

conclusion and  outlook
This study presented a prototype of a dry electrode cap which 
shows that the investigated electrodes provide a high potential 
to be applicable in psychophysiological and BCI research. This 

 system represents a crucial step to move BCIs from laboratories to 
people’s homes. The next step would be using these electrodes in 
conventional BCI applications – including online feedback. Also 
interesting would be a detailed comparison of differences between 
the developments of artifacts in dry and wet electrodes. Here, a shift 
to a new baseline consisting of the intersection of artifact periods 
from both data streams would be useful. Therefore, the mainly 
mechanical problem of placing dry electrodes on the top of the head 
still needs to be solved. A newer version of this prototype, which 
currently is under development, will provide electrodes over motor 
cortex and frontal midline areas – to enable, for example, control 
by motor imagery. Final goal could be a high-density electrode 
array which would be capable of rendering a much broader range 
of EEG studies and BCI applications. We will continue on tracking 
efforts in this direction and hopefully will be able to test diverse 
prototypes in our laboratory in the near future.
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