
Such a system could be used by persons with disabilities to  support 
their daily activities. In this type of system, users rely on control panels 
that are pre-equipped; thus, each system is specialized for the user’s 
specific environment (e.g., his or her home). To expand the range 
of possible activities, it is desirable to develop a new system that can 
be readily used in new environments, such as hospitals. To make this 
possible, here, we added an augmented reality (AR) feature to a P300-
based BMI. In the system, we used a see-through head-mount display 
(HMD) to create control panels with flicker visual stimuli, thereby 
giving users suitable panels when they come close to a controllable 
device. When the attached camera detects an AR marker, the posi-
tion and orientation of the marker are calculated, and the control 
panel for the pre-assigned appliance is created by the AR system and 
superimposed on the scene via the HMD (Figures 1 and 2).

We used a see-through HMD in this study. To evaluate the effects 
of different types of visual stimuli on the new AR–BMI, we com-
pared a see-through HMD with an LCD monitor. The participants 
were asked to control devices using the AR–BMI system with both 
a see-through HMD and an LCD monitor. In doing so, we found 
that the AR–BMI system with the see-through HMD worked well.

Materials and Methods
subjects
Fifteen subjects were recruited as participants (aged 19–46 years; 
3 females, 12 males). All subjects were neurologically normal and 
strongly right-handed according to the Edinburgh Inventory 
(Oldfield, 1971). Our study was approved by the Institutional 

introduction
The brain–machine interface (BMI) or brain–computer interface 
(BCI) is a new interface technology that uses neurophysiological 
signals from the brain to control external computers or machines 
(Birbaumer et al., 1999; Wolpaw and Mcfarland, 2004; Birbaumer 
and Cohen, 2007). Electroencephalography (EEG), in which neu-
rophysiological signals are recorded using electrodes placed on the 
scalp, represents the primary non-invasive methodology for study-
ing BMI. Our group applied EEG and developed a BMI-based sys-
tem for environmental control and communication. In this system, 
we modified a P300 speller (Farwell and Donchin, 1988). The P300 
speller uses the P300 paradigm and involves the presentation of a 
selection of icons arranged in a matrix. According to this protocol, 
the participant focuses on one icon in the matrix as the target, and 
each row/column or a single icon of the matrix is then intensified 
in a random sequence. The target stimuli are presented as rare 
stimuli (i.e., the oddball paradigm). We elicited P300 responses to 
the target stimuli and then extracted and classified these responses 
with respect to the target. In our former study, we prepared a green/
blue flicker matrix because this color combination is considered 
safest (Parra et al., 2007). We showed that the green/blue flicker 
matrix was associated with a better subjective feeling of comfort 
than was the white/gray flicker matrix, and we also found that the 
green/blue flicker matrix was associated with better performance 
(Takano et al., 2009a,b). The BMI system was satisfactorily used by 
individuals with cervical spinal cord injury (Komatsu et al., 2008; 
Ikegami et al., 2011).
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Review Board at the National Rehabilitation Center for Persons 
with Disabilities. All subjects provided written informed consent 
in accordance with institutional guidelines.

experiMental design
Augmented reality techniques were combined with a BMI 
(Figure 1). The AR–BMI system consisted of an HMD (LE750A, 
Liteye Systems, Inc., Centennial, CO, USA) or LCD  monitor 

(E207WFPc, Dell Inc., Round Rock, TX, USA), a PC, USB 
camera (QCAM-200V, Logicool, Tokyo, Japan), EEG amplifier 
(g.USBamp, Guger Technologies OEG, Graz, Austria), and EEG 
cap (g.EEGcap, Guger Technologies OEG). We used the ARToolKit 
C-language library for the system (Kato and Billinghurst, 1999). 
When the camera detects an AR marker, the pre-assigned infra-
red appliance becomes controllable. The AR marker’s position 
and posture were calculated from the images detected by the 
camera, and a control panel for the appliances was created by 
the AR system and superimposed within sight of the subject. 
We prepared a TV and a desk light as controllable devices. AR 
markers for the control panels for the TV and desk light were 
prepared (Figure 2).

We prepared green/blue flicker matrices (Takano et al., 2009b) as 
control panels. The duration of intensification/rest was 100/50 ms. 
All icons flickered in random order, creating a sequence. One clas-
sification was carried out per 15 sequences (Figure 2). Subjects were 
required to send five commands to control both the TV and desk 
light. We asked the subjects to focus on one of the icons.

eeg recording and analysis
Eight-channel (Fz, Cz, Pz, P3, P4, Oz, Po7, and Po8) EEG data 
were recorded using a cap. All channels were referenced to the Fpz 
and grounded to the AFz. Electrode impedance was under 20 kΩ. 
The EEG data were amplified/digitized at a rate of 128 Hz using 
a gUSBamp. The gUSBamp internal digitization rate was higher 
than 128 Hz, so the data were down-sampled. The digitized data 
were filtered with an eighth-order high-pass filter at 0.1 Hz and a 
fourth-order 48–52 Hz notch filter.

In the analyses, recorded EEG data were filtered with a first-
order band-pass filter (1.27–2.86 Hz); 120 digitization points of 
ERP data were recorded according to the timing of the inten-
sification. Data from the first 20 points (before intensification) 

FIgure 1 | Diagram of the Ar–BMI system. When the USB camera detects 
an AR marker, the control panels for a pre-assigned appliance (e.g., desk light) 
are added to the user’s sight and the device becomes controllable. The 
subjects are able to operate the appliance by focusing on an icon on the 
augmented control panel.

FIgure 2 | experimental procedure. The icons change color from blue to green at the time of intensification, and the elicited ERPs are recorded. The red solid line 
in the EEG data indicates the segmented portion used for classification. The target was classified by Fisher’s linear discriminant analysis after 15 sequences. The light 
control panel had four icons (turn on, turn off, light up, and dim), whereas the TV control panel had 11 icons (turn on, change channel, change video mode, volume up, 
and volume down).
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results were not significantly different (Figure 3). In contrast, a 
significant difference was noted in an offline evaluation [two-way 
repeated ANOVA F(1,420) = 13.6, p < 0.05; Tukey–Kramer test, 
p < 0.05].

The mean accuracy rate for light control was 84% (SD = 3.40) 
with the LCD monitor, compared to 76% (SD = 2.06) with the 
HMD; however, the results were not significantly different. The 
results were also not significantly different in an offline evaluation. 
Thus, our AR–BMI system could be operated not only by using a 
PC display, but also by using an HMD.

channel selection
We further investigated the effects of channel selection on the 
operation of the AR–BMI using an HMD and LCD monitor. 
We divided the EEG channels into different sets and evaluated 
their accuracy.

When we analyzed the data in two horizontal channel sets [A 
(P3, Pz, and P4) and B (Po7, Oz, and Po8; Figure 4A)], set B (pos-
terior set) showed significantly higher accuracy than set A (anterior 
set) in all sessions and under all conditions (p < 0.05, two-way 
repeated ANOVA, no interaction).

When we analyzed the data in three vertical channel sets [C (P3 
and Po7), D (Pz and Oz), and E (P4 and Po8; Figure 4B)], set D 
(middle set) showed significantly lower accuracy than the others 
(left and right sets) in all sessions and under all conditions (p < 0.05, 
two-way repeated ANOVA, no interaction, and Tukey–Kramer as 
a post hoc test).

These results show that the posterior and lateral (right or left) 
channel sets provided better performance in the operation of the 
AR–BMI with both the HMD and LCD monitor.

were used for baseline correction. The remaining 100 points 
(after intensification) were down-sampled to 25.6 Hz and used 
for classification.

In training sets, we recorded EEG data to create a feature vector 
beforehand. Subjects were required to focus on one of the target 
icons, and four target icons were used. Sixty (4 trials × 15 intensifi-
cations) sets of digitization points were recorded as the target data 
set, and 600 (4 trials × 15 intensifications × 10 non-target icons) 
sets of digitization points were recorded as the non-target data 
set. Each data set included 100 digitization points per each EEG 
channel, and these data sets were down-sampled to 20 digitization 
points per each EEG channel. In total, 160 dimension-feature vec-
tors (20 dimensions per EEG channel) were calculated using the 
segmented data for each subject. Feature vectors were derived for 
each experimental condition (LCD and HMD).

In testing sets, using the feature vectors, target and non-target 
icons were discriminated using Fisher’s linear discriminant analysis. 
The result of the classification, as the maximum of the summed 
scores, was used to determine the icon to which the subjects were 
attending.

results
online perforMance and offline evaluation
In the current study, we prepared an AR–BMI to control system-
compatible devices. We used both a see-through HMD and an LCD 
monitor to further evaluate the effect of different types of visual 
stimuli on the AR–BMI.

Online performance was evaluated and the mean accuracy rate 
for the TV control panel was 88% (SD = 3.20) with the LCD moni-
tor, compared to 82.7% (SD = 2.63) with the HMD; however, these 

FIgure 3 | Subjects’ control accuracy. Accuracy in controlling the TV and desk 
light are shown. The horizontal axes indicate the number of sequences, while 
the vertical axes indicate the accuracy. White solid lines show the mean 

accuracy with the SE. The blue squares behind the white solid lines are 
two-dimensional histograms; each blue square indicates the frequency of the 
subjects in each sequence and their accuracy [(A): LCD, (B): HMD].
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contributed favorably to the operation of the AR–BMI with 
both the HMD and LCD monitor. Important roles for pos-
tero-lateral channels in driving a P300-based BMI have been 
reported (Krusienski et al., 2008; Rakotomamonjy and Guigue, 
2008). Rakotomamonjy and Guigue (2008) scored the effective-
ness of channels in a P300-based BMI using a support vector 
machine and found an advantage with Po7 and Po8. Krusienski 
et al. (2008) showed that the occipito-parietal (Po7, Oz, and 
Po8) and midline (Fz, Cz, and Pz) electrodes provided better 
accuracy.

The neuronal mechanisms of the P300 have been investigated, 
and it has been noted that that the P300 reflects stimulus-driven 
and top-down attentional processes with other cognitive process, 
including categorization (Bledowski et al., 2004; Polich, 2007). 
Our tasks used green/blue color stimuli so that the processing 
of chromatic information, which occurs primarily in the V4 
area, was also required (Lueck et al., 1989; Plendl et al., 1993; 
Murphey et al., 2008). Additional studies are necessary to fully 
understand the neuronal processes underlying the P300 para-
digm with green/blue color flickering stimuli; however, this 
study suggests the importance of posterior and lateral (right 
or left) channel sets in the operation of an AR–BMI with both 
an HMD and LCD display.

toward advanced intelligent environMents
Several combinations between BMI and other technologies have 
been attempted, such as BMI with eye tracking (Popescu et al., 
2006), and BMI with robotics (Valbuena et al., 2007). AR was com-
bined with SSVEP BMI to provide a rich virtual environment (Faller 
et al., 2010), and we used AR with an LCD monitor and an agent 
robot in P300 BMI so that the users could operate home electronics 
in the robot’s environment (Kansaku et al., 2010). In this study, we 
developed an AR–BMI system operated with a see-through HMD, 
which may be useful in building advanced intelligent environments 
(Kansaku, in press).

discussion
In this study, we found that by applying an AR–BMI system  operated 
with a see-through HMD, which can provide suitable control panels 
to users when they come into an area close to a controllable device, 
participants successfully operated system-compatible devices with-
out significant training.

hMd vs. lcd Monitor
When visual-evoked potentials are applied to a BMI system, the 
effects of visual stimuli can be better evaluated. Townsend et al. 
(2010) reported that a checkerboard paradigm for visual stimuli 
increased accuracy. Our group found that green/blue flicker stimuli 
improved performance during operation of a P300-based BMI 
(Takano et al., 2009b). A BMI study that used an immersive HMD 
and LCD monitor to provide visual stimuli showed no significant 
difference between the two technologies (Bayliss, 2003).

In this study, we applied both a see-through HMD and an LCD 
monitor to an AR–BMI system to further evaluate the effect of 
different types of visual stimuli, and in the online evaluation, the 
performance with the HMD was not different from that with the 
LCD monitor. The percent accuracy in this study ranged from 76 
to 88%; because the incidence of correct responses exceeded 70%, 
the system is considered to have reached the level of actual usage 
(Kubler and Birbaumer, 2008; Nijboer et al., 2008).

In offline analyses, the see-through HMD provided significantly 
lower accuracy for TV control than the LCD monitor. Because icon size 
and the distance between icons can affect the accuracy of classification 
(Sellers et al., 2006), this may have been caused by the different types of 
visual stimuli between the HMD and LCD monitor. Thus, the effects 
of visual stimuli on BMI operation should be investigated further.

channel set
We also investigated the effects of channel selection on opera-
tion of the AR–BMI using an HMD and LCD monitor, and 
found that posterior and lateral (right or left) channel  selections 

FIgure 4 | Control accuracy in the channel sets. Accuracy in controlling the TV 
and desk light are shown in different channel sets (A–E). The horizontal axes indicate 
the number of sequences, while the vertical axes indicate the accuracy. (A): channel 

sets A (P3, Pz, and P4) and B (Po7, Oz, and Po8); (B): channel sets C (P3 and Po7), D 
(Pz and Oz), and E (P4 and Po8). Solid lines indicate performance with the LCD, 
while broken lines indicate performance with the HMD for each channel set.
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along these lines, using either non-invasive neurophysiological 
signals or neuronal firing data, may enable new daily activities 
not only for persons with physical disabilities, but also for able-
bodied persons.
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The systems developed by our group use a modified P300 speller 
(Farwell and Donchin, 1988). Although the P300 speller has pri-
marily been used for communication using spelling alphabets, the 
system has recently been used to control more complex system-
compatible devices, including robots (Bell et al., 2008; Komatsu 
et al., 2008). Thus, each icon expresses the user’s thoughts by assign-
ing more complex meanings.

Our AR–BMI with a see-through HMD can be used to con-
trol more types of devices; thus, the system may be helpful in 
expanding the range of activities for persons with disabilities. 
The future extension of the environment for human activities 
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